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Exact coherent structures (ECS), unstable three-dimensional solutions of the Navier–
Stokes equations, play a fundamental role in transitional and turbulent wall flows.
Dempsey et al. (J. Fluid Mech., vol. 791, 2016, pp. 97–121) demonstrate that at large
Reynolds number reduced equations can be derived that simplify the computation and
facilitate mechanistic understanding of these solutions. Their analysis shows that ECS
in plane Poiseuille flow can be sustained by a novel inner–outer interaction between
oblique near-wall Tollmien–Schlichting waves and interior streamwise vortices.
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1. Introduction

The discovery of exact coherent states or structures (ECS), three-dimensional (3-D)
invariant solutions of the Navier–Stokes (NS) equations (Nagata 1990), has led to a
gradual but inexorable paradigm shift in research in transitional and turbulent wall
flows. Although unstable, these solutions have been shown to provide a scaffold in
phase space for moderate Reynolds number (Re) turbulent dynamics and an ‘edge’
that separates the laminar and turbulent basins of attraction – with direct implications
for the prediction and control of transition. Waleffe (1997) conceived a nonlinear
self-sustaining process (SSP) theory involving the interaction among streamwise (x)
vortices, a spanwise (z) and wall-normal (y) varying streamwise shear flow and 3-D
(Rayleigh wave) instability modes. This physically motivated conceptual framework
enabled the ab initio computation of ECS at finite Re in linearly stable parallel shear
flows.

Since the pioneering successes of Nagata and Waleffe, countless ECS in a variety
of wall flows have been computed. The theoretical investigation by Dempsey et al.
(2016) complements these strictly computational studies by providing a semi-analytical
description of strongly nonlinear ECS that bifurcate from small-amplitude near-wall

† Email address for correspondence: greg.chini@unh.edu

J. Fluid Mech. (2016), vol. 794, pp. 1–4. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.154

1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:greg.chini@unh.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.154&domain=pdf
https://doi.org/10.1017/jfm.2016.154


2 G. P. Chini

Tollmien–Schlichting (TS) waves in plane Poiseuille flow (PPF). Their elegant
approach leverages a large-Re mathematical formalism for nonlinearly interacting
3-D wavy instabilities and 2-D streamwise vortices aptly termed vortex–wave
interaction (VWI) theory. The VWI framework was developed by co-author P. Hall
and collaborators independently of, but concurrently with, the ECS computations being
performed by Nagata (1990); see in particular Hall & Smith (1991). Nevertheless,
the complete interaction equations were not solved until Hall & Sherwin (2010)
computed VWI solutions in a plane Couette flow (PCF) configuration. Only then was
the intimate connection between VWI and SSP theories firmly established, with the
VWI solutions obtained by Hall & Sherwin (2010) constituting the infinite-Re limit
of the ECS computed by Nagata and Waleffe in PCF.

The asymptotic approach offers important advantages. By explicitly recognizing
the emergence of multiple spatial and temporal scales, simplified partial differential
equations (PDEs) are derived that enable a reduction in computational complexity.
For example, Beaume (2012) and Blackburn, Hall & Sherwin (2013) show that the
computation of certain ECS can be reduced to the coupled solution of two 2-D
problems: a nonlinear problem for the x-averaged flow at unit effective Reynolds
number; and a quasi-linear problem for inviscid wavy instabilities riding on the
streamwise-averaged flow. In fact, a time-dependent version of these reduced PDEs
is equivalent (for large Re) to the ‘restricted nonlinear model’ of turbulence in
wall-bounded parallel shear flows recently proposed by Thomas et al. (2015). More
significantly, the asymptotic approach lays bare the essential physics of the interactions
that sustain the ECS. Here, the paper by Dempsey et al. (2016) is a tour-de-force,
combining detailed mathematical analysis, careful numerics and deep physical insight
to show in the context of PPF that ECS in the domain interior can be sustained by
a near-wall viscous instability giving rise to TS waves.

2. Overview

A cornerstone of VWI theory is that at large Re weak [O(Re−1)] vortices can act as
an advection mechanism both for the rolls themselves and for the streamwise-averaged
streamwise flow, creating streaks by inducing O(1) spanwise modifications to the
latter. Since the vortices are weak, viscous diffusion acts at leading order on the
streamwise-averaged flow, which by design satisfies a 2-D/3-component PDE system.
The streamwise vortices in this mean system must be maintained by the Reynolds
stress divergence (RSD) induced by x-varying (3-D) fluctuations. In VWI and SSP
theory, these 3-D motions are not turbulent fluctuations per se but wavy – that is,
coherent – instability modes. For example, in the analysis by Dempsey et al. (2016)
the wave-induced RSD in the domain interior drives a counter-rotating cellular mean
flow when the size of the waves δ = ε6� 1, where the small parameter ε ≡ Re−1/7.
An immediate consequence is that the waves satisfy quasi-linear equations about the
O(1) streaks both in the core and in the near-wall layer. It is this quasi-linearity that
emerges in the large-Re limit that renders single-mode fluctuations (waves!) in the
x direction admissible and necessary solution components of the ECS. A selection
mechanism exists as the amplitude and wavelength of the x-varying disturbances
must be precisely tuned to enable vortices and streaks to be driven that render those
disturbances neutrally stable (Hall & Smith 1991; Beaume et al. 2015).

