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Abstract

In this paper we determine the distributions of occupation times of a Markov-modulated
Brownian motion (MMBM) in separate intervals before a first passage time or an exit
from an interval. We derive the distributions in terms of their Laplace transforms, and we
also distinguish between occupation times in different phases. For MMBMs with strictly
positive variation parameters, we further propose scale functions.
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1. Introduction

Let J = (Jt : t ≥ 0) denote an irreducible Markov process with finite state space E =
{1, . . . , m} and infinitesimal generator matrix Q = (qij )i,j∈E . We call Jt the phase at time t
and J the phase process. Choosing parameters µi ∈ R and σi ≥ 0 for all i ∈ E, we define the
level process X = (Xt : t ≥ 0) by

Xt = X0 +
∫ t

0
µJs ds +

∫ t

0
σJs dWs

for all t ≥ 0, where W = (Wt : t ≥ 0) denotes a standard Wiener process that is independent
of J. Then (X,J) is called a Markov-modulated Brownian motion (MMBM). An MMBM is
a Markov additive process (MAP; see [2, Chapter XI]) without jumps.

MMBMs have proved to be powerful tools in stochastic modelling, with applications in
queueing theory, insurance, and finance. This is even more apparent after one considers the
fact that exit problems for MAPs with phase-type jumps can be reduced to an analysis of
MMBMs by standard transformation techniques (see, e.g. [6] and [13]). The class of MAPs
with phase-type jumps is dense within all MAPs; see Proposition 1 of [3]. Thus, we deal with
occupation times for a dense subset of MAPs.

Some results for MMBMs go back to the 1990s, with Rogers [15] investigating Wiener–
Hopf factorisation and stationary distributions for the case that σi = ε is independent of the
phase process. Around the same time, Asmussen [1] determined the hitting probabilities and,
based on these, expressions for the stationary distributions. More recent results are given in [7]
and [10], where MMBMs with two reflecting barriers are analysed. Some properties of scale
functions for MMBMs are derived in [12].

Occupation times for the phase process before a one- or two-sided exit can be determined
via the results in [6] and [13]. This will be discussed in Section 2. As an afterthought to this,
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we shall propose a definition of scale functions for MMBMs with strictly positive variation
parameters, i.e. σi > 0 for all i ∈ E, in Section 3. The more challenging part will be the
determination of occupation time distributions for the combined level and phase process. This
is the content of Section 4, which deals with the case of only two intervals. The generalisation
to more than two intervals is then described in the last section. Appendix A contains some
lemmata that are used in the proofs of the main results.

2. Preliminaries: occupation times of the phase process

2.1. Occupation times before a first passage

Define the first passage times τ(x) := inf{t ≥ 0 : Xt > x} for all x ≥ 0, and assume that
X0 = 0. We are interested in the occupation times ζj (x) := ∫ τ(x)

0 1{Jt=j} dt in a phase j ∈ E
before the first passage over the level x ≥ 0. We collect these occupation times in the column
vector ζ(x) := (ζj (x) : j ∈ E). Consider an E-dimensional row vector r = (ri : i ∈ E) with
nonnegative entries ri ≥ 0 for all i ∈ E. Define

Eij

(
exp

[
−

∫ τ(x)

0
rJs ds

])
:= E

(
exp

[
−

∫ τ(x)

0
rJs ds

]
; Jτ(x) = j

∣∣∣∣ J0 = i, X0 = 0

)
(1)

for i, j ∈ E and E(exp[− ∫ τ(x)
0 rJs ds]) as the (E × E)-matrix with these entries. Noting that

exp[− ∫ τ(x)
0 rJs ds] = e−rζ(x) we see that the matrix E(exp[− ∫ τ(x)

0 rJs ds]) contains the joint
Laplace transforms of the occupation times ζj (x).

In order to determine E(exp[− ∫ τ(x)
0 rJs ds]), we shall distinguish the phases by the subspaces

Ea := {i ∈ E : σi > 0 or µi > 0} and Ed := E \ Ea,
where phases in Ea and Ed are respectively called ascending and descending. The same
arguments as in [5, Section 3] yield

E(d,d)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= E(a,d)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= 0

as well as

E(d,a)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= A(r)eU(r)x

and E(a,a)

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= eU(r)x,

(2)

where the matrices A(r) and U(r) can be computed as follows. For arguments β ≥ 0, define
the functions φi(β) := β/µi for i ∈ Ea and σi = 0, as well as

φi(β) = 1

σi

√
2β + µ2

i

σ 2
i

− µi

σ 2
i

and

φ∗
i (β) = 1

σi

√
2β + µ2

i

σ 2
i

+ µi

σ 2
i

for i ∈ Ea and σi > 0. The iteration to determine A(r) and U(r) is slightly changed from [6,
Section 2.2]. That is, we obtain (A(r), U(r)) = limn→∞(An,Un) for initial values A0 := 0,
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U0 := −diag(φi(qi + ri))i∈Ea , and iterations

e′iUn+1 = −qi + ri

µi
e′i + 1

µi

∑
j∈E, j �=i

qij e
′
j

(
Ia
An

)
(3)

for i ∈ Ea and σi = 0,

e′iUn+1 = −φi(qi + ri)e
′
i + 2

σ 2
i

∑
j∈E, j �=i

qij e
′
j

(
Ia
An

)
(φ∗
i (qi + ri)I − Un)

−1 (4)

for σi > 0, and

e′iAn+1 =
∑

j∈E, j �=i
qij e

′
j

(
Ia
An

)
((qi + ri)I + µiUn)

−1 (5)

for i ∈ Ed . Here e′i denotes the ith canonical row base vector, qi := −qii for all i ∈ E, and Ia
is the identity matrix on Ea . The case r = 0 has been analysed earlier in [1].

Remark 1. Let us add an absorbing phase, say�, to the phase spaceE to obtainE′ = E∪{�}.
Define an MMBM (X′,J′) on E′ as follows. The generator matrix Q′ of J′ shall be given by

q ′
ij :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qij , i, j ∈ E, j �= i,

qii − ri, j = i ∈ E,
ri, i ∈ E, j = �,

0, i = �, j ∈ E′.

