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1. INTRODUCTION

A great attention has been devoted, in the actuarial literature, to premium
calculation principles and it has been often emphasized that these principles
should not only be defined in strictly actuarial terms, but should also take into
account the market conditions (Buhlmann (1980), de Jong (1981)).

In this paper we propose a decision model to define the pricing policy of an
insurance company that operates in a market which is stratified in k risk
classes %.

It is assumed that any class constitutes a homogeneous collective containing
Jfj independent risks Sj(t) of compound Poisson type, with the same intensity A,.
The number n, of risks of % that are held in the insurance portfolio depends on
the premium charged to the class by means of a demand function which captures
the concept of risk aversion and represents the fraction of individuals of <£, that
insure themselves at the annual premium Xj.

With these assumptions, the return Y on the portfolio is a function of the
vector x = {x\, x2,. • •, xk) of the prices charged to the single classes (and of the
time) and x is therefore the decision policy instrument adopted by the company
for the selection of the portfolio, whose optimal composition is evaluated accord-
ing to a risk-return type performance criterion.

As a measure of risk we adopt the ultimate ruin probability q(w) that, in the
assumptions of our model, can be related to a safety index r, by means of
Lundberg-de Finetti inequality. Even though it has been widely debated in the
actuarial field, the use of q(w) offers undeniable operational advantages. In our
case the safety index T can be expressed as a function of x and therefore, in the
phase of selecting an efficient portfolio, it becomes the function to be maximized,
for a given level M of the expected return.

For T, a quadratic approximation can be given that seems to be acceptable as
long as the aggregate loading is not "too high". An assumption that does not
exclude, among other things, the possibility of heavy loadings in a number not
too large of individual cases.

Once the form of the efficient frontier has been determined, the final step of
the decision problem of the company is to select the portfolio that maximizes a
utility function of the form u(M, V), that is the portfolio represented as the
tangency point between the efficient frontier and the "highest possible"
indifference curve. It could be pointed out that, in the model, the validity of
variance as a risk measure of the5 portfolio does not depend on the possibility
of achieving an acceptable quadratic approximation of the utility function, but
on the goodness of the approximation obtained for the ruin probability, that we
have chosen as a stability criterion for the company.
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It is to be noted that, in our assumptions, we can achieve a stratification more
refined than the one obtained solely based on the characteristics of the risk
process S{t), since we can consider classes that differ only for the risk aversion.
This can be related to the introduction of a multivariate measure of risk aversion
inside the collective, as suggested, e.g., by Sengupta (1981).

On the other hand the form and the rationale of the results continue to be
valid in all the cases in which we can obtain an expression that relates q(w) to
the decision variables (i.e., the prices) and the endogenous quantities of the risk
process. This is the case, for example, in the martingale assumptions on Y{t),
as discussed by de Finetti (1939) and developed by Gerber (1981) in the study
of an autoregressive model.

2. THE MODEL

2.1. Preliminaries

Let us consider the risk process {S(t); rs=O}, that represents the sum of claim
amounts incurred in [0, t) in a given insurance portfolio. The accumulated claims
up to time t can be represented as a random sum

Nit)

5(0= I Xr,
r = l

with d.f. Fs(x, t) = P{S(t)^x}. The process {N(t); f s=0}, with distribution pn(t),
(n = 0,1,. . .) , counts the number of claims in [0, t) and the set of r.v. {Xr;r =
1,2,...} represents the amount of the rth claim incurred in [0, t). We can suppose
that the m.g.f. *v(u) = E{euX'} is finite for some u ¥=• 0.

We shall assume that the collective premium function of the risk (sum of
premiums earned in the time interval [0, t)) is non-random and we shall denote
it by w(t) = E{S(t)} + l(t), that is as a sum of the (aggregate) net premium E{S(t)}
and the (aggregate) risk loading l(t). As generally accepted in the actuarial
literature, we shall assume l(t)^0, since we shall disregard investment income
in premium calculation. In fact, as shown by Kahane (1979), negative loadings
could be justified by considerations on the cost of the capital and on the rates
of investment. Meaningful loading formulas are obtained for instance by choosing
l(t) to be proportional to the expected value (supposed as positive) or to the
variance of S(t), that is

l(t) = riE{S(t)}, TJ^O,

or

0 5=0.

