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Conjugacy Classes and Binary Quadratic
Forms for the Hecke Groups
Giabao Hoang and Wendell Ressler

Abstract. In this paper we give a lower bound with respect to block length for the trace of non-elliptic
conjugacy classes of the Hecke groups. One consequence of our bound is that there are finitely many
conjugacy classes of a given trace in any Hecke group. We show that another consequence of our bound
is that class numbers are finite for related hyperbolic Z[λ]-binary quadratic forms. We give canonical
class representatives and calculate class numbers for some classes of hyperbolic Z[λ]-binary quadratic
forms.

1 Introduction

In [3], Fine describes an algorithm that produces a representative of each conjugacy
class of the modular group with trace less than or equal to a given bound. Schmidt
and Sheingorn [13] observed that Fine’s algorithm generalizes from the modular
group to the Hecke groups. A key idea in each setting is to find a representative
of every conjugacy class that can be written as a product of elements of a standard set
of generating elements. In this paper we verify Schmidt and Sheingorn’s observation
and calculate a lower bound for the trace of a conjugacy class in terms of the length
of the product of generators for the class representative (the block length). An im-
mediate corollary of this result is that there are finitely many conjugacy classes of a
given trace in any Hecke group.

In [9], the second author develops a theory of reduction of hyperbolic Z[λ]-binary
quadratic forms, where λ is the minimal translation in the associated Hecke group.
Equivalence classes of these binary quadratic forms correspond to conjugacy classes
of associated Hecke groups, so a corollary of our main result gives a lower bound
on the discriminant of hyperbolic Z[λ]-binary quadratic forms. We use this to show
that class numbers are finite for these forms, and we calculate some of those class
numbers. We describe a procedure that determines a unique reduced Z[λ]-binary
quadratic form for every equivalence class with discriminant less than a given bound.

Our work with quadratic forms is motivated by the problem of characterizing
rational period functions for automorphic integrals on the Hecke groups. The second
author uses Z[λ]-binary quadratic forms to give a partial solution to this problem
in [2], and uses that solution to prove a Hecke correspondence theorem between
related automorphic integrals and Dirichlet series in [10]. A full characterization
of rational period functions for automorphic integrals on the Hecke groups would
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Conjugacy Classes and Binary Quadratic Forms 571

generalize the characterization of rational period functions for modular integrals on
the modular group, which was completed by Choie and Zagier [1], and Parson [8].
The Choie–Zagier–Parson result uses properties of classical quadratic forms, which
correspond to elements of the modular group as described in [14].

In Section 2 we give background definitions and facts about the Hecke groups
and related continued fractions and binary quadratic forms. In Section 3 we present
results about conjugacy classes in Hecke groups, including the lower bound that is
our main result, Theorem 3.6. In Section 4 we apply our result to the problem of
class numbers for hyperbolic Z[λ]-binary quadratic forms.

2 Background

2.1 Hecke Groups

Let λ be a positive real number, and put S = Sλ =
(

1 λ
0 1

)
, T =

(
0 −1
1 0

)
, and I =(

1 0
0 1

)
. The Hecke groups are the groups Gp = G(λp) = 〈Sλ,T〉/{±I} ⊆ PSL(2,R),

where λ = λp = 2 cos(π/p), for p ≥ 3 is an integer. Erich Hecke showed that these
values of λ are the only ones between 0 and 2 for which G(λ) is discrete [4]. (If λ ≥ 2,
then G(λ) is discrete but has a simpler group structure.)

Throughout this paper we fix the integer p ≥ 3 and the positive real number
λ = λp = 2 cos(π/p).

The Hecke groups are projective matrix groups, so they are isomorphic to groups
of linear fractional transformations. We will use both ways of thinking about group
elements. Elements of Gp have entries in Z[λp], so Gp is a subgroup of PSL(2,Z[λp]).
One of the Hecke groups is the modular group G3 = PSL(2,Z), however Gp $
PSL(2,Z[λp]) for p > 3.

Let U = ST =
(
λ −1
1 0

)
. For each p ≥ 3, Gp has the group relations T2 = U p = I.

Each Hecke group Gp is the free product of the cyclic group of order p generated
by U , and the cyclic group of order 2 generated by T.

