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Class number calculation using Siegel functions

T. Fukuda and K. Komatsu

Abstract

We propose a fast method of calculating the p-part of the class numbers in certain non-cyclotomic
Zp-extensions of an imaginary quadratic field using elliptic units constructed by Siegel functions.
We carried out practical calculations for p = 3 and determined λ-invariants of such Z3-extensions
which were not known in our previous paper.

1. Introduction

Let K be an imaginary quadratic field and p an odd prime number which splits into two
distinct primes p and p in K. We denote by K ′n = K(pn+1) the ray class field of K modulo
pn+1 and K ′∞ =

⋃∞
n=0K

′
n. Then there exists a unique Zp-extension K∞ of K in K ′∞. We

denote by Kn the nth layer of K∞ over K.
In a previous paper [3] we studied the Iwasawa invariant λ(K∞/K) for p = 3, while

µ(K∞/K) is known to be zero by [4, 7]. Our investigation was based on the calculation
in K2. We were not able to handle Kn (n > 3) for lack of a fine algorithm. In the present
paper we develop a new algorithm based on the structure of the group of elliptic units and
calculate the 3-part of the class number h(Kn) of Kn (1 6 n 6 5). We are now able to consider
λ(K∞/K) by observing directly the growth of the 3-part of h(Kn).

We illustrate, for an odd prime number p, how to calculate the p-part of h(Kn). As usual,
for a Galois extension L/F of algebraic number fields, we denote by G(L/F ) the Galois group
of L over F and by NL/F the norm mapping of L over F . We begin by explaining how to
construct Kn explicitly. We assume that K is different from both Q(

√
−1) and Q(

√
−3). As

in [3], we are interested in K∞/K in which p is totally ramified. Therefore K̃ ∩ K∞ = K,
where K̃ means the Hilbert class field of K. Let a1, a2 be rational numbers and τ a complex
number with positive imaginary part. Then the Siegel function is defined to be

g(a1, a2)(τ) = −q(1/2)(a
2
1−a1+1/6)

τ e2πia2(a1−1)/2(1− qz)
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1z ),

where qτ = e2πiτ , qz = e2πiz, z = a1τ + a2 and i =
√
−1. Then g(a1, a2)(τ) is a modular

function of some level and Kn is generated by special values of g(a1, a2). We refer [5, Chapter 2]
for the various properties of the Siegel function.

Let ω1 and ω2 be elements of K with imaginary part Im(ω1/ω2) > 0 such that pn+1 =
Zω1 + Zω2. Since (p) = pp′, there exist integers r, s ∈ Z with

r

pn+1
ω1 +

s

pn+1
ω2 = 1.

Then g(r/pn+1, s/pn+1)(ω1/ω2)12p
n+1

is in K ′n by [5, p. 234, Theorem 1.1]. We put

f(τ) =

(
g

(
r

pn+1
,

s

pn+1

)
(τ)

/
g

(
r(1 + p)

pn+1
,
s(1 + p)

pn+1

)
(τ)

)4

.
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We know that f(τ) is independent of r, s by [5, p. 33, Proposition 1.3]. Then there exists a
unique 3pn+1th root of unity ζ such that f(ω1/ω2)ζ ∈ K ′n by [3, p. 472]. We put

ηn = NK′n/Kn

(
f

(
ω1

ω2

)
ζ

)
.

Let Γ be the Galois group G(K∞/K) and γ is topological generator of Γ. We put

En = 〈ηn, ηγn, . . . , ηγ
pn−2

n 〉.

Let En be the unit group of Kn. Then it is well known that the group index (En : En) is finite

[5, p. 323, Theorem 4.1]. We note that ηn, η
γ
n, . . . , η

γpn−2

n form a free basis of En. Let E′n be
the subgroup of En such that E′n/En is the p-Sylow subgroup of En/En. Let pen be the exact
power of p dividing the class number h(Kn) of Kn. Then we have

pen = pe0(E′n : En) (1.1)

by [5, p. 323, Theorem 4.1]. Our main purpose of this paper is to prove the following theorem.

