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Abstract

In a functional program, a simple random number generator may generate a lazy list of random
numbers. This is fine when the random numbers are consumed sequentially at a single point
in the program. However, things are more complicated in a program where random numbers
are used at many locations, such as in a large simulation. The programmer should not need to
worry about providing separate generators with a unique seed at each point where random
numbers are used. At the same time, the programmer should not need to coordinate the use
of a single stream of random numbers in many parts of the program, which can be particularly
difficult with lazy evaluation or parallel processing.

We discuss several techniques for distributing random numbers to various parts of a
program, and some methods of allowing different program components to evaluate random
numbers locally. We then propose a new approach in which a random number sequence can be
split at a random point to produce a pair of random number sequences that can be used
independently at different points in the computation.

The approach can also be used in distributed procedural programs, where it is desirable to
avoid dealing with a single source of random numbers. The approach has the added advantage
of producing repeatable results, as might be needed in debugging, for example.

Capsule review

Functional programmers often face 'plumbing problems' - distributing pieces of a global data
structure to the places where they are needed. A typical example is the distribution of random
numbers from a central generator throughout the rest of the program. The most obvious
methods lead to pragmatic difficulties, including awkward plumbing, space leaks, and
undesirable statistical dependence of random sequences. After surveying several solutions, the
authors offer a new one which uses both nondeterminism and some special properties of
random number generators.

1 Introduction

Problems arise in writing functional programs for applications requiring random
numbers because randomness is related to nondeterminism, which can easily conflict
with referential transparency, a basic requirement of functional programming
* This work was supported by the Amoco Production Company.
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systems (Clinger, 1982; Hughes and O'Donnell, 1990; Sondergaard and Sestoft,
1990). Problems of a different nature arise in supplying random numbers to an
application running on a computing system with many processing elements. This calls
for the provision of an indefinite number of streams of statistically independent
random numbers, which conflicts with the standard practice of generating random
numbers at a central source. The problems that arise in these two arenas turn out to
be related.

Consider the task of writing a functional program to describe a computation that
requires random numbers. Suppose that a procedural random number generator is
available, and that repeated invocations of this generator produce a sequence of
independent random numbers. If the computation uses random numbers in only
place, then a functional program could contain one reference to the entire sequence
(represented by a lazy list), and the computation would consume numbers from the
sequence as needed. On the other hand, if the computation requires random numbers
at several points, the program could not use the one available sequence at all of those
points, because that would lead to statistical dependence among supposedly
independent parts of the computation.

To make the various required sequences statistically independent, the given
sequence must be parcelled out somehow to all those parts of the program that
require random numbers. A similar program for a parallel computing system would
face the problem of distributing random numbers from a single sequence to multiple
processes. Thus, functional programs and parallel computations both encounter the
same difficulty with random number generators: that of sharing a single resource
among multiple consumers.

To address this problem, in section 2 we start by considering an approach to
random number generation that will be used in examples in the remainder of the
paper. In sections 3-5 we consider several approaches to the problem of distributing
random numbers from such a generator to multiple consumers. In section 6 we
propose an approach to the distribution problem based on splitting a random
sequence at a random point, and discuss its advantages for parallel computation.

2 Sequential random number generation

With many random number generators, each random number in a sequence may be
quickly generated from the previous one. This is one of two properties that we will
require for our approach. The other property is that the «th random number of the
sequence, for arbitrary n, can be computed reasonably quickly.

Our required properties are satisfied by most random number generators in
common use (L'Ecuyer, 1988; Park and Miller, 1988). For example purposes, we will
use the ' minimal standard' random number generator proposed by Park and Miller
(1988). This random number generator assumes that integers within at least the range
[ — 231 + 1.. 231 — 1 ] are available for arithmetic operations, and it delivers integers in
the range [1..231-2].