Besides the investment income, we shall neglect also the administrative costs
and we shall indicate by Y(t) = Tr(t) — S{t) the return on the insurance portfolio
up to time t. Then the liquidity of the company can be represented by the risk
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reserve R(t) = w + Y(t), being w =R(0) the initial free capital; namely we have

Nit)

R(t) = w+E{S(t)} + l(t)- I XT.
r = l

One of the most natural assumptions on the process S(t) is that the r.v. Xr

are independent with common d.f. Fx(x) independent on time and such that
Fx(0) = 0 (positive risk sums). If we suppose, following F. Lundberg, that N(t)
is a Poisson process with intensity A, the risk process S(t) becomes a compound
Poisson process, with m.g.f.

where *•(«) is the common m.g.f. of the Xr, and with expected value E{S(t)} =
\E{X}t. Furthermore the risk loading becomes a linear function of time, i.e.,
l(t) = / • t, whether one uses the expected value principle or the variance principle.

2.2. The Risk Classes

The foregoing classical model can be used to describe the riskiness of the portfolio
of a given insurance line. Let us now suppose that the insurance market relative
to this line is stratified in k risk classes %, (/ = 1, 2 , . . . , k) according to the
following hypotheses

(a) N stochastically independent individual risks are in the market.
(b) The class % is a homogeneous collective consisting of Jft (being £f=i Jfj =

Jf) risks Sj(t) which are compound Poisson processes with the same intensity Ay.
The classes are assumed to be ordered in such a way that A i =s A2 =s • •• ^ Afc.

(c) The m.g.f. x(u) is the same for all the classes.
(d) For any individual risk in the class % the premium xf = (\jE{X} + l/)t is

charged. Therefore xs and /, represent the annual premium and the annual loading
relative to these risks, respectively.

Denoting then by n, the number of risks of the class % that are held in the
portfolio, for the property of infinite divisibility one has A =Ejt=iAJ«i and the
return on the whole portfolio

has m.g.f.

(2.1)

2.3. Anti-Selection

In this situation, if a company A decided to collect an aggregate annual premium
7r(l) = 7r to protect itself against unfavourable outcome of the risk process, it
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could be led to charge to each contractholder the "average" premium v/n, with
n =L,-=i n,: In fact such a choice would offer the advantage of minimizing the
administrative costs. But if it were possible to know the risk class to which the
contracts (not necessarily all of them) belong, it would be easy for a competing
firm B to collect policies concerning low-risk individuals, by charging them a
premium less then tr/n. On the other hand, the individuals that are more exposed
to risk would be spurred to insure themselves with the company A, considering
as advantageous the average premium ir/n. The effect of such an anti-selection
mechanism would then be an alteration of the company A's portfolio composi-
tion, such that it would increase even considerably the probability of a negative
evolution of the process Y(t). So the choice of the value IT would turn out to
be inadequate.

Therefore if we make the necessarily schematic and simplifying assumption
that the company and the policyholders are in a state of perfect information on
the parameters of the risk process and in particular on the value of the intensity
Ay, the choice of the premiums will have a significant influence on the composition
of the portfolio.

REMARK. The assumption of perfect information finds a different formulation
within the subjectivistic theory of probability. In fact in this context it means
that the parts are in agreement on the values of the probabilities. The problem
was discussed, e.g., by Pressacco (1979), who questioned whether a subjective
fair price can be given an objective meaning.

The possibility of different probability evaluations has been considered, e.g.,
by de Ferra (1968) and Volpe di Prignano (1974). In these cases the "advan-
tageousness" of an insurance contract can be studied by defining an indifference
premium that differs from the net premium both in consideration of the risk
aversion and because of the diverse evaluations of the probabilities. The import-
ance of these problems has also been emphasized by Rothschild and Stiglitz
(1976), who studied the equilibrium in a competitive insurance market in a state
of imperfect information.

In any case, the dependence of premium determination upon the market
conditions is the basic assumption in the economic models of insurance market
proposed, e.g., by Biihlmann (1980) and de Jong (1981).