Theorem 1.1. Let the notation and assumptions be as above. If en − en−1 = 1 for some
integer n > 1, then we have en+1 − en 6 1.

Owing to [2, Theorem 1], we may convert Theorem 1.1 into the following version.

Corollary 1.2. If en − en−1 6 1 for some integer n > 1, then we have em − em−1 6 1 for
all integers m > n.

As an application of Corollary 1.2, we show an efficient algorithm for calculating en in the
case e1 − e0 = 1 in § 3.

2. Proof of theorem

Preparatory to proving Theorem 1.1, we summarize as lemmas properties of En, E′n and En
which were defined in the previous section.

Lemma 2.1. We have En ∩ En−1 = En−1 for n > 1.

Proof. We write s = pn−1 − 1 and r = pn − pn−1 − 1. Put

η = η
x0+x1γ+...+xpn−2γ

pn−2

n

with rational integers xi. We assume η ∈ En−1. Then ηγ
pn−1

= η, which implies

ηγ
pn−1

= η
∑pn−2

i=0 (xi−xr)γ
i+pn−1

n = η

by NKn/K(ηn) = 1. Hence we have

xi − xr=xi+pn−1 (0 6 i 6 r − 1),

xi − xr=xi+pn−1−pn (r + 1 6 i 6 pn − 2),

−xr=xpn−1−1,

which means x0 − pxr = x0. This shows xr = 0 and xpn−1−1 = 0. It is known that
NKn/Kn−1

(ηn) = ηn−1 by [5, Theorem 1.3, p. 237]. Hence, noting the uniqueness of ζ, we
have

η = NKn/Kn−1
(ηx0+x1γ+...+xs−1γ

s−1

n ) = η
x0+x1γ+...+xs−1γ

s−1

n−1 . 2
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Lemma 2.2. We have pen−en−1 = (E′n : EnE′n−1) for n > 1.

Proof. Since En ∩ E′n−1 = En−1 by Lemma 2.1, we have (EnE′n−1 : En) = (E′n−1 : En−1).
Hence we have

pen = (E′n : En) = (E′n : EnE′n−1)(EnE′n−1 : En)

= (E′n : EnE′n−1)(E′n−1 : En−1)

= pen−1(E′n : EnE′n−1). 2

Lemma 2.3. If E′n/En is non-trivial, then there exists an element η in En with η 6∈ Epn and
ηγ−1 ∈ Epn, where Epn = {εp | ε ∈ En}.

Proof. Since E′n/En is a non-trivial p-group, there exists an element u in E′n such that u 6∈ En,
uγ−1 ∈ En and up ∈ En. We put η = up. Then η 6∈ Epn and ηγ−1 = (uγ−1)p ∈ Epn because En
does not contain a non-trivial pth root of unity. 2

Let H be a subgroup of En and u, v elements of En. From now on, we write u ≡ v (mod H)
if uv−1 ∈ H. We put T = γ − 1 as usual.

Lemma 2.4. There exists an element fn(T ) in Z[T ] which satisfies

ηT
pn−pn−1

n = ηn−1η
−p(1+Tfn(T ))
n .

Proof. Since
∑p−1
i=0 (T + 1)ip

n−1 ≡
∑n−1
i=0 (T p

n−1

+ 1)i ≡ T p
n−pn−1

(mod p), we see that∑n−1
i=0 (T + 1)ip

n−1 − T pn−pn−1 ∈ pZ[T ]. Hence

fn(T ) =

∑p−1
i=0 (T + 1)ip

n−1 − T pn−pn−1 − p
pT

is contained in Z[T ] and

ηn−1 = NKn/Kn−1
(ηn) = η

∑p−1
i=0 (T+1)ip

n−1

n = ηT
pn−pn−1

+p+pTfn(T )
n ,

from which we derive the desired equality. 2

Proof of Theorem 1. We assume en−en−1 = 1 and en+1−en > 2 and derive a contradiction.
We write r = pn − pn−1 − 1. Let {ξ1, ξ2, . . . , ξpn−1−1} be a free basis of E′n−1 and put

Vn = 〈ξ1, ξ2, . . . , ξpn−1−1, ηn, η
γ
n, . . . , η

γr

n 〉.