Let x0, xlt..., be a random number sequence, and let next be the function defined
by xi+1 = next(xt). We will call the initial value in the sequence, x0, the seed.
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module Random (Random, seed, generate) where
data Random = Seed Int

modulus = 2147483647 — = 2 31 -1

seed:: Int -^-Random
seed s = Seed (normalize s)
normalize s = (s 'mod'(modulus-2)) +1
— Avoid zero as a seed value.

next:: Int-*• Int
— next x = (x*7 5) 'mod'modulus
next x = if (result ^ 0) then (result) else (result + modulus)

where
result = (x 'mod'q) *a — (x 'div'q) * r
a = 16807 — = 7'5
q = 127773 — = modulus div a
r = 2836 — = modulus mod a

generate:: Randoms [Float]
generate (Seed x) = map scale (iterate next x)

where
scale y = fromlntegral y/fromlntegral modulus

Fig. 1. Minimal standard random number generator in Haskell.

The programmer provides a seed, and the next function for the minimal standard
random number generator is as defined in the following equation:

next{x) = (x x a) mod m
where

a= 16807 = 75

m = 2147483647 = 2 3 1 - 1 .

An implementation of next in Haskell is given in Fig. 1. The implementation
introduces an abstract type, Random, to simplify subsequent discussions. The
implementation avoids overflow problems, assuming the system supports integers in
the range [—231 + 1.. 231 — 1]. The Haskell standard (Hudak et al, 1990) requires
only that a the range [ —239+1,229 —1] be supported for type Int. In some Haskell
implementations, it may be necessary to use type Integer instead of type Int, which is
likely to significantly degrade performance. This cannot be avoided, since the minimal
standard random number generator delivers integers in the range [1 ..231 —2].

3 Plumbing sequences

A straightforward approach to supplying random numbers to a computation is to
feed a single sequence into the first point of need, and to design that portion of the
program to deliver, as part of its results, the unused portion of the sequence for use
elsewhere. In a functional program, for example, a function needing a sequence of
random numbers would take the sequence as one of its inputs, and would include the
unused portion of the sequence in its output. The remainder of the sequence could
then be used in the same way in other parts of the computation.
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One problem with this approach is that functions are burdened with having to
produce an extra result component, and the compositions of these functions that are
required to describe the overall computation are much more complex than would
otherwise be necessary. That is, the extra 'plumbing' needed to channel the random
numbers through the computation can complicate programs significantly.

Another problem is that of locating the first point of use of the random sequence.
Often, a programmer cannot easily predict where a processor evaluating a functional
program will begin its computation. Even if the point of first usage and the sequence
of subsequent usages are immediately apparent, the program might be running on a
computing system with many processors, in which case the strict sequentiahty in this
solution of the parcelling problem will not be acceptable. That is, strictly sequential
access to the random number sequence can greatly reduce the amount of parallel
computation available in the program. A sequential program using lazy evaluation
will encounter a similar problem: many of the advantages of lazy evaluation may be
lost if each program component must consume all of the random numbers it will need
before passing the remainder of the random numbers to another part of the program.

4 Balanced splitting of sequences

A second approach, suggested by L'Ecuyer (1988), is to split the random number
sequence into two or more subsequences whenever a program component contains
more than one subcomponent requiring random numbers. It is necessary to be able
to extract random values from either subsequence, but this is not difficult to arrange.

One way to split a sequence is to place all elements with odd indices in one
subsequence, and the rest of the elements, those with even indices, in the other.
Applying a function such as alternate, defined as follows, would split the sequence as
required

alternate [] = ([],[])

alternate [x] = ([x],[])

alternative (x:y:zs) = (x: xs, y: ys)

where

(xs,ys) — alternate zs.

However, this formulation would cause terrible space leaks if the two subsequences
were not consumed at similar rates.

We can avoid space leaks by generating the odd and even terms independently.
With the minimal standard random number generator, since

(xl+l) = {x( x a) mod m
we have

(xi+2) — {xt x a2) mod m.