2.4. Demand Function and Risk Aversion

We are thus led to introduce in the model a dependence of ny on the premium
charged to the class <#,-, i.e., «, = «/(*,), (; = 1, 2 , . . . , it). Following Cacciafesta
(1970), we shall make the rather natural assumption

ni(x)=Jf,d,(x), (j = l,2,...,k),

where the demand function dj(x) (that we, for sake of simplicity, shall treat as
a real-valued function) represents the fraction of individuals of the class % that
insure themselves at the annual premium x and therefore it expresses the
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sensitivity of <<£,• to the price that is charged. If one were to represent this function
(for given /) as a set of random variables {dj(x); x s*0}, with probability distribu-
tions that are chosen based on statistical observations, besides procedural and
estimative complications, the highly significant relation between demand function
and risk aversion would be mistreated.

Instead of strictly describing the function d/(x), it therefore appears more
significant to refer to a deterministic model characterized by

<^iE{X),

(2.2)
d,(x) = <

forjc >xf,

with xf =\jE{X} + lf, If s=0, (/ = 1, 2 it). Evidently xf can be seen as a
measure of the risk aversion of the class %• as a whole. It is interesting to note
that the function dj(x) can be interpreted as the probability that an individual
of % chosen at random insures himself, provided that the decisions of the
individuals are stochastically independent; in this case nt(x) is to be understood
as the expected number.

If we accept the assumption that the risk to which an individual is exposed is
small relative to his wealth c, i.e., £'{5(1)}« c, if his utility function u(z) can be
expanded in a Taylor series around c and if we limit ourselves to a second-order
approximation, then we obtain a quadratic utility function

where r(c) = -u"(c)/u'(c) is the Arrow-Pratt (local) risk aversion, or, in other
terms, the (local) propension to insurance (in the actuarial applications r is
generally supposed as a decreasing function of c). If all the individuals of the
class % have the same value r, of risk aversion, then xf and /* represent
respectively the maximum acceptable premium and the maximum acceptable
loading by each one of them.

Because of the Poisson assumptions on the risk process, one can prove that

(2.3) If ~kr,A£{X2Y,

by expressing /* according to the variance principle, i.e., /* =/8* Var{5j(l)},
relation (2.3) gives: /8* =|ry.

The foregoing considerations suggest, among other things, that it includes in
the model the possibility of a stratification more refined than the one obtained
solely based on the characteristics of the risk process S(t), since one can take
in consideration classes that differ only for the risk aversion (without contradicting
the hypotheses made in (2.2)).

The introduction of the functions nt(x) brings about that all the variables
endogenous to the risk come to depend upon the choice of the vector x of the
prices charged to the classes. From relation (2.1) one can, for example, derive
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the expression of the expected return on the portfolio

(2.4) M(x, t) = E{Y(x, *)}=[£ N^Xi.

and that of the variance of the portfolio return

(2.5) V(x, t) = Var {Y(x, t)} = [ £ ^M-(xy)l£{*2}f.

2.5. The Probability of Ruin

Because of the form of the demand curves that we have assumed, the charging
of a premium x, >xf is entirely equivalent to a refusal by the company of the
risks belonging to the class %•; the choice of the price vector thus seems to be
a significant and reliable means for the portfolio selection.

The process Y(x, t) can be evaluated in terms of risk-return, that is by defining
a performance criterion explicitly in terms of expected return and of portfolio
risk and by choosing the best composition according to this criterion.

Many and plausible measures of risk can be proposed and adopted, but in
our case it is natural to consider the probability of ruin before time t, q{w, t),
which moreover is the most investigated stability criterion in the actuarial
literature and is also widely adopted in the administrative policy of the insurance
companies. As can be seen, for example, in Seal (1979), it is generally rather
complicated to evaluate q(w, t) and this is also the case in models based on
Poisson assumptions. It is instead rather easy to obtain useful results in the
asymptotic case, i.e., for q{w) = lim,-oo q{w, t).

In fact, with the assumptions of our model, the following classical result holds

(2.6) q(w)^e~™,

—T being the negative root of

(2.7) E{euYU)} = l.

The inequality (2.6) was derived by F. Lundberg (1909) and by de Finetti
(1939) using different methods, T, known as safety index, is also called adjustment
coefficient, e.g., by Gerber (1981), who proposed a martingale theoretic approach
to the ruin problem.