We let Tr(M) denote the trace of M ∈ Gp. An element M ∈ Gp is hyperbolic if
|Tr(M)| > 2, parabolic if |Tr(M)| = 2, and elliptic if |Tr(M)| < 2.

Because Gp is discrete, the stabilizer of any complex number z in Gp, stab(z) =
{M ∈ Gp | Mz = z} is a cyclic subgroup of Gp [5]. Thus the fixed point sets of any
two nontrivial elements of Gp are identical or disjoint, and all nontrivial elements
of a stabilizer have identical fixed points. We designate fixed points as hyperbolic,
parabolic, or elliptic according to the elements fixing them. Hyperbolic elements have
two real fixed points, one attracting and one repelling. Parabolic elements have a
single real fixed point, and elliptic elements have two complex conjugate fixed points.
We say that an element is primitive if it generates the stabilizer of each of its fixed
points.

We will always take the trace to be positive, which we may do because the Hecke
groups are projective. Trace is invariant under conjugation, so elements of a conju-
gacy class in Gp all have the same trace and all have the same designation as hyper-
bolic, parabolic, or elliptic.

We say that complex numbers z1 and z2 are Gp-equivalent if there exists M ∈ Gp

such that Mz1 = z2. Gp-equivalence is an equivalence relation, so Gp partitions
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complex numbers into equivalence classes. Two fixed points are Gp-equivalent if and
only if the linear fractional transformations fixing them are conjugate to each other
in Gp. Thus equivalence classes of numbers contain either all fixed points of the same
kind, or no fixed points.

2.2 λ-continued Fractions

We will use a modification of Rosen’s continued fractions [11], which are closely
associated with the Hecke groups.

For real α we put α0 = α and define r j = [α j

λ ] + 1 and α j+1 = 1
r jλ−α j

for j ≥ 0.

Then α j = r jλ− 1
α j+1

for j ≥ 0 and

α = r0λ−
1

r1λ− . . .

= [r0; r1, . . . ]

is the λp-continued fraction (λp-CF or λ-CF) for α. An admissible λ-CF is one that
arises from a finite real number by this algorithm.

An admissible λp-CF has at most p − 3 consecutive ones in any position but the
beginning, and has at most p−2 consecutive ones at the beginning [9]. Schmidt and
Sheingorn [13] show that a real number is a fixed point of Gp if and only if it has a
periodic λ-CF; the number is parabolic if its λp-CF has period

Λ3 = [2, 1, . . . , 1︸ ︷︷ ︸
p−3

],

and hyperbolic if its λp-CF has any other period.

2.3 Z[λ]-binary Quadratic Forms

We consider indefinite binary quadratic forms (λp-BQFs or λ-BQFs) Q(x, y) =
Ax2 + Bxy + C y2 of discriminant D = B2 − 4AC > 0, where A,B,C ∈ Z[λ]. We also
denote each λ-BQF Q(x, y) by Q = [A,B,C].

Elements of the corresponding Hecke group act on λ-BQFs by (Q ◦ M)(x, y) =
Q(ax + by, cx + dy) for M =

(
a b
c d

)
∈ Gp. This action preserves discriminants. We

say that two λ-BQFs Q and Q ′ are Gp-equivalent, and write Q ∼ Q ′, if there exists a
V ∈ Gp such that Q ′ = Q ◦V . This is an equivalence relation, so Gp partitions the
λ-BQFs into equivalence classes of forms of the same discriminant.

2.4 Matrices, Forms, and Fixed Points

A key tool in [9] is an explicit isomorphism between primitive, hyperbolic elements
of Gp, certain indefinite λ-BQFs, and hyperbolic fixed points.

Under that isomorphism a primitive hyperbolic element (which we take to have
positive trace) M =

(
a b
c d

)
∈ Gp corresponds to the indefinite form ρ(M) = QM =

[c, d − a,−b] with discriminant D = (a + d)2 − 4. Images of hyperbolic elements
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of Gp are indefinite forms. We say that the forms in the range of ρ are hyperbolic
λ-BQFs. Two hyperbolic λ-BQFs are Gp-equivalent if and only if the corresponding
elements of Gp are conjugate to each other. Thus λ-BQFs in the range of ρ are in
equivalence classes that correspond to conjugacy classes in Gp.