Thus, to split a sequence we merely square the multiplier and use that square as the
basis for two random number generators. One of them uses the original seed x0, and
the other uses x, as its seed.
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To implement this idea, we need some additional functions for performing
arithmetic modulus 231 — 1. These are given in Fig. 2. Addition is straight forward,

modulus = 2147483647 — = 2 31 -1

add:: Int^-lnt^-lnt
x 'add'y = if (result ^ 0) then (result) else (result + modulus)

where
result = (x —modulus)+y

mult:: Int-* Int-> Int
— U (y < sart modulus) then (x 'mult 'y = (x * y) mod modulus)
x 'mult'y = if (result S= 0) then (result) else (result+modulus)

where
result = (x'mod'q) *y — (x'div'q)*r
q = modulus 'div 'y
r = modulus 'mod'y

times:: Int^- lnt -+lnt
— if(x = a*s + b) and (y = c*s + d)
— then x*y = a*c*s"2+(a*d+b*c) *s + b*d
— pick s so that (a, b,c,d < sqrt modulus)
times xy = acss 'add'middle 'add'bd

where
s = 46341 — = floor(sqrt modulus) +1
ss = 4634 — = (s'2) mod modulus
a = x 'div's ) •' i
b = x'mod's
c = y'div's
d = y'mod's
acss = (a*c) 'mult 'ss
temp = (a*d) 'add'(b*c)
middle = (temp'mult' (s-1)) 'add'temp
bd=b'mult'd

Fig. 2. Functions for arithmetic modulus 231 — 1.

and is performed by add. The mult function is similar to the original next function,
and performs multiplication provided the second argument is less than ^/modulus.
This is used in times, which performs multiplication mod modulus for full sized
arguments. ""'

Fig. 3 shows Haskell code for a revised implementation of Random, which includes
an operation split to partition a random number sequence into two subsequences. In
this code, random number sequences are represented by a {seed, multiplier) pair.

One problem with this solution is that times is significantly more expensive to
compute than next. If many elements must be generated for most subsequences, then
it is worth spending more time splitting a sequence so elements can be generated more
quickly.

A solution is to represent a subsequence as a pair containing a starting index and
subsequence length (rather than a starting value), and to split the interval in half when
splitting is required. For example, Seed i n would represent the subsequence xt, xt+l,

8 FPR 2

https://doi.org/10.1017/S0956796800000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000320


208 F. W. Burton and R. L. Page

data Random = Seed Int Int

seed:: Int-+Random
seed s = Seed (normalize s) 16807

seed:: Random -*• (Random, Random)
split (Seed s a) =

(Seed s aa, Seed (s 'times' a) aa)
where
aa = a 'times' a

generate:: Random -> [Float]
generate (Seed x a) = map scale (iterate (times a) x)

where
scale y = fromlntegral y/fromlntegral modulus

Fig. 3. Splitting a sequence into odd and even elements.

..., *(+„-!• This sequence would split into subsequences represented by Seed i halfn
and Seed (i +halfn) (n —halfn), where halfn is n 'div' 2.

To implement this, we need a function rand such that randi = x(. With

we can compute
randi = a'.

The code in Fig. 4 computes randi in O(log i) time.

square x = x 'times 'x

rand:: Int->Int
— rand i = (a~i) mod modulus
— Note: (rand i = generate (seed 1) !! i)
rand i =

ifi = = 0 then 1
else if even i then square (rand (i'div'2))
else { — oddi—} next (square (rand (i'div'2)))

Fig. 4. A function to compute rand i = xt = a'.

We can use rand to implement Random, as shown in Fig. 5. A programmer supplied
seed is still allowed. Each random number is multiplied by this seed mod modulus.
Distinct random numbers remain distinct under this multiplication. The iterated
function is again next, which can be computed quickly.

The approach of splitting a random number sequence into two subsequences of
equal length, either by taking alternative elements or taking consecutive elements,
solves the problem of parallel computation. Nothing prevents different processors
from using different subsequences at the same time. This approach also alleviates the
plumbing problem: it reduces a complex structure of input/output argument
bindings to a hierarchy of input-only argument bindings.