Generally, the right-hand side of (2.6) does not represent the ruin probability
but provides an upper bound for it. However we are dealing with an "efficient"
bound, because relation (2.6) becomes an equality when the graph of the
realizations of the process Y(t) can not jump the barrier -w, that is if at the
time of ruin there remains no margin of insolvency (Dubourdieu (1952)).
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From equations (2.1) and (2.7), - r is the negative root of

(2.8) ,(_„)-! = _Bg
I

Because of the independence of such an expression from the time variable it
is therefore sufficient to refer to a single-period model, as it was reasonable to
expect, due to the fact that Y(t) is a process with independent increments. All
the endogenous quantities characteristic to the model will then be single-period
(annual) quantities.

It is interesting to derive a quadratic approximation by using the property
*(-«) = l~E{X} + u2E{X2}/2 + o(u2). From (2.8) we then obtain

which provides

(2g) .._2
 1 lU^Mix,) M{x)

E{X2)^U^idi(xi)
 lV(x)'

where we denote M(x) = M(x, 1) and V(x) = Vix, 1). It should be pointed out
that since the approximation is valid near the origin, then the less the quantity
£*=i Xjnj/Yjj=i A,n, exceeds the value of the derivative of x(u) at the point u = 0,
the better the approximation is. This means that the results which we shall obtain
will be much better, the closer we get to the fairness condition in the whole
portfolio.

REMARK. The evaluation of the stability of an insurance company with an
infinite planning horizon can raise doubts of a conceptual nature and in fact, in
the past, the suitability of using the ultimate ruin probability has been widely
debated (for a review, see Ammeter, Depoid and de Finetti (1957, p. 59)). The
question has not remained limited strictly to the actuarial setting; for example,
Masse (1964) has made use of the index q(w) to compare the two notions of
complete strategy and incomplete strategy. More recently, Ammeter (1970) has
applied the ultimate ruin probability criterion in the study of the solvency problem
of the european life insurance companies.

The parameter T has been used even lately by Amsler (1978), who introduced
it in his "general equilibrium equation of a collective risk", obtaining from it
the definition of a solvency index.

3. SELECTING THE OPTIMAL INSURANCE PORTFOLIO

3.1. The Programming Problem

In the foregoing model the main problem faced by the company is to choose
the price vector x so as to constitute an efficient portfolio, which has the maximum
safety index for a given level M of the expected return. It has then to solve the

https://doi.org/10.1017/S0515036100004712 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100004712


142 MORICONI

following programming problem

rmaxr(x)

(3.1) J

where the lower bounds on the xt are due to the fact that we have excluded
negative loadings.

Since the factor 1/E{X2} seems to be irrelevant in the optimization problem,
one can put this quantity equal to 1, as for example would be the case if S(t)
were an ordinary Poisson process (unit jumps, *(M) = eu). For sake of simplicity
we shall indeed confine ourselves to this case, from now on, by putting moreover
E{X} = 1. Obviously, with these limitations the expected value principle and the
variance principle turn out to coincide and we shall write /,• = rjyA,. It can be noted
that in this case TJ, directly represents the Arrow-Pratt risk aversion in so far
as, within the limits of the quadratic approximation of the utility function, one

Recalling equation (2.9), problem (3.1) is equivalent to

min V(x)

(3.2)

we are thus led to a mean-variance model.
Obviously, it is sufficient to study the problem (3.2) within the interval D of

the Euclidean k -space Uk:

D ={x|Ay =sxy ssxf;/ = 1,2 k}.

In fact all the intervals for which xt>xf for one or more values of /, that
correspond to the exclusion of some risk classes, are equivalent to the cases
Xj = x* and therefore are represented by intervals on the boundary of D.

Hence the problem (3.2) takes on the following explicit formulation

(3.3)

min H

i ^[-r*>+(2 + T»*)j e /-(1 + T»*W| =
= 1 TJ, L Ay J

Ay «JCy « Ay(l + Tjf ), (/ = 1, 2, . . . , k).

M

This programming problem differs from those typical to the mean-variance
models that are used in the portfolio analysis in that the objective function is
linear, whereas the constraint is a quadratic function which contains the linear
terms but in which the mixed terms are missing. The latter characteristic depends
on the hypothesis of independence among the risks.
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3.2. Deriving the Efficient Prices

The constraint equation represents, when M varies in R+, a portion of elliptic
paraboloid in k +1 dimensions, whose vertex has the following coordinates

(3.4a)

(3.4b)

Therefore the maximum expected return M* is obtained by choosing x coinciding
with the center C of D, whose coordinates are just given in (3.4b) (see fig. 1).
Furthermore, in C we have

(3.5)

M

FIGURE 1. Efficient frontier with four risk classes.