Furthermore, let

(µ′
i , σ

′
i ) :=

{
(µi, σi), i ∈ E,
(0, 0), i = �,

which means that the phase� governs the zero process. Let τ� := min{t ≥ 0 : J ′
t = �} denote

the time until absorption in�, and let τ ′(x) := inf{t ≥ 0 : X′
t > x} be the first passage time of

X′ over the level x ≥ 0. Then

Eij

(
exp

[
−

∫ τ(x)

0
rJs ds

])
= P(τ ′(x) < τ�, J

′
τ ′(x) = j | J ′

0 = i, X′
0 = 0)

for i, j ∈ E′ \ {�}, i.e. the generalised Laplace transforms of the first passage times τ(x) can
be seen as transition probabilities among the transient phases i, j ∈ E′ \ {�} for the phase
process J′ which terminates at a constant rate ri during {t ≥ 0 : J ′

t = i}. Thus, we call r the
exit rate vector.

From this perspective, a phase-type distribution with parameters (α, T ) on a phase space E
can be translated as follows. Let η := −T 1 denote the exit vector, and let tij denote the entries
of T . Consider a random variable Z ∼ PH(α, T ). Setting ri := ηi , qij := tij for i �= j ∈ E,
and (µi, σi) = (1, 0) for all i ∈ E yields U(r) = T , and, thus,

P(Z > x) = Pα(τ
′(x) < τ� | X′

0 = 0) = αeT x1,

where Pα denotes the conditional probability given that P(J ′
0 = i) = αi for i ∈ E′.
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Example 1. A MAP with phase-type jumps can be transformed into an MMBM, as shown in
detail in [6, Section 2.1]. The resulting MMBM has a phase spaceE = E+∪Ep∪Eσ∪En∪E−,
where

Ep = {i ∈ Ẽ : µ̃i > 0, σ̃i = 0},
En = {i ∈ Ẽ : µ̃i < 0, σ̃i = 0},
Eσ = {i ∈ Ẽ : σ̃i > 0},

and phases in E± represent parts of the jumps (see [6, Section 2.1] for a precise definition). In
order to retrieve the Laplace transform of the first passage times of the original MAP (i.e. the
one with phase-type jumps), it suffices to set ri := 0 for i ∈ E+ ∪ E− and ri := γ for
i ∈ Ep∪Eσ ∪En. This method is called fluid embedding and has been described in Section 2.2
of [6], Section 2.7 of [11], and Section 3 of [13].

Example 2. We shall derive the joint Laplace transform of the ruin time and the accumulated
claims for the classical compound Poisson risk model. Denote the initial risk reserve by u ≥ 0.
The claim sizes and interclaim times will be independent and have exponential distributions
with parameters β > 0 and λ > 0, respectively. The rate of premium income is denoted by
c > 0. This model has been analysed in [8]. The net profit condition is c/λ > 1/β, which is
equivalent to λ/(cβ) < 1.

We consider an MMBM (X,J) which is defined as follows. Let the phase space be given
by E = {1, 2}. The parameters are given by σ1 = σ2 = 0, µ1 = 1, µ2 = −c, and

Q =
(−β β

λ −λ
)
.

Then the ruin time T (u) for the compound Poisson model coincides with the occupation time
in phase 2 until the first passage time τ(u), given that we start with X0 = 0. Likewise, the
accumulated claim until ruin, denoted by D(u), coincides with the occupation time in phase 1
until τ(u). The joint Laplace transform ofD(u) andT (u)with arguments r1 and r2, respectively,
is given by

E(e−r1D(u)e−r2T (u) | X0 = 0, J0 = 2) = e′2 E

(
exp

[
−

∫ τ(u)

0
rJs ds

])
1 = A(r)eU(r)u,

where A(r) and U(r) are real numbers. They can be computed using (3) and (5) as the fixed
points

U(r) = −(β + r1)+ βA(r) and A(r) = λ(λ+ r2 − cU(r))−1

with minimal positive solution

A(r) = 1

2cβ
(λ+ r2 + c(β + r1)−

√
(λ+ r2 + c(β + r1))2 − 4λcβ),

from which U(r) can be readily computed. For r1 = 0, we obtain the Laplace transform of the
time of ruin, for which the result is the same as Equation (5.38) of [8]; cf. Example 5 of [5].

2.2. Occupation times before an exit from an interval

For l < u, define τ(l, u) := inf{t ≥ 0 : Xt /∈ [l, u]}, which is the exit time of X from the
interval [l, u]. We shall need an expression for

�+
ij (l, u | x) := E

(
exp

[
−

∫ τ(l,u)

0
rJs ds

]
;Xτ(l,u) = u, Jτ(l,u) = j

∣∣∣∣ J0 = i, X0 = x

)
,
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where x ∈ [l, u] and i, j ∈ E. Define the matrix �+(l, u | x) := (�+
ij (l, u | x))i,j∈E .

A formula for �+(l, u | x) has been derived in [13]. In order to state it, we need some
additional notation. In order to simplify this notation, we shall from now on exclude the case
of a phase i ∈ E with µi = σi = 0.

Let (X+,J) denote the original MMBM, and define the process (X−,J) d= (−X+,J),
where ‘

d=’ denotes equality in distribution. The two processes have the same generator matrix
Q for J, but the drift parameters are different. Denoting the variation and drift parameters for
X± by σ±

i and µ±
i , respectively, this means that σ−

i = σ+
i and µ−

i = −µ+
i for all i ∈ E.

Let A±(r) and U±(r) denote the matrices that determine the first passage times of X±
in (2). We write A± = A±(r) and U± = U±(r) when we do not wish to emphasize the
dependence on r . We split the ascending phases into the spaces Es := {i ∈ Ea : σi = 0} and
Eσ := {i ∈ Ea : σi > 0}, and let Is and Iσ respectively denote the identity matrices on Es
and Eσ . We call a phase i ∈ Es strictly ascending. Define the matrices

C+ := C+(r) :=
(

0 Iσ
A+(r)

)
and C− := C−(r) :=

(
A−(r)
Iσ 0

)
(6)

of dimensions (Eσ ∪ Ed)× Ea and Ea × (Eσ ∪ Ed), respectively. Furthermore, define

W+ := W+(r) :=
(

Ia
A+(r)

)
and W− := W−(r) :=

⎛
⎝A−(r)
Iσ 0
0 Id

⎞
⎠ ,

which are matrices of dimensions E × Ea and E × (Eσ ∪ Ed). Finally, let

Z± := C±eU
±·(u−l).