Since {ηn, ηγn, . . . , ηγ
pn−2

n } is a free basis of En and since NKn/Kn−1
(ηn) = ηn−1, we have

Vn = E′n−1En. We note

Vn = 〈ξ1, ξ2, . . . , ξpn−1−1, ηn, η
T
n , . . . , η

T r

n 〉.

Since en − en−1 = 1, there exist vn ∈ Vn, ε ∈ E′n − Vn and xi, yi ∈ {0, 1, . . . , p − 1}
such that

εp = vn = ξx1
1 ξx2

2 . . . ξ
xpn−1−1

pn−1−1 η
y0+y1T+...+yrT

r

n

and vTn ≡ 1 (mod V pn ) by Lemma 2.3. Since ηT
r

n ≡ ηn−1 (mod V pn ) by Lemma 2.4,
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we have

vTn ≡ ξ
x1T
1 . . . ξ

xpn−1−1T

pn−1−1 ηyrn−1η
−yrp(1+Tfn(T ))
n ηy0T+y1T

2+...+yr−1T
r

n

≡ ξx1T
1 . . . ξ

xpn−1−1T

pn−1−1 ηyrn−1η
y0T+y1T

2+...+yr−1T
r

n (mod V pn ).

Hence we have y0 = y1 = . . . = yr−1 = 0 and yr 6= 0 by en−en−1 = 1. We may assume yr = 1.
Hence there exists an element ξ ∈ E′n−1 with

vn = ξη(γ−1)
r

n

such that v
1/p
n ∈ E′n. This means E′n = 〈Vn ∪ {v1/pn }〉 by en − en−1 = 1. Since (v

1/p
n )T =

(ξT ηn−1η
−p(1+Tfn(T ))
n )1/p, there exists an element ξ′ ∈ E′n−1 with

(v1/pn )T = ξ′η−(1+Tfn(T ))
n . (2.1)

We put

Vn+1 = 〈E′n ∪ {ηn+1, η
T
n+1, . . . , η

T r′

n+1}〉,

where r′ = pn+1 − pn − 1. Then there exist vn+1 ∈ Vn+1, ξ∗ ∈ E′n−1, ai, bi ∈ {0, 1, . . . , p− 1}
and ε∗ ∈ E′n+1 − Vn+1 such that

ε∗p = vn+1 = ξ∗ηa0+a1T+...+ar−1T
r−1

n (v1/pn )arη
b0+b1T+...+br′T

r′

n+1

and vTn+1 ≡ 1 (mod V pn+1) by Lemma 2.3 and the assumption en+1−en > 2. Since ηT
r′+1

n+1 ≡ ηn
(mod V pn+1) by Lemma 2.4, we have

vTn+1 ≡ (ξ∗)T ηaoT+...+ar−2T
r−2

n (vnξ
−1)ar−1

· (ξ∗η−(1+Tfn(T ))
n )arη

b0T+...+br′−1T
r′−1

n+1 ηbr′n

≡ 1 (mod V pn+1).

This shows b0 = b1 = . . . = br−1 = 0 and ar = br′ 6= 0. Since br′ is prime to p, we may assume
ar = 1. Hence there exists an element ξ′′ ∈ Vn with

vn+1 = ξ′′v1/pn ηT
r′

n+1. (2.2)

Moreover, we have (v
1/p
n+1)T = ξ′′′η

−(1+Tfn+1(T ))
n+1 for some ξ′′′ ∈ E′n by ηT

r′+1

n+1 = ηn

η
−p(1+Tfn+1(T ))
n+1 . We put V ′n+1 = 〈Vn+1 ∪ {v1/pn+1}〉. Then there exist ε′ ∈ E′n+1, v′n+1 ∈ Vn+1,
η∗ ∈ Vn and y, z0, . . . , zr′ ∈ {0, 1, . . . , p− 1} with