To solve the conditional extremum problem, let us set up the Lagrangian
function

From the equations d/dXjL(x, fx) = 0 we obtain

(3.6) * /=y ( -+ i J /*+2) , (/ = l ,2, . . . , fc) .

These are the parametric equations of a straight line € which passes through
the center C of the interval D and coincides with its "upward" diagonal (i.e.,
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the straight line passing through points (Ai, A2 Afc) and (x*,x*,... ,x*))
only if the values of 17* are all equal.

By substituting (3.6) in the constraint equation, one has

M*-M
— = -t-v _

(3.7)

The negative roots of (3.7) are to be discarded because, as it is easy to verify,
they correspond to points with maximum variance. Therefore all the points of
the straight line 0 that are lower than C are to be discarded as inefficient. Then
equation (3.7), modified in this manner, leads to the parametric equations of 0,
Xj = Xj(M). To obtain the efficient frontier it is sufficient to substitute these
expressions of xs into the objective function, thus attaining V = V(M) and
therefore, passing to the inverse function, the equation

M

* *£, * ̂  4 * Jfa
L * L * L #

,=1 Vi /=i Vi ; = i Vi
It is to be noted that the constant term in (3.8) is nonnegative and vanishes

if and only if the 17* values are all equal. In fact, by indicating by A({TJ*}) the
weighted arithmetic mean of the 77*, with weighting factors •#}A//£*-i '̂/Ay, it
can be written, keeping in mind (3.4a)

and the conclusion is drawn by observing that the quantity between square
brackets is the difference between the arithmetic and the harmonic mean.

In order that equation (3.8) represents an efficient frontier it is necessary to
bound it to suitable values of V. Above all we shall disregard values greater
than V*, in so far as they provide levels of expected return less than M* (and
in fact they are the points lower than C, which we have discarded because of
the inversion of V = V(M)). Values of the variance that are decreasing from
V* corresponds to points of € which move upwards away from C, until they reach
the boundary of D. We shall denote by Qk-i the intersection point between €
and this boundary. If all the 17* were to be equal, the point Qk-i would
coincide with the vertex (x*, x*,..., x*) of D, that we shall indicate by Qo and
that corresponds to values of M and V equal to zero (empty portfolio). Instead,
in the general case, the first class to be excluded will be the one corresponding
to the least 17*.

Let us then consider a permutation q of the subscripts {/} such that

17*1 * *
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The coordinates of the point Qk-i will then be expressed by

xAQk-i) = ( l+T 7 ? 1
2

+ T ? '*) A,, (/ = 1 ,2 , . . . , it),

which provide

The value V(Qfc_i) is the minimum possible variance relative to an efficient
portfolio made up of k risk classes. For lower values of V we are led in practice
to a problem in it - 1 dimensions, until the increase of the prices charged will
not bring to the exclusion of the class <€q2. This will happen in a point Qk-i with
coordinates

far/**

The efficient portfolios composed of k — 1 risk classes are represented by the
points of the line-segment Qk-iQk-2, laying on the boundary of D and the
efficient frontier has the same expression as in (3.8), provided that now we bound
it to the values of V contained between V(Qk-2) and V{Qk-i) and the sums
range over the remaining k — 1 classes. By continuing to increase the prices, the
progressive elimination of all the risk classes will be brought about, until one
reaches, in Qo, the emptying out of the portfolio.

The complete efficient frontier can be expressed by

7 = 1 '/<]

i r * / V - A * / * \ 2

for V(Qfc_s) < V ^ V(Qfc-,+i), (s = 1, 2 *) ,

where we denote C = Qk, and the points Ofc_s have coordinates

• ,qs-i-

In the space Uk the efficient portfolios are represented by the points of the
broken line CQk-i • • • QiQo-

https://doi.org/10.1017/S0515036100004712 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100004712


146 MORICONI

In the plane (V,M) the efficient frontier has the shape of a "chain" of arcs
of parabola that are joined together in the points Qk-s and which are ever more
convex from C to Qo.