The second part of the isomorphism in [9] associates the hyperbolic form Q =

[A,B,C] with discriminant D equal to the real number σ(Q) = αq = −B+
√

D
2A . The

associated matrix M = (σ ◦ρ)−1(α) is primitive, hyperbolic, and has α as an attract-
ing fixed point [9, Lemma 4].

This isomorphism includes all hyperbolic fixed points. If M ∈ Gp is hyperbolic

and ρ(M) = QM = [A,B,C] and σ(QM) = α = −B+
√

D
2A , then M−1 is also hyperbolic

and ρ(M−1) = −QM = [−A,−B,−C] and σ(−QM) = α ′ = −B−
√

D
2A . The fixed

point α ′ is repelling for M but attracting for M−1. We call α ′ the Hecke conjugate
of α.

Equivalence classes of hyperbolic fixed points correspond to conjugacy classes of
corresponding matrices, as well as to equivalence classes of hyperbolic λ-BQFs.

We can use λ-continued fractions to make explicit the map τ = (σ ◦ ρ)−1 from
hyperbolic fixed points to primitive hyperbolic elements of Gp. The following lemma
is Lemma 6 in [9].

Lemma 2.1 Fix p ≥ 3 and λ = λp = 2 cos(π/p). Suppose that

α = [r0; r1, . . . , rn, rn+1, . . . , rn+m]

is a hyperbolic fixed point of Gp. Then the corresponding primitive linear fractional
transformation is given by τ (α) = RPR−1, where R = Sr0 TSr1 T · · · Srn T and P =
Srn+1 TSrn+2 T · · · Srn+m T.

We could extend this isomorphism to include primitive parabolic elements of Gp,
certain semidefinite λ-BQFs, and parabolic fixed points, but we will not need that
for our purposes. In this paper we will only consider λ-BQFs that are hyperbolic
according to this isomorphism.

2.5 Reduction of λ-BQFs

The theory of reduction of hyperbolic Z[λ]-binary quadratic forms in [9] uses λ-
CFs and the isomorphism between primitive hyperbolic elements of Gp, hyperbolic
indefinite λ-BQFs, and hyperbolic fixed points.

We say that a real number α is a Gp-reduced number if the λp-CF expansion of α
is purely periodic with period other than Λ3. A Gp-reduced number α is hyperbolic,
and we say that the associated hyperbolic λ-BQF is Gp-reduced. Every hyperbolic
equivalance class of λ-BQFs contains finitely many reduced forms that correspond to
the cyclic permutations of the associated λ-CF period. Thus the reduced λ-BQFs in
a hyperbolic equivalence class comprise a cycle.
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3 Conjugacy Classes in Hecke Groups

Fine shows in [3] that the non-elliptic conjugacy classes in Γ(1) each have a repre-
sentative that is a cyclically reduced word in S and STS. Fine uses this to give a lower
bound for trace in terms of the “block length” of these products. Schmidt and Shein-
gorn [13] observe that Fine’s algorithm generalizes to the Hecke group Gp, using the
generators V j = U j−1S for 1 ≤ j ≤ p − 1, where U = ST =

(
λ −1
1 0

)
. We first show

that every conjugacy class in Gp has a representative that is a product of these V j .

Lemma 3.1 Fix p ≥ 3, put λ = λp, and let V j = U j−1S for 1 ≤ j ≤ p − 1. Then
every non-elliptic element M ∈ Gp is conjugate in Gp to a product of the V j , that is, M
is conjugate to

W = V j1V j2 · · ·V jt ,

where 1 ≤ jk ≤ p − 1 for 1 ≤ k ≤ t, and t ∈ Z+. This product is unique, except for
cyclic permutations.

Proof We first suppose that M ∈ Gp is hyperbolic and let α be its attracting fixed
point. Then α has a periodic λ-CF expansion of the form

α = [r0; r1, . . . , rn, rn+1, . . . , rn+m],

where the period is not Λ3. If M is primitive we have by Lemma 2.1 that M is conju-
gate to P = Srn+1 TSrn+2 T · · · Srn+m T. We let ra1 , ra2 , . . . , raq be the entries in the period
[rn+1, . . . , rn+m] that are greater than 1; we let b0 be the number of leading ones and
we let bk be the number of consecutive ones following rk for 1 ≤ k ≤ q. Then

P = (ST)b0 Sra1 T(ST)b1 Sra2 T(ST)b2 · · · Sraq T(ST)bq .