ε′
p

= v′n+1 = η∗(v1/pn )yη
z0+z1T+...+zr′−1T

r′−1

n+1 (v
1/p
n+1)zr′

and (v′n+1)T ≡ 1 (mod V ′ pn+1) by the assumption en+1 − en > 2. Since

(v′n+1)T ≡ (η∗)T (ξ′η−(1+Tfn(T ))
n )yη

z0T+...+zr′−1T
r′−1

n+1

· (ξ′′−1v−1/pn )zr′−1(ξ′′′η
−(1+fn+1(T ))
n+1 )zr′

≡ 1 (mod V ′ pn+1),

we have z0 = z1 = . . . = zr′ = 0. This contradicts the assumptions.
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3. Algorithm for constructing E′n

As we explain in the later section, we often meet the situation e1−e0 = 1. In this case, we are
able to develop an efficient algorithm for constructing E′n. By Corollary 1.2 and (2.2), E′n/En
is a cyclic group with order |E′n/En| 6 pn. We assume |E′n/En| = pn and construct E′n as
follows.

Based on the cyclicity of E′n/En, there exist unique subgroups Vn,k (0 6 k 6 n) which satisfy

En = Vn,0 ⊂ Vn,1 ⊂ Vn,2 ⊂ . . . ⊂ Vn,n = E′n,

(Vn,k+1 : Vn,k) = p.

We write Vk for Vn,k.

Let r = pn − 2 and εi = ηγ
i

n (0 6 i 6 r). Then Vk has the form

Vk = 〈ε0, ε1, . . . , εr−1, vk〉

with vk ∈ E′n. Note that v0 = εr. We explain how to construct vk+1 from vk. By an argument

similar to the proof of Lemma 2.3, we may assume vpk+1 ∈ Vk and v
p(1−γ)
k+1 ∈ V pk . Namely, we

search for integers xik, yik and vk+1 ∈ E′n satisfying

vpk+1 =

(r−1∏
i=0

εxik
i

)
vk, (3.1)

v
p(1−γ)
k+1 =

((r−1∏
i=0

εyiki

)
vyrkk

)p
. (3.2)

If vk+1 exists, then the following relations hold:

v−p
k

k =

(r−1∏
i=0

εp
kxik

i

)
v−p

k+1

k+1 , (3.3)

v1−γk+1 =

(r−1∏
i=0

εyik−yrkxik

i

)
vpyrkk+1 . (3.4)

The first step is to find aij ∈ Z which satisfy

ε1−γj =

r∏
i=0

ε
aij
i (0 6 j 6 r).

This is straightforward because

ε1−γj = εjε
−1
j+1 (0 6 j 6 r − 1),

ε1−γr = ε0ε1 . . . εr−1ε
2
r.

Then A0 = (aij) is the representation matrix of 1 − γ : V0 −→ V0 with respect to the basis
{ε0, ε1, . . . , εr−1, v0}. It is easy to see that the rank of A0 modulo p is r and dim Ker (A0 :
Fr+1
p 3 x 7→ A0x ∈ Fr+1

p ) = 1. Let xi0 ≡ r − i + 1 (mod p) (0 6 i 6 r) with 0 6 xi0 6 p − 1
and put tx0 = (x00, x10, . . . , xr0) ∈ Zr+1. Then there exists ty0 = (y00, y10, . . . , yr0) ∈ Zr+1

satisfying A0x0 = py0. By the assumption e1 − e0 = 1, we see that |E′n/En| > p and there
exists v1 ∈ E′n which satisfies (3.1) and (3.2) for k = 0. It is straightforward to see that

ε1−γr−1 =

(r−1∏
i=0

εxi0
i

)
εr−1v

−p
1 . (3.5)
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From (3.5) and (3.4), we immediately construct the representation matrix A1 of 1−γ : V1 −→
V1 with respect to the basis {ε0, ε1, . . . , εr−1, v1}. The first r−1 columns of A0 and A1 coincide.
The last two columns vary.