3.3. Maximizing the Expected Utility of the Company

Once the efficient frontier has been determined, the analysis of the decision
problem of the company is concluded by choosing the portfolio that represents
the best trade-off between mean and variance, that is by maximizing a utility
function of the form u{M, V). By introducing a set of indifference curves in the
(V, M) space, the optimal portfolio is represented by the tangency point between
the efficient frontier and the indifference curve corresponding to the highest
possible level of the utility.

If we suppose, for example, that the initial free capital w is large relative to
the expected return on the portfolio, i.e., if w »M*, then it is possible,
analogously as was done in sect. (2.4), to approximate the utility function of the
company by the quadratic utility function

u(w + z) = z -\rc(w)z2',

with the related indifference curves

V = -M2 + —— (M - U),
rc(w)

where U is the level of expected utility corresponding to the curve and rc(w)
represents the Arrow-Pratt measure of risk aversion of the insurance company.

However it is to be noted that, with our assumptions, the suitability in using
the variance as a measure of the riskiness of the portfolio does not rely on the
accuracy of the quadratic approximation of the company's utility function, but
on the goodness of the approximation made for the probability of ruin.

4. ILLUSTRATION OF RESULTS IN THE TWO-CLASSES CASE

Let us now discuss and illustrate the results obtained in section (3) in the case
in which the risk market is made up of only two risk classes ^i and %2, with
Ai<A2. Furthermore, let suppose that <i£i is characterized by a level of risk
aversion greater ti.an ^2, i.e., 17* >TJ*.

The problem finds a simple geometric representation in the plane (x\, x2) (see
fig. 2). We see that the level lines M(x) = M of the expected return constitute
a set of ellipses with center C (the center of rectangle D), axes parallel to the
coordinate axes and size decreasing as M increases. The maximum expected
return will then be attained by choosing the premiums x, = Xj(C). The level lines
V(x) = V of the variance instead form a set of parallel straight lines with slope
-Ni 172/̂ 217* that come closer to the origin as V increases.

https://doi.org/10.1017/S0515036100004712 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100004712


A PRICING MODEL 147

O A, XT Xl

FIGURE 2. CQiQ0: Efficient prices; RQ0: Market portfolios; RT: Proportional loadings.

The efficient portfolio relative to the choice of a return level M is therefore
represented by the tangency point between the ellipse M{x) = M and the "high-
est" possible variance level line. In this manner we obtain the straight line O

*2 * I ; T A 2 ( T J I V2>>

which passes through C and intersects the boundary x2
 = x* of D in the point

Qu having abscissa XI(OI) = [1 + (TJ* -T)*) /2 ]AI . Of course, from € are to be
discarded, besides the points above Qu even those below C, that correspond to
inefficient portfolios (maximum V for given M). The prices indicated by Q\
generate the mixed portfolio with minimum variance; in order to achieve lesser
values of V it is necessary to operate with only one class, choosing the prices
on the line-segment QiQo-

If the two classes were to have an equal degree of risk aversion, i.e., if
TJ*=TJ*=TJ*, the locus of the efficient solutions would be given by

with

- ^ , (7 = 1,2)
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and the points Qi and Qo would coincide. In this manner a premium-making
policy of rather intuitive significance would be confirmed, that is the charging
to both the classes of a loading equal to the same percentage TJ of the net
premium. In our case, instead, being T7*>TJ*, it turns out that the efficient
choices consist in overloading the more risk averse class <<?i by increasing the
percent loading 17A i by the quantity (17* - T J * ) / 2 .

Another interesting result consists in the fact that a diversification of the
portfolio is not always efficient, because if small values of the variance (line-
segment Q1Q0) are desired, then the expected return is maximized by insuring
only individuals that are of the more risk averse class.

Finally, let us compare the policy of the efficient prices with that of the prices
that determine a natural, or market, portfolio, that is a portfolio that contains
both the risk classes in the same proportion with which they are present on the
market. By solving the equations

* k '

y n(x) T Jf-

one easily obtains the parametric equations

[(/ = 1, 2),
that represent the diagonal of D passing through Qo. As can be seen, it is a
matter of charging to the two classes a loading which is equal to a same fraction
(1 -d) of the respective maximum percent loading 17* and this policy will turn
out to be efficient if the classes are characterized by a different degree of risk
aversion.
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