Then Equation (23) of [13] states that

�+(l, u | x) = (W+eU
+·(u−x) −W−eU

−·(x−l)C+eU
+·(u−l)) · (I − Z−Z+)−1 (7)

for l ≤ x ≤ u. By reflection at the initial level x, we obtain, from (7),

�−(l, u | x) := E

(
exp

[
−

∫ τ(l,u)

0
rJs ds

]
;Xσ(l,u) = l

∣∣∣∣ X0 = x

)

= (W−eU
−·(x−l) −W+eU

+·(u−x)C−eU
−·(u−l)) · (I − Z+Z−)−1 (8)

for l ≤ x ≤ u. Note that the expressions in (7) and (8) depend on a choice of r .

Example 3. (Example 2 continued.) We obtain A−(r) and U−(r) by solving

U−(r) = −λ+ r2

c
+ λ

c
A−(r) and A−(r) = β(β + r1 − U−(r))−1.

This yields

A−(r) = 1

2λ
((c(β + r1)+ λ+ r2)−

√
(c(β + r1)+ λ+ r2)2 − 4cβ),

whence U−(r) may be readily obtained.
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3. Some remarks on scale functions

Noting that (I − Z−Z+)−1 = ∑∞
n=0(Z

−Z+)n and Z−Z+ represents a crossing over the
interval [l, u] from u to l and back, (7) has a clear probabilistic interpretation. The term
W+eU

+·(u−x) simply yields the event that X exits from u. The correction term W−eU
−·xZ+

refers to the event that X descends below l before exiting from u. Multiplication by (I −
Z−Z+)−1 yields all possible combinations with any number of subsequent (down and up)
crossings over the complete interval [l, u].

Since Z+ = C+eU
+·(u−l), we can write �+(l, u | x) in the form

�+(l, u | x) = (W+e−U+·(x−l) −W−eU
−·(x−l)C+)(e−U+·(u−l) − C−eU

−·(u−l)C+)−1.

This comes closer to the usual expression of the exit time distribution in terms of scale functions.
For instance, let X be a Brownian motion with variation σ > 0 and drift µ ∈ R. We then
obtain

U± = ±µ− √
µ2 + 2γ σ 2

σ 2 .

Define r := −U+ and s := U−. Then

�+(0, b | x) = erx − esx

erb − esb
; (9)

cf. [9, Equations (2.12)–(2.15)], where the γ -scale function is given as g(x) = erx − esx .
As we can see from (9), scale functions as solutions to the two-sided exit problem are

determined only up to a multiplicative constant. The usual unique definition of the γ -scale
function W(γ )(x) for a Lévy process with cumulant function ψ is in terms of its Laplace
transform ∫ ∞

0
e−βxW(γ )(x) dx = 1

ψ(β)− γ

for β > �(γ ), where � denotes the right inverse of ψ ; see Equation (8.5) of [14].
For the case of an MMBM with σi > 0 for all i ∈ E, we can extend the notion of γ -scale

functions. In this case there are no matrices A± and, thus, W± = C± = I . For a vector
v = (v1, . . . , vm), define the diagonal matrix with entries taken from v by �v := diag(vi)i∈E .
With σ 2 := (σ 2

1 , . . . , σ
2
m) and µ := (µ1, . . . , µm), we obtain, by the same arguments as for

Equation (5) of [5],
�r = �σ 2/2U(r)

2 −�µU(r)+Q

(use the function in (1) instead of fij (x) defined in Equation (3) of [5]). Note that there is
a typo in Equation (6) of [5]: +�µ should read −�µ. Define the scalar cumulant functions
ψi(β) := σ 2

i /2β
2 +µiβ for i ∈ E, and writeψ(β) := (ψ1(β), . . . , ψm(β)). Then the (matrix-

valued) cumulant function of (X+,J) is given as K(β) = �ψ(β) +Q; see Proposition XI.2.2
of [2]. This yields

K(β)−�r = �σ 2/2(β
2I − U2+)+�µ(βI + U+)

= (�σ 2/2(βI − U+)+�µ)(βI + U+), (10)

where we have set U+ = U+(r). Similarly, for the negative process (X−,J), we obtain

�r = �σ 2/2U
−(r)2 +�µU

−(r)+Q,
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and, hence,
K(β)−�r = �σ 2/2(β

2I − U2−)+�µ(βI − U−)
= (�σ 2/2(βI + U−)+�µ)(βI − U−), (11)

where we have set U− = U−(r). We propose calling

W(r)(x) = (e−U+·x − eU−·x) · C, x ≥ 0,

the r-scale function of (X,J), where the constant C remains to be determined. Let ‖U+‖
denote the largest absolute value of any eigenvalue of U+. For β > ‖U+‖, we evaluate

(K(β)−�r)

∫ ∞

0
e−βxW(r)(x) dx

= (K(β)−�r)((βI + U+)−1 − (βI − U−)−1)C

= (�σ 2/2(βI − U+)+�µ −�σ 2/2(βI + U−)−�µ)C,

= −�σ 2/2(U+ + U−)C,

where the second equality follows from (10) and (11). With C := −(U+ + U−)−1 ·�2/σ 2 we
thus obtain

(K(β)−�r)

∫ ∞

0
e−βxW(r)(x) dx = I

for β > ‖U+‖, which justifies the name ‘r-scale function’.