A second hallmark feature of VWI theory is that crucial wave processes occur
within asymptotically thin internal or wall layers as Re→∞. Indeed, following the
closely related analysis by Bennett, Hall & Smith (1991) for flows in curved channels,
Dempsey et al. (2016) show that oblique TS waves arise as an instability of the
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FIGURE 1. Morphology of vortex/TS wave ECS streak structure (a,c,e) and associated
wall shear stress λ(Z) and TS wave amplitude |A(Z)|2 (b,d, f ), where Z ≡ εz, with
increasing magnitude of wave amplitude A 2≡ ∫ 2π/β

0 |A(Z)|2 dZ: (a,b) A 2= 1, (c,d) A 2=
20, (e, f ) A 2 = 30. Adapted from Dempsey et al. (2016).

streaky flow in a near-wall viscous layer of thickness O(ε2). Within this layer the TS
waves are governed by a system of unsteady 3-D linearized laminar boundary-layer
equations with coefficients that depend on the streak-induced wall shear stress. Thus,
the SSP maintaining the vortex/TS wave ECS may be summarized as follows: a
streaky near-wall flow is unstable to oblique viscous TS waves whose inviscid
extension into and nonlinear self-interaction within the core drives roll vortices that
sustain the streaks – a mechanism that differs from the SSP articulated by Waleffe.

Employing the VWI equations, Dempsey et al. (2016) compute the asymptotic
form of the vortex/TS wave ECS as a function of the spanwise wavenumber. The
authors then compare their asymptotic solutions with ECS computed from the full
NS equations at finite but large Re, demonstrating impressive agreement. As the wave
amplitude is increased, the spanwise streak profile distorts from a gentle sinusoid to
a strongly localized but still spanwise periodic structure (figure 1). In this regard, the
authors’ use of the term ‘localized solution’ differs from that commonly employed in
modern dynamical systems studies to describe strictly isolated states in shear flows
and convection. The issue is more than mere semantics. The physical mechanism
responsible for the existence of localized ECS is long-wavelength modulational
instability in bistable systems (Melnikov, Kreilos & Eckhardt 2014) rather than the
nonlinear advective steepening that drives spanwise-periodic focusing in Dempsey
et al.’s solutions. Nevertheless, the authors’ speculation that this nonlinear steepening
and the eventual loss of regularity of their VWI system could provide a mechanism
for the formation of turbulent spots, widely associated with the breakdown of TS
waves, is intriguing. Although the relevance of their solutions to transition may be
questioned because Re−1/7 must be small for the quantitative validity of their theory,
it is difficult to imagine anything comparable to the level of mechanistic insight
obtained by Dempsey et al. (2016) emerging from strictly computational studies.

3. Future

It would be of interest to use the VWI formulation employed by Dempsey et al.
(2016) to investigate whether truly localized vortex/TS wave ECS are admitted by their
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reduced equations. More generally, asymptotically-simplified PDE models of shear
flows should be useful for pattern formation studies of ECS in spatially-extended
domains (Zhang et al. 2015). In particular, slow streamwise variability, crucial
for studies of ECS in non-parallel flows, is naturally accommodated by VWI
and related asymptotic theories (Hall & Smith 1991; Beaume et al. 2015). The
discovery of turbulent superstructures, streamwise vortices and streaks extending in
the downstream direction many multiples of the turbulent layer thickness, further
highlights the potential utility of large-Re mathematical formalisms: a tantalizing
possibility is that ECS associated with new SSPs may be operative across a hierarchy
of spatio-temporal scales, including in the outer regions of turbulent wall flows at
extremely large Reynolds number (Hwang & Cossu 2010).

Ultimately, there is a need for a priori reduced dynamical models of turbulent
wall flows rather than a lexicon of ECS, no matter how complete. Here, too, the
asymptotically reduced PDE framework may provide a path forward. For example,
Julien & Knobloch (2007) have derived reduced PDE models of geophysical and
astrophysical flows subjected to strong externally imposed restraints, enabling
time-dependent simulations of turbulent flows in extreme parameter regimes that
remain inaccessible to DNS. An outstanding open question is whether similar reduced
models can be derived for large-Re wall flows that lack explicit external restraints
but nevertheless clearly exhibit strongly anisotropic quasi-coherent flow structures.
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