When we construct vk+1 from vk for k > 1, we need some trials. We note the following
property of the representation matrix Ak of 1 − γ : Vk −→ Vk with respect to the basis
{ε0, ε1, . . . , εr−1, vk}.

Lemma 3.1. For any k > 1, the rank of Ak modulo p is greater than r − 2.

Proof. The determinant of the (r − 1) × (r − 1) matrix obtained from the first r − 1 rows
and r − 1 columns of Ak is 1. 2

Namely, dim Ker (Ak:Fr+1
p 3 x 7→ Akx ∈ Fr+1

p ) 6 2 and we easily find txk =
(x0k, x1k, . . . , xrk) ∈ Zr+1 with 0 6 xik 6 p − 1 (0 6 i 6 r), xrk = 1 and tyk =
(y0k, y1k, . . . , yrk) ∈ Zr+1 which satisfy Akxk = pyk. Starting with v1, we try to find
v2, v3, . . . , vn. If v1, . . . , vk exist and vk+1 does not exist, then we have (E′n : En) = pk. Note
that Ak+1 is constructed using the relations (3.3)–(3.5).

A naive method constructing Vk+1 from Vk needs pr trials. A sophisticated idea of Zassenhaus
in [6, p. 66] reduces it to pr trials but usually requires an integral basis of Kn. Our method
does not need an integral basis and finds vk+1 within p trials.

4. Examples
We carry out practical calculations when p = 3 and try to apply our technique to
determinethe Iwasawa λ-invariant λ(K∞/K). In the preceding paper [3], we studied λ(K∞/K)
for several imaginary quadratic fields K = Q(

√
−m). We showed λ(K∞/K) = 0 for

most of these K. Values of m for which we were not able to assert λ(K∞/K) = 0 are
−2183,−4637,−6761,−7907 and −17 786. For these m, we calculate the 3-part 3en of the
ideal class number h(Kn) of Kn.

The first step is the calculation of e1. This is easily done because the rank of E1 is 2, and
E′1 is constructed straightforwardly. We verified e1 − e0 = 1 for all above m. So we are able
to calculate en according to the technique in the previous section. We show the results in the
following table, from which we see λ(K∞/K) = 0 for all those K using Theorem 1 in [2].

m e0 e1 e2 e3 e4 e5

−2183 1 2 3 4 4 4

−4637 1 2 3 4 4 4

−6761 1 2 3 4 5 5

−7907 1 2 3 4 4 4

−17 786 2 3 4 5 6 6

5. Miscellaneous techniques in calculations

We explain how we calculate special values of Siegel functions quickly and how we construct
the cube root of an integer of Kn. First we consider the expression of an integer of Kn.

When n = 1, a well-known method due to Pohst and Zassenhaus enables us to construct an
integral basis of Kn easily. When n = 2, we used a special techniques to construct an integral
basis of Kn in [3]. It seems very hard to get an integral basis when n > 3. So we adopt another
method. Let α be an integer of Kn not contained in Kn−1. Then

fn,α(X) =
∏

σ∈Emb(Kn,C)

(X − ασ)
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is an irreducible polynomial in Z[X], where Emb(Kn,C) means the set of all embeddings of
Kn into C. Then fn,α(X) is considered to express 2 · 3n conjugates of α. We can specify α
rigorously by using fn,α(X) and an approximate value of α with an appropriate precision.
Namely, we use a correspondence

α←→

{
approximate values of ασ, σ ∈ Emb(Kn,C),

fn,α(X).

Next we discuss how to get a cube root of α for an integer α in Kn. If one of the cube roots
of α is contained in Kn, then only one of them, which we write 3

√
α, is contained in Kn because

ζ3 is not contained in Kn. We note the following fact.

Lemma 5.1. Let α be an integer of Kn. If fn,α(X) = g(X)3
e

with an irreducible monic
polynomial g(X) ∈ Z[X] and a non-negative integer e, then α ∈ Kn−e. More precisely, we
have Kn−e = Q(α) and g(X) = fn−e,α(X).