Remark 2. In order to compare the above proposal with results obtained in [11, Section 7.5], we
first translate the notation U+ = � and r = q · 1. Furthermore, note that eU−·x = P(J (τ {−x}))
and� = I , since E = Eσ . Thus, Equation (7.7) of [11] translates as W̃ (x) = e−U+·x − eU−·x .
Moreover, Equation (7.9) of [11] together with the above determination of the matrix C yields
the expression L = −(U+ + U−)−1 · �2/σ 2 for the matrix of expected local times at 0.
Equation (7.4) of [11] then leads to the expression

Lq(x) = −(I − eU+·xeU−·x) · (U+ + U−)−1 ·�2/σ 2

for the matrix of expected local times at 0 before the first passage over a level x ≥ 0.

4. Occupation times for level and phase processes in two intervals

While the occupation times for the phase process have been obtained in [6] and [13], with
some translations given in Section 2, the more interesting (and more difficult) part of our
investigation is determining the occupation times of the level process in different intervals. Their
distribution will be derived in this section for the case of two contiguous intervals. A general
recursion scheme for more than two intervals will be provided in Section 5.

4.1. Occupation times before an exit from an interval

Recall the definition of the exit times of X from an interval [l, u], namely,

τ(l, u) := inf{t ≥ 0 : Xt < l or Xt > u},
where X0 ∈ [u, l]. Choose some b ∈ (l, u), and define, for j ∈ E,

ζ1,j (l, u) :=
∫ τ(l,u)

0
1{Xt<b, Jt=j} dt and ζ2,j (l, u) :=

∫ τ(l,u)

0
1{Xt>b, Jt=j} dt.
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Furthermore, define the column vectors ζk(l, u) := (ζkj (l, u) : j ∈ E) for k ∈ {1, 2}. The
random variables ζ1j (l, u) and ζ2j (l, u) yield the occupation times of (X,J) in the sets [l, b)×
{j} and (b, u] × {j}, j ∈ E, before the level process leaves the interval [l, u].

Choose any exit rate vectors rk = (rkj : j ∈ E) for k ∈ {1, 2}. We shall derive an expression
for

E+(l, u | a) := E(e−r1ζ1(l,u)e−r2ζ2(l,u);Xτ(l,u) = u | X0 = a),

where l < a < u. This provides the joint Laplace transform of the occupation times ζkj (l, u)
before the first exit of [l, u], restricted to the exit occurring at u.

There are some simple cases. For l < a < b < u, we obtain

E+(l, u | a) = �+
r1
(l, b | a)E+(l, u | b)

by path continuity, and, similarly, for l < b < a < u, we observe that

E+(l, u | a) = �+
r2
(b, u | a)+�−

r2
(b, u | a)E+(l, u | b).

Thus, it suffices to determine E+(l, u | b). For any matrix M of dimension E × E, write

M =:
(
M(a,a) M(a,d)

M(d,a) M(d,d)

)
=: (M(·,a),M(·,d)),

thereby distinguishing between the ascending (Ea) and descending (Ed ) phases. Clearly,
E+
(·,d)(l, u | b) = 0, since u cannot be passed from below in a descending phase. Discerning

between initial phases, we find that

E+
(d,a)(l, u | b) = �+

r1
(l, b | b)(d,a)E+

(a,a)(l, u | b)

such that it remains to determine E+
(a,a)(l, u | b). For a matrixM of dimension Ea ×Ea , write

M =:
(
M(s,s) M(s,σ )

M(σ,s) M(σ,σ )

)
=:

(
M(s,·)
M(σ,·)

)

in obvious block notation. Conditioning on the number n of possible returns to the level b in
a strictly ascending phase (i.e. one from Es) before exiting the interval [l, u] at u, we observe
that

E+
(s,·)(l, u | b) =

∞∑
n=0

(�−
r2
�+

r1
)n(s,s)((�

+
r2
)(s,·) + (�−

r2
�+

r1
)(s,σ )E

+
(σ,·)(l, u | b))

= (Is − (�−
r2
�+

r1
)(s,s))

−1((�+
r2
)(s,·) + (�−

r2
�+

r1
)(s,σ )E

+
(σ,·)(l, u | b)),

where Is denotes the identity matrix on Es , �±
r2

= �±
r2
(b, u | b), and �+

r1
denotes the (Eσ ∪

Ed) × Ea block of �+
r1
(l, b | b). We have thus reduced the problem to the determination of

E+
(σ,·)(l, u | b).

Theorem 1. Write U±
k := U±(rk) for k ∈ {1, 2}. For l < b < u,

E+
(σ,a)(l, u | b) = 2((D1)(σ,σ ) + (D2�

+
r1
(l, b | b))(σ,σ ))−1

× (0(σ,s), Iσ )(U
+
2 + C−

2 U
−
2 C

+
2 )(e

−U+
2 ·(u−b) − C−

2 eU
−
2 ·(u−b)C+

2 )
−1,

where the constant matrices D1 and D2 are given in Lemmata 1 and 2.
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Proof. We employ the following approximation. Assume that the exit rate vector changes
from r2 to r1 at b − ε for downward crossings of b and from r1 to r2 at b + ε for upward
crossings. Then we let ε ↓ 0.

To be more precise, assume that X0 = b + ε, and define t0 := 0 as well as the times
sn := min{t > tn−1 : Xt = b − ε} and tn := min{t > sn : Xt = b + ε} for all n ∈ N, where
min ∅ := ∞. Let N := max{n ∈ N0 : tn < τ(l, u)}. Note that, on {Xτ(l,u) = u}, for each
sn < τ(l, u), there exists a tn such that sn < tn < τ(l, u) due to path continuity. We consider

E(ε) := E(σ,a)

(
exp

[
−

N∑
n=1

∫ sn

tn−1

r2eJs ds −
∫ τ(l,u)

tN

r2eJs ds

]
exp

[
−

N∑
n=1

∫ tn

sn

r1eJs ds

]
;

Xτ(l,u) = u

∣∣∣∣ X0 = b + ε

)
.