The restrictions on the number of consecutive ones in an admissible λ-CF (see
[9, Lemma 3]) mean that bk ≤ p − 3 for 1 ≤ k ≤ q − 1 and b0 + bq ≤ p − 3.
We calculate that P is conjugate to

W =
(

(ST)b0 S
)−1

P
(

(ST)b0 S
)

= Sra1−1T(ST)b1 Sra2 T(ST)b2 · · · Sraq T(ST)b0+bq S

= Sra1−2(ST)b1+1S · Sra2−2(ST)b2+1S · · · Sraq−2(ST)b0+bq+1S

= V
ra1−2
1 Vb1+2V

ra2−2
1 Vb2+2 · · ·V

raq−2

1 Vb0+bq+2,

(3.1)

so M is conjugate to W . We note that 2 ≤ bk + 2 ≤ p − 1 for 1 ≤ k ≤ q − 1 and
2 ≤ b0 + bq + 2 ≤ p − 1, so W is a product of the V j , 1 ≤ j ≤ p − 1.

Next we suppose that M ∈ Gp is parabolic. If M fixes∞, and if M is primitive,
then M = S or M = S−1. But S = V1 and S−1 is conjugate to V p−1 = TS−1T, so in
either case M is conjugate to one of the V j .

If the fixed point of a parabolic M is a finite number β, then β has a periodic λ-CF
expansion of the form [13, Lemma 3]

β = [r0; r1, . . . , rn, 2, 1, . . . , 1︸ ︷︷ ︸
p−3

].
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If M is primitive we have that M is conjugate to P = S2T(ST)p−3, and we calculate
that P is conjugate to W = S−1PS = (ST)p−2S = V p−1, so M is conjugate to W .

If a non-elliptic element M is not primitive, then M = Rk where k is a positive
integer and R ∈ Gp is primitive. Then R is conjugate to a product of the V j as above,
which implies that M is also conjugate to a product of the V j , which is k times as
long.

The uniqueness follows from the fact that Gp is the free product of 〈U 〉 and 〈T〉.
This implies that the product is unique up to cyclic permutation. [6, Theorem 1.4]

We are ready to formally define the idea of “block length” in this context.

Definition 3.2 Fix p ≥ 3 and put λ = λp. If W = V j1V j2 · · ·V jt where V j =
U j−1S for 1 ≤ j ≤ p − 1 we say that W has block length t .

We need to know several things about the entries of the V j for 1 ≤ j ≤ p− 1. We
will state an alternative version of Lemma 10 in [13], and give our own proof.

Lemma 3.3 Fix p ≥ 3 and put λ = λp. Let V j = U j−1S and put a j = sin( jπ/p)
sin(π/p) for

j ∈ Z. Then for j ∈ Z we have

(i) a j = λa j−1 − a j−2,
(ii) V j =

( a j a j+1
a j−1 a j

)
,

(iii) a1 = ap−1 = 1, and
(iv) a j ≥ λ for 2 ≤ j ≤ p − 2.

Proof We use the well-known fact [7, 12] that powers of U satisfy

(3.2) U j =

(
a j+1 −a j

a j −a j−1

)
,

for j ∈ Z+. In fact, it is easy to show that (3.2) holds for all integers j. Then

U j = U j−1U

=

(
a j −a j−1

a j−1 −a j−2

)(
λ −1
1 0

)

=

(
a jλ− a j−1 −a j

a j−1λ− a j−2 −a j−1

)
,

so a j = λa j−1 − a j−2, which is (i).
For (ii) we calculate that

V j = U j−1S

=

(
a j −a j−1

a j−1 −a j−2

)(
1 λ

0 1

)

https://doi.org/10.4153/CMB-2012-020-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-020-x


576 G. Hoang and W. Ressler

=

(
a j a jλ− a j−1

a j−1 a j−1λ− a j−2

)

=

(
a j a j+1

a j−1 a j

)
.

We note that (iii) is immediate. For (iv) we first calculate that

a2 =
sin(2π/p)

sin(π/p)
= 2 cos(π/p) = λ.

Then the restriction 2 ≤ j ≤ p − 2 implies that 2π/p ≤ jπ/p ≤ (p − 2)π/p, so

sin(2π/p) = sin
(

(p − 2)π/p
)
≤ sin( jπ/p), which gives us sin(2π/p)

sin(π/p) ≤
sin( jπ/p)
sin(π/p) , or

λ ≤ a j .