Proof. If e = 0, then the assertion is trivial. So we assume 1 6 e 6 n. Let G(Kn/K) = 〈γ〉.
Then,

Emb(Kn,C) = {γi | 0 6 i 6 3n − 1} ∪ {γiJ | 0 6 i 6 3n − 1},

where J is the complex conjugation. First, we claim that α = αγ
i

for some 0 < i < 3n. Indeed,
if α 6= αγ

i

for any 0 < i < 3n, then we have

α = αγ
iJ = αγ

jJ

for some 0 6 i < j 6 3n − 1, which yields α = αγ
j−i

. This is a contradiction.
Let i be the least positive integer such that α = αγ

i

and put i = 3ab with an integer b prime
to 3. Since γ3

n

= 1, we have

α = αγ
3a

,

which leads to b = 1 because of the minimality of i = 3ab. Since

G(Kn/Ka) = 〈γ3
a

〉,

we have α ∈ Ka −Ka−1 and

fn,α(X) = g(X)3
e

= h(X)3
n−a

for some monic polynomial h(X) ∈ Z[X]. Since g(X) is irreducible, we have e > n− a and

h(X) = g(X)3
e+a−n

.

If e + a > n, then the above argument implies α ∈ Ka−1. This contradicts the fact that
α ∈ Ka −Ka−1. Hence we have e+ a = n and complete the proof. 2

Lemma 5.2. Assume that Kn = Q(α) with an integer α in Kn.
(1) If fn,α(X3) is irreducible over Q, then 3

√
α 6∈ Km for all m > n.

(2) If fn,α(X3) = g1(X)g2(X) with an irreducible polynomial g1(X) ∈ Z[X] of degree 2 · 3n
and an irreducible polynomial g2(X) ∈ Z[X] of degree 4 · 3n, then 3

√
α ∈ Kn.

Proof. The proof is straightforward, noting that ζ3 6∈ Kn. 2

According to the above lemmas, we obtain 3
√
α for an integer α of Km as follows. Factoring

fm,α(X), we find n with 0 6 n 6 m and the minimal polynomial fn,α(X) of α. If fn,α(X3) is
irreducible, then 3

√
α 6∈ Km. If fn,α(X3) has an irreducible factor g(X) of degree 2 · 3n, then
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3
√
α ∈ Km. Let σ be an element of Emb(Km,C). Then 3

√
α
σ

is one of ρζi (i = 0, 1, 2), where
ρ is a fixed cube root of ασ. We specify ρζi so that g(ρζi) = 0. In this manner, we get the
minimal polynomial of 3

√
α and all conjugates of 3

√
α explicitly.

Finally, we make a remark on the calculation of Siegel functions. In [3], we needed
approximate values of g(a1, a2)(τ) with the precision of several thousand digits and calculated
the infinite product straightforwardly. In this paper, we calculated the 3-part of the class
number of K5 and needed approximate values with 105 digits. So we translated an infinite
product into an infinite sum.

Lemma 5.3. Let qτ and qz be complex numbers defined in § 1. Then we have

−(1− qz)
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1z ) = q1/2z

∑∞
n=0(−1)n(q

n+1/2
z − q−n−1/2z )q

n(n+1)/2
τ

1 +
∑∞
n=1(−1)n(q

n(3n−1)/2
τ + q

n(3n+1)/2
τ )

.

Proof. See [1, Proposition 6.3.14 and Corollaries 6.3.16 and 6.3.18]. 2

Remark 1. The convergence of the left-hand side depends on qnτ . On the other hand, the

right-hand side converges very quickly because it depends essentially on qn
2

τ .

Remark 2. When a1 = 0, qz = e2πia2 is a purely imaginary number and it happens

that q
n+1/2
z = q

−n−1/2
z for small n. So we have to stop summing based on the magnitude

of |qn(n+1)/2
τ |.

Remark 3. There is another way to use the σ-function to construct ray class fields of
imaginary quadratic fields. But the σ-function needs calculations of quasi-periods which are
essentially the sum of qnτ . Though the Siegel function is similar to the σ-function, it does not
need quasi-periods and hence has an advantage of fast convergence.
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