This converges to

E(σ,a)

(
exp

[
−

∫ τ(l,u)

0
r1eJs 1{Xs<b} ds

]
exp

[
−

∫ τ(l,u)

0
r2eJs 1{Xs>b} ds

]
;

Xτ(l,u) = u

∣∣∣∣ X0 = b

)
= E+

(σ,a)(l, u | b)
as ε ↓ 0, since

lim
ε↓0

∫ τ(l,u)

0
1{b−ε<Xt<b+ε} dt = 0

almost surely.
Write �−

2 (ε) for the (Ea × (Eσ ∪ Ed))-block of �−
r2
(b − ε, u | b + ε) and �+

2 (ε) for the
(Ea×Ea)-block of�+

r2
(b−ε, u | b+ε). Furthermore, write�+

1 (ε) for the ((Eσ ∪Ed)×Ea)-
block of �+

r1
(l, b + ε | b − ε). Summing over the number of down and up crossings of the

interval [b − ε, b + ε] before leaving the interval [l, u] at u, we obtain

E(ε) = (0(σ,s), Iσ )
∞∑
n=0

(�−
2 (ε)�

+
1 (ε))

n�+
2 (ε)

= (0(σ,s), Iσ )(Ia −�−
2 (ε)�

+
1 (ε))

−1I (ε)I (ε)−1�+
2 (ε),

where

I (ε) :=
(
Is 0
0 εIσ

)
.

First we consider limε↓0(0(σ,s), Iσ )(Ia −�−
2 (ε)�

+
1 (ε))

−1I (ε). Since

lim
ε↓0
(0(σ,s), Iσ )�

−
2 (ε)�

+
1 (ε) = (Iσ , 0(σ,d))�

+
1 (ε) = (0(σ,s), Iσ ),

we find that limε↓0�
−
2 (ε)�

+
1 (ε) is an upper triagonal block matrix. We thus obtain

lim
ε↓0
(0(σ,s), Iσ )(Ia −�−

2 (ε)�
+
1 (ε))

−1I (ε) = (0(σ,s), D)
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for an Eσ × Eσ matrix D that is given by

D = lim
ε↓0

ε(Iσ − (�−
2 (ε)�

+
1 (ε))(σ,σ ))

−1

= −
(

lim
ε↓0

1

ε
((�−

2 (ε)�
+
1 (ε))(σ,σ ) − Iσ )

)−1

= −
(

d

dε
(�−

2 (ε)�
+
1 (ε))(σ,σ )

∣∣∣∣
ε=0

)−1

= −
((

d

dε
�−

2 (ε)

∣∣∣∣
ε=0
�+

1 (0)

)
(σ,σ )

+
(
�−

2 (0)
d

dε
�+

1 (ε)

∣∣∣∣
ε=0

)
(σ,σ )

)−1

= −((D2�
+
1 (0))(σ,σ ) + (D1)(σ,σ ))

−1;
see [4, Section I.1.3] as well as Lemmata 1 and 2 for the last two equalities. In a similar manner,
since limε↓0�

+
2 (ε)(σ,a) = 0, we obtain

lim
ε↓0

ε−1�+
2 (ε)(σ,a) = d

dε
�+

2 (ε)(σ,a)

∣∣∣∣
ε=0

= D3

according to Lemma 3. Altogether, this yields the expression in the statement.

Example 4. Consider a finite buffer with capacity u > 0. The buffer content is modelled by a
Brownian motion with parameters µ < 0 (drift) and σ > 0 (variation). This corresponds to a
phase space E = Eσ = {1} consisting of one element only. Thus, C± = 1.

Assume that there is a level b ∈ (0, u) above which there is a higher cost attached. We wish
to compute the Laplace transform of the time spent above the level b along with the probability
of a buffer overflow. To shorten considerations, we assume that the initial buffer content is b.
Then the Laplace transform we aim for can be computed as E+(0, b, u) with exit rate vectors
r1 = 0 and r2 = γ , where γ is the argument for the Laplace transform. Thus, we need to
determine only U±

1 and U±
2 , which are real numbers. We obtain

U±
k = − 1

σ

√
2rk + µ2

σ 2 ± µ

σ 2

for k ∈ {1, 2}, according to (4). Since µ < 0, this yields U+
1 = 2µ/σ 2 and U−

1 = 0. Hence,

D1 = 2
2µ/σ 2

1 − e2µ/σ 2·b ,

and, upon setting W := (2/σ)
√

2γ + µ2/σ 2,

E+(0, u | b) =
(

2µ/σ 2

1 − e2µ/σ 2·b + U−
2 e−U−

2 ·(u−b) + U+
2 eU

+
2 ·(u−b)

e−U−
2 ·(u−b) − eU

+
2 ·(u−b)

)−1

× U+
2 + U−

2

e−U+
2 ·(u−b) − eU

−
2 ·(u−b)

=
( −2µ/σ 2

1 − e2µ/σ 2·b + −U−
2 − U+

2 e−W ·(u−b)

1 − e−W ·(u−b)

)−1
W

1 − e−W ·(u−b) eU
+
2 ·(u−b)

=
( −2µ/σ 2

1 − e2µ/σ 2·b + W

1 − e−W ·(u−b) + U+
2

)−1
W

1 − e−W ·(u−b) eU
+
2 ·(u−b)

since U+
2 + U−

2 = −(2/σ)√2γ + µ2/σ 2 = −W .
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Example 5. Considering Brownian motion as in the previous example, but this time with exit
rates r1 = r2 = γ , we obtain U±

1 = U±
2 =: u±. This yields

D1 = 2
u+e−u+·(b−l) + u−eu

−·(b−l)

e−u+·(b−l) − eu−·(b−l)

and

D2 = 2
u−e−u−·(u−b) + u+eu

+·(u−b)

e−u−·(u−b) − eu+·(u−b) = 2
u−e−u+·(u−b) + u+eu

−·(u−b)

e−u+·(u−b) − eu−·(u−b) .

Thus,

E(e−γ τ(l,u);Xτ(l,u) = u | X0 = b)

= u+ + u−

e−u+·(u−b) − eu−·(u−b)

×
(
u+e−u+·(b−l) + u−eu

−·(b−l)

e−u+·(b−l) − eu−·(b−l) + u−e−u+·(u−b) + u+eu
−·(u−b)

e−u+·(u−b) − eu−·(u−b)

)−1

.