On the negative side, the tree approach delivers sequences that are too short at deep
levels in the tree. In practice, any pseudo-random number generator will produce only
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data Random = Seed Int Int Int
— Seed seed index length

seed:: Int-*• Random
seed s = Seed (normalize s) 0 2147483646

split:: Randoms (Random, Random)
split (Seed sin) —

(Seed s i halfn, Seed s (i+halfn) (n-halfn))
where
halfn = n'div'2

generate:: Random -> [Float]
generate (Seed s i n) = map scale (iterate next (rand i 'times' s))

where
scale y = fromlntegral y/fromlntegral modulus

Fig. 5. Splitting a sequence into equal length subsequences.

a finite sequence of values. Repeatedly halving that sequence at successive levels of
recursion leads to shorter and shorter sequences at deeper nodes in the tree. Even if
the original sequence is very long, a computation that happens to proceed down the
tree, rather than branching out across it, will quickly run into unacceptably short
sequences. For example, if the original sequence has a few billion numbers in it, a
recursion in the program that proceeds down the tree will encounter sequences as
short as a few hundred numbers after only a couple dozen levels of recursion. This
would be unacceptable in many simulations.

5 Nondeterministic random numbers

A completely different approach to random numbers is to regard them as
nondeterministic values. Unlike the other approaches that we consider in this paper,
all of which can be implemented without extending ordinary functional languages,
this requires linguistic support for nondeterminism. However, language extensions
for nondeterminism are worth considering because they have applications not only in
the context of random number generation, but also in other computations, such as
operating systems, where functional languages have been difficult to apply (Burton,
1988; Hughes and O'Donnell, 1990).

Variations on this theme of nondeterminism are possible. A. program could take an
infinite lazy tree of random values as an additional argument. Each random value in
the tree would be supplied by the system when it is first used. The values in the tree
need not be predetermined. Instead, given a sequential random number generator,
each time a new value is used for the first time, the next value in the sequence will be
assigned to it. This approach is based on a method for supporting nondeterminism
in a functional language proposed by Burton (1988). Trie approach maintains
referential transparency, since a random value remains unchanged once it is set.
Furthermore, it permits parallel computation.

On the other hand, the order in which a distributed computing system uses random
values may not be deterministic, which means results will fail to be exactly

8-2
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reproducible, even though they will remain statistically equivalent (assuming the
random number generator is a good one). Finally, there is a possible bottleneck in a
parallel system if all random numbers originate from a single location.

Hughes and O'Donnell (1990, 1991) have proposed an alternate approach to
dealing with nondeterminism in functional programs. Their approach treats
nondeterministic functions in a special framework that preserves referential
transparency by viewing nondeterministic values as sets of possibilities, while
allowing an implementation to represent such sets by single elements.

Following the Hughes-O'Donnell model, we could view a random number
generator as a nondeterministic function (of no arguments) that, on repeated
invocation, delivers a sequence of random numbers one at a time. Their model would
prevent an interpretation of this function that would violate referential transparency,
but at the same time would permit multiple invocations of the function at different
points in the program to deliver different numbers, thus parcelling out random
numbers as needed.

This approach is attractive because it avoids the plumbing problem entirely, and
uses random number generators in the traditional way. That is, the system could use
a library function that, via successive invocations, would generate a sequence of
random numbers.

This single source of random numbers, invocable from anywhere, avoids the
problem of routing subsequences to different parts of the program. However, it has
the same disadvantages as the lazy tree approach: implementations on parallel
computing systems may lead to bottlenecks and reproducibility problems.

A method that facilitates parallel computation, provides repeatability (even in a
parallel computing environment), and distributes short sequences more or less
uniformly around the tree (thus avoiding a bias against deep recursions) is the subject
of the next section.