Extending the fractions by (e−u+·(b−l) − eu
−·(b−l))(e−u+·(u−b) − eu

−·(u−b)) yields

E(e−γ τ(l,u);Xτ(l,u) = u | X0 = b)

= (u+ + u−)(e−u+·(b−l) − eu
−·(b−l))

× ((u+e−u+·(b−l) + u−eu
−·(b−l))(e−u+·(u−b) − eu

−·(u−b))

+ (u−e−u+·(u−b) + u+eu
−·(u−b))(e−u+·(b−l) − eu

−·(b−l)))−1

= (u+ + u−)(e−u+·(b−l) − eu
−·(b−l))

× (u+e−u+·(u−l) − u−eu
−·(u−l) + u−e−u+·(u−l) − u+eu

−·(u−l))−1

= e−u+·(b−l) − eu
−·(b−l)

e−u+·(u−l) − eu−·(u−l) ,

which is the classical result; cf. Equation (2.17) of [9].

4.2. Occupation times before a first passage

Choose some b < u ∈ R. Define the column vectors ζk(u) := (ζkj (u) : j ∈ E) for
k ∈ {1, 2} by

ζ1,j (u) :=
∫ τ(u)

0
1{Xt<b, Jt=j} dt and ζ2,j (u) :=

∫ τ(u)

0
1{Xt>b, Jt=j} dt

for j ∈ E. Furthermore, choose any exit rate vectors rk = (rkj : j ∈ E) for k ∈ {1, 2}. We
shall derive an expression for

E+(u | a) := E(e−r1ζ1(u)e−r2ζ2(u) | X0 = a),

where a < u, thus providing the joint Laplace transform of the occupation times ζkj (u). There
are three cases. If a < u < b then

∑
j∈E ζ1,j (u) = τ(u) and, thus,

E+(u | a) = E

(
exp

[
−

∫ τ(u)

0
r1eJs ds

] ∣∣∣∣ X0 = a

)
,
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which has been determined in (2). If a < b < u then

E+(u | a) = E

(
exp

[
−

∫ τ(b)

0
r1eJs ds

] ∣∣∣∣ X0 = a

)
E+(u | b),

where again the first factor is known via (2). Finally, if b < a < u then

E+(u | a) = �+
r2
(b, u | a)+�−

r2
(b, u | a)E+(u | b),

where the terms �+
r2

and �−
r2

are given in (7) and (8). Thus, it suffices to determine E+(u | b)
for b < u. Clearly, E+

(·,d)(u | b) = 0, since u cannot be passed from below in a descending
phase. We further find the relation

E+
(d,a)(u | b) = E(d,a)(e

−r1ζ1(b) | X0 = b)E+
(a,a)(u | b),

where it remains to determine E+
(a,a)(u | b). Conditioning on the number n of possible returns

to the level b in a strictly ascending phase i ∈ Es before passing the level u, we observe that

E+
(s,a)(u | b) =

∞∑
n=0

(�−
r2
C+(r1))

n
(s,s)((�

+
r2
)(s,a) + (�−

r2
C+(r1))(s,σ )E

+
(σ,a)(u | b))

= (Is − (�−
r2
C+(r1))(s,s))

−1((�+
r2
)(s,a) + (�−

r2
C+(r1))(s,σ )E

+
(σ,a)(u | b)),

where Is denotes the identity matrix on Es , �±
r2

= �±
r2
(b, u | b), and C+(r1) is given in (6).

We have thus reduced the problem to the determination of E+
(σ,a)(u | b). This can be obtained

as the limit E+
(σ,a)(u | b) = liml→−∞ E+

(σ,a)(l, u | b).
Corollary 1. Write U±

k := U±(rk) for k ∈ {1, 2}, and assume that ‖r1‖ > 0. Then

E+
(σ,a)(u | b) = E(σ,a)(e

−r1ζ1(u)e−r2ζ2(u) | X0 = b)

= 2((D2C
+
1 )(σ,σ ) + (2U+

1 )(σ,σ ))
−1

× (0(σ,s), Iσ )(U
+
2 + C−

2 U
−
2 C

+
2 )(e

−U+
2 ·(u−b) − C−

2 eU
−
2 ·(u−b)C+

2 )
−1

for b < u, where the matrix D2 is given in Lemma 2.

Proof. Looking at the formula in Theorem 1 we find that D1 depends only on l. For
l → −∞, we obtain, from Lemma 1,

lim
l→−∞D1 = lim

l→−∞ 2(0(σ,s), Iσ )(U
+
1 e−U+

1 ·(b−l) + C−
1 U

−
1 eU

−
1 ·(b−l)C+

1 )

× (e−U+
1 ·(b−l) − C−

1 eU
−
1 ·(b−l)C+

1 )
−1

= lim
l→−∞ 2(0(σ,s), Iσ )(U

+
1 + C−

1 U
−
1 eU

−
1 ·(b−l)C+

1 eU
+
1 ·(b−l))

× (Ia − C−
1 eU

−
1 ·(b−l)C+

1 eU
+
1 ·(b−l))−1

= 2(0(σ,s), Iσ )U
+
1 ,

since ‖r1‖ > 0 implies that U+
1 is a strict subgenerator matrix and liml→−∞ eU

+
1 ·(b−l) = 0.
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Example 6. For the compound Poisson risk model with exponential claims, the phase space is
E = Es ∪Ed , i.e. Eσ = ∅. Thus, E+

(a,a)(u | b) = E+
(s,s)(u | b), for which the formula before

Corollary 1 yields
E+
(s,s)(u | b) = (1 − e′1�−

r2
A+(r1))

−1e′1�+
r2
,

as C+(r1) = A+(r1) and �±
r2

are simply column vectors on E. Setting r1 = (0, γ ), r2 = 0,
and b = 0, we obtain the Laplace transform (with argument γ ) of the time spent above the
initial risk reserve u before ruin. The values for r2 yield A+

2 = λ/(cβ) and U+
2 = λ/c − β as

well as A−
2 = 1 and U−

2 = 0. Hence,

e′1�−
r2

= 1 − e−(β−λ/c)·(u−b)

1 − λe−(β−λ/c)·(u−b)/cβ

and

e′1�+
r2

= 1 − λ/(cβ)

1 − λe−(β−λ/c)·(u−b)/(cβ)
e−(β−λ/c)·(u−b),

while the values for r1 yield

A+(r1) = 1

2cβ

(
λ+ γ + cβ −

√
(λ+ γ + cβ)2 − 4λcβ

)
.

5. Occupation times in more than two intervals

We now consider a finite number of thresholds b1 < · · · < bN . We can determine the
occupation times of (X,J) before a first passage or an exit from an interval in the following
way. Fix the respective rate exit vector rk for the (open) intervals Ik, k ∈ {1, . . . , N + 1},
resulting from b1 < · · · < bN . Define τ+(x) := inf{t ≥ 0 : Xt > x} and the column vectors
ζ+
k (u) := (ζ+

kj (u) : j ∈ E), k ∈ {1, . . . , N + 1}, by

ζ+
kj (u) :=

∫ τ+(u)

0
1{Xt∈Ik, Jt=j} dt

for j ∈ E. As before, we shall write

E+(u | a) := E

(
exp

[
−
N+1∑
k=1

rkζ
+
k (u)

] ∣∣∣∣ X0 = a

)

for a < u. Similarly, define τ−(x) := inf{t ≥ 0 : Xt < x} and the column vectors ζ−
k (u) :=

(ζ−
kj (u) : j ∈ E), k ∈ {1, . . . , N + 1}, by

ζ−
kj (u) :=

∫ τ−(u)

0
1{Xt∈Ik, Jt=j} dt

for j ∈ E. We shall write

E−(l | a) := E

(
exp

[
−
N+1∑
k=1

rkζ
−
k (l)

] ∣∣∣∣ X0 = a

)
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for l < a. Define the column vectors ζk(l, u) := (ζkj (l, u) : j ∈ E), k ∈ {1, . . . , N + 1}, by

ζkj (l, u) :=
∫ τ(l,u)

0
1{Xt∈Ik, Jt=j} dt

for j ∈ E. We write

E+(l, u | a) := E

(
exp

[
−
N+1∑
k=1

rkζk(l, u)

]
;Xτ(l,u) = u

∣∣∣∣ X0 = a

)

and

E−(l, u | a) := E

(
exp

[
−
N+1∑
k=1

rkζk(l, u)

]
;Xτ(l,u) = l

∣∣∣∣ X0 = a

)

for l < a < u. For N = 1, the matrices E+(u | a) and E+(l, u | a) have been determined in
Sections 4.2 and 4.1, respectively. The matrices E−(l | a) and E−(l, u | a) are determined in
the same way after reflection at the initial level a, i.e. interchanging A+ and U+ with A− and
U−; cf. the relation between (7) and (8).

5.1. Occupation times before a first passage

We seek a computational scheme for E+(u | a) where a < u. If u ≤ b2 then the solution
is given by the results in Section 4.2 with b = b1. For u > b2, let k := max{n ≥ 2 : bn < u}.
Path continuity yields, for a ≤ bk < u,

E+(u | a) = E+(bk | a)E+(u | bk),
where

E+(u | bk) = E+(bk−1, u | bk)+ E−(bk−1, u | bk)E+(bk | bk−1)E
+(u | bk),

which implies that

E+(u | bk) = (I − E−(bk−1, u | bk)E+(bk | bk−1))
−1E+(bk−1, u | bk).

In the case bk < a < u we obtain

E+(u | a) = �+
k+1(bk, u | a)+�−

k+1(bk, u | a)E+(u | bk),
where�+

k+1 and�−
k+1 denote the two-sided exit matrices as defined in (7) and (8) with parame-

ters taken from the (k+1)th regime. Since the matricesE+(bk−1, u | bk) andE−(bk−1, u | bk)
have been determined in Section 4.1, this provides a recursion scheme for E+(u | a).
5.2. Occupation times before an exit from an interval

We shall determine E+(l, u | a) with l < a < u. First note that the problem can be
reduced to the results obtained in Section 5.1 by exploiting the probabilistic interpretation at
the beginning of Section 3. This yields

E+(l, u | a) = (E+(u | a)− E−(l | a)E+(u | l))(I − E−(l | u)E+(u | l))−1.

We further wish to provide a recursion that involves only matrices of the form E±(x, y | z).
For h := min{n ≥ 1 : bn > l}, the matrixE+(l, bh+1 | bh) has been determined in Section 4.1.
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Define k := max{n ≥ 1 : bn < u}. If k = h then E+(l, u | a) is given by the results in
Section 4.1. Thus, assume that k > h ≥ 1. We obtain, by path continuity,

E+(l, u | a) = E+(l, bk | a)E+(l, u | bk),
where

E+(l, u | bk) = E+(bk−1, u | bk)+ E−(bk−1, u | bk)E+(l, bk | bk−1)E
+(l, u | bk).

This yields

E+(l, u | bk) = (I − E−(bk−1, u | bk)E+(l, bk | bk−1))
−1E+(bk−1, u | bk).

Since the matricesE+(bk−1, u | bk) andE−(bk−1, u | bk) have been determined in Section 4.1,
this provides a recursion scheme for E+(l, u | a).

Appendix A

In this appendix the lemmata that have been used in the proof of Theorem 1 are collected.
Recall the abbreviations�+

1 (ε) for the ((Eσ ∪Ed)×Ea)-block of�+
r1
(l, b+ε | b−ε),�−

2 (ε)

for the (Ea × (Eσ ∪Ed))-block of �−
r2
(b− ε, u | b+ ε), and �+

2 (ε) for the (Ea ×Ea)-block
of�+

r2
(b−ε, u | b+ε). Furthermore, let 0(σ,d) and 0(σ,s) denote the zero matrices onEσ ×Ed

and on Eσ × Es , respectively.

Lemma 1. For l < b,

D1 := (Iσ , 0(σ,d))
d

dε
�+

1 (ε)

∣∣∣∣
ε=0

= 2(0(σ,s), Iσ )(U
+
1 e−U+

1 ·(b−l) + C−
1 U

−
1 eU

−
1 ·(b−l)C+

1 )

× (e−U+
1 ·(b−l) − C−

1 eU
−
1 ·(b−l)C+

1 )
−1.