6 Random splitting of sequences

Let us assume that we have a random number generator where each element of the
random number sequence can be generated quickly from the previous one and the ith
can be computed in a reasonable amount of time (e.g. an amount of time that is an
acceptable cost whenever a new subsequence is required). The minimal standard
random number generator has these properties, but the results in this section apply
to other random number generators as well.

Let x^,xx,...be a random number sequence, and next be the function denned by
xi+1 = next(xt). Define a function rand by

rand(0) — xo

rand(i+ 1) = next(rand(Vj).

That is, rand{i) = xf, and the sequence of random numbers is

x0, next(x0), next(next(x0)), next(next(next{x^))),...

= rand(0), rand{\), rand{2), rand(3),....
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data Random = Seed Int

seed:: Int -> Random
seed s = Seed (normalize s)

split:: Random-* (Random, Random)
split ((Seed s)) = (Seed (next s), Seed (rand s))

generate:: Randoms-[Float]
generate (Seed s) = map scale (iterate next s)

where
scale y = fromlntegral ylfromlntegral modulus

Fig. 6. Splitting a sequence randomly.

We have already seen how these functions are constructed for the minimal standard
random number generator.

The function rand maps the very unrandom sequence 0,1,2,..., into the original
random sequence. If the random number generator is any good at all, we would
expect randij) to be a independent of i for all practical purposes.

The strategy we propose is as follows: whenever we need a new subsequence of
random numbers, we split the sequence at a random point, that is, from a seed x, we
generate the pair of seeds next(x) and rand(x) (see Fig. 6). If eventually we need many
subsequences, each will have a random starting point.

This approach has the same advantages as the method of section 4: it does not
impede parallel computation, and it does not require unmanageable plumbing. In
addition, it avoids the primary disadvantage of the old method, that is the bias
against deep probes in the tree.

For this method to work effectively, there must be only a small chance of
encountering, in practice, duplicate subsequences (and, therefore, statistical de-
pendence among random number sequences that should behave as if they were
independent). In the following we present conditions under which it is likely that this
will be the case.

Given m objects drawn independently, with replacement, from a pool of p objects,
there are m(m—\)/2 distinct pairs of objects. The probability that any given pair
consists of duplicate objects is \/p. Hence, we would expect about m(m — \)/(2p) of
the pairs to contain duplicates. Therefore, duplicate objects will be unlikely if m2 is
much less than p.

Suppose a program requires m independent random number subsequences, and
that the program will obtain these subsequences by partitioning a sequence of n
pseudo-random numbers. Assume for the moment that the program will consume
about the same number of random numbers, say k of them, from each of the
subsequences.1 The probability of overlap between two subsequences of length k with
independently chosen starting values is (2k— Y)/n, because overlap occurs only if the
starting value of the second sequence is the same as the starting value of the first, or
within k — 1 positions on either side of it. If we select at random m seeds for the
subsequences, then we have m(m— l)/2 different pairs of subsequences. The expected

1 More generally, let k be the number of random numbers consumed by the most heavily used of the
subsequences.
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number of these pair consisting of overlapping sequences is m{m — \)/2 x (2k— \)/n.
(The probability that there exists a pair of overlapping subsequences is less than this
expected number of overlaps.) Therefore, the required subsequences will be likely to
behave independently if m2 <^ n/k.

We have not carried out extensive statistical testing of the collections of random
numbers that are generated using this method. However, we did generate a tree of
depth 14, with value 2 at the root and with the children of the node with value i having
values next i and rand i. There were no duplicated values among the 32 767 random
numbers in the tree.2

7 Conclusion

It is easy to define a random number generator in a functional language. The
generator simply returns a lazy infinite list of random numbers. What is more difficult
is sharing the sequence among many different processes that require random
numbers, as for example in a complex simulation program.

We have looked at some alternative methods for partitioning a random number
sequence. Some of the simpler methods are sufficient for simple problems. However,
if many random number subsequences may be required, and the structure of the
computation is not known in advance, then partitioning the random number
sequence in a random fashion appears to be the most promising solution to the
problem.
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