Proof. According to (7),

(Iσ , 0(σ,d))�
+
1 (ε) = (Iσ , 0(σ,d))(C

+
1 eU

+
1 ·(2ε) − eU

−
1 ·(b−l−ε)C+

1 eU
+
1 ·(b−l+ε))

× (Ia − C−
1 eU

−
1 ·(b−l+ε)C+

1 eU
+
1 ·(b−l+ε))−1

= (0(σ,s), Iσ )(eU
+
1 ·(2ε) − C−

1 eU
−
1 ·(b−l−ε)C+

1 eU
+
1 ·(b−l+ε))

× (Ia − C−
1 eU

−
1 ·(b−l+ε)C+

1 eU
+
1 ·(b−l+ε))−1

= (0(σ,s), Iσ )(e−U+
1 ·(b−l−ε) − C−

1 eU
−
1 ·(b−l−ε)C+

1 )

× (e−U+
1 ·(b−l+ε) − C−

1 eU
−
1 ·(b−l+ε)C+

1 )
−1.

Letting

F(ε) := e−U+
1 ·(b−l−ε) − C−

1 eU
−
1 ·(b−l−ε)C+

1

and
G(ε) := e−U+

1 ·(b−l+ε) − C−
1 eU

−
1 ·(b−l+ε)C+

1 ,

and applying the formal rules of derivation for functions of a real variable (see [4, Sections I.1.3-
4]), we obtain

D1 = (0(σ,s), Iσ )(F ′(0)G(0)−1 − F(0)G(0)−1G′(0)G(0)−1),
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where F(0) = G(0) = e−U+
1 ·(b−l) − C−

1 eU
−
1 ·(b−l)C+

1 and

F ′(0) = U+
1 e−U+

1 ·(b−l) + C−
1 U

−
1 eU

−
1 ·(b−l)C+

1 = −G′(0).

This completes the proof.

Lemma 2. For b < u,

D2 := (0(σ,s), Iσ )
d

dε
�−

2 (ε)

∣∣∣∣
ε=0

= 2(Iσ , 0(σ,d))(U
−
2 e−U−

2 ·(u−b) + C+
2 U

+
2 eU

+
2 ·(u−b)C−

2 )

× (e−U−
2 ·(u−b) − C+

2 eU
+
2 ·(u−b)C−

2 )
−1.

Proof. According to (8),

(0(σ,s), Iσ )�
−
2 (ε) = (0(σ,s), Iσ )(C

−
2 eU

−
2 2ε − eU

+
2 ·(u−b−ε)C−

2 eU
−
2 ·(u−b+ε))

× (I − C+
2 eU

+
2 ·(u−b+ε)C−

2 eU
−
2 ·(u−b+ε))−1

= (Iσ , 0(σ,d))(eU
−
2 2ε − C+

2 eU
+
2 ·(u−b−ε)C−

2 eU
−
2 ·(u−b+ε))

× (I − C+
2 eU

+
2 ·(u−b+ε)C−

2 eU
−
2 ·(u−b+ε))−1

= (Iσ , 0(σ,d))(e−U−
2 ·(u−b−ε) − C+

2 eU
+
2 ·(u−b−ε)C−

2 )

× (e−U−
2 ·(u−b+ε) − C+

2 eU
+
2 ·(u−b+ε)C−

2 )
−1.

Let
F(ε) := e−U−

2 ·(u−b−ε) − C+
2 eU

+
2 ·(u−b−ε)C−

2

and
G(ε) := e−U−

2 ·(u−b+ε) − C+
2 eU

+
2 ·(u−b+ε)C−

2 ,

where F(0) = G(0) = e−U−
2 ·(u−b) − C+

2 eU
+
2 ·(u−b)C−

2 and

F ′(0) = U−
2 e−U−

2 ·(u−b) + C+
2 U

+
2 eU

+
2 ·(u−b)C−

2 = −G′(0).

Hence,

D2 = (Iσ , 0(σ,d))(F ′(0)G(0)−1 − F(0)G(0)−1G′(0)G(0)−1)

= 2(Iσ , 0(σ,d))F ′(0)G(0)−1,

completing the proof.

Lemma 3. For b < u,

D3 := (0(σ,s), Iσ )
d

dε
�+

2 (ε)

∣∣∣∣
ε=0

= −2(0(σ,s), Iσ )(U
+
2 + C−

2 U
−
2 C

+
2 )(e

−U+
2 ·(u−b) − C−

2 eU
−
2 ·(u−b)C+

2 )
−1.
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Proof. According to (7),

(0(σ,s), Iσ )�
+
2 (ε) = (0(σ,s), Iσ )(eU

+
2 ·(u−b−ε) − C−

2 eU
−
2 2εC+

2 eU
+
2 ·(u−b+ε))

× (Ia − C−
2 eU

−
2 ·(u−b+ε)C+

2 eU
+
2 ·(u−b+ε))−1

= (0(σ,s), Iσ )(e−U+
2 ·2ε − C−

2 eU
−
2 2εC+

2 )

× (e−U+
2 ·(u−b+ε) − C−

2 eU
−
2 ·(u−b+ε)C+

2 )
−1.

Letting

F(ε) = e−2U+
2 ε − C−

2 e2U−
2 εC+

2 and G(ε) = e−U+
2 ·(u−b+ε) − C−

2 eU
−
2 ·(u−b+ε)C+

2 ,

we obtainF ′(0) = −2(U+
2 +C−

2 U
−
2 C

+
2 ), (0(σ,s), Iσ )F (0) = 0(σ,a), andG(0) = e−U+

2 ·(u−b)−
C−

2 eU
−
2 ·(u−b)C+

2 . Altogether, this yields

D3 = (0(σ,s), Iσ )(F ′(0)G(0)−1 − F(0)G(0)−1G′(0)G(0)−1)

= (0(σ,s), Iσ )F ′(0)G(0)−1,

completing the proof.
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