It is convenient to observe that for every p ≥ 3 we have

V1 = S =

(
1 λ

0 1

)
,

V2 = U S =

(
λ λ2 − 1
1 λ

)
,

...

V p−2 = U p−3S =

(
λ 1

λ2 − 1 λ

)
,

V p−1 = U p−2S =

(
1 0
λ 1

)
.

For 1 ≤ j ≤ p − 1 the entries of V j are non-negative, with 0 occurring only in the
lower left entry of V1 and in the upper right entry of V p−1.

We also need several facts about the entries of products of the V j for 1 ≤ j ≤ p−1.

Lemma 3.4 Fix p ≥ 3, put λ = λp, and let V j = U j−1S for 1 ≤ j ≤ p − 1. Let W
be a product of the V j . Then

(i) W has non-negative entries, with 0 occurring only in the lower left entry if W =
V n

1 or in the upper right entry if W = V n
p−1, and

(ii) every nonzero entry of W is greater than or equal to 1.

Proof Our proof is by induction on the block length of W . For the basis step, if W
has block length 1, then W = V j for 1 ≤ j ≤ p − 1 and (i) and (ii) are both true by
Lemma 3.3.

For the induction step we suppose that (i) and (ii) are true for all products of
the V j of block length k for k ∈ Z+. Suppose that W has block length k + 1, so W =
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WkV j where Wk has block length k and satisfies (i) and (ii). We write Wk =
(

a b
c d

)
,

and calculate that

W =

(
a b
c d

)(
a j a j+1

a j−1 a j

)

=

(
aa j + ba j−1 aa j+1 + ba j

ca j + da j−1 ca j+1 + da j

)
.

If Wk is not V k
1 or V k

p−1, then a, b, c, d ≥ 1, and every entry of W is also nonzero
and greater than or equal to 1.

If Wk = V k
1 =

(
1 kλ
0 1

)
, then

W =

(
a j + kλa j−1 a j+1 + kλa j

a j−1 a j

)
.

All of these entries are positive unless j = 1; in this case a j−1 = a0 = 0 and W =
V k+1

1 .
If Wk = V k

p−1 =
(

1 0
kλ 1

)
, then

W =

(
a j a j+1

kλa j + a j−1 kλa j+1 + a j

)
.

All of these entries are positive unless j = p − 1; in this case a j+1 = ap = 0 and
W = V k+1

p−1.

We will also use Lemma 11 from [13], which we state as the following.

Lemma 3.5 (Schmidt & Sheingorn) Fix p > 3, put λ = λp, and let h = [p/2]. Put
V j = U j−1S for 1 ≤ j ≤ p − 1. Then we have

(i) Tr(V j) > Tr(V j−1) for 2 ≤ j ≤ h, and
(ii) Tr(V j) = Tr(V p− j) for 1 ≤ j ≤ h.

Lemmas 3.3 and 3.5 together mean that V1 and V p−1 are parabolic, while V j is
hyperbolic for 1 < j < p − 1.

The following theorem generalizes Fine’s key lemma [3] to the context of Hecke
groups.

Theorem 3.6 Fix p ≥ 3, put λ = λp, and let V j = U j−1S for 1 ≤ j ≤ p − 1.
Suppose that W ∈ G(λ) is a product of the V j of block length n, and that W is not V n

1

or V n
p−1. Then Tr(W ) ≥ nλ.

Proof Our proof is by induction on the block length of W . For the basis step, if W
has block length 1, then W = V j for 2 ≤ j ≤ p − 2, so

Tr(W ) = 2a j ≥ 2λ ≥ λ,

by Lemma 3.3.
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For the induction step we suppose that the trace is at least kλ for all products of
the V j (other than V k

1 or V k
p−1) of block length k for k ∈ Z+. Suppose that W has

block length k+1, so W = WkV j where Wk has block length k. We write Wk =
(

a b
c d

)
,

and calculate that

W =

(
aa j + ba j−1 aa j+1 + ba j

ca j + da j−1 ca j+1 + da j

)
,

as in the proof of Lemma 3.4. We consider several cases.

Case 1: Suppose that Wk 6= V k
1 and Wk 6= V k

p−1. We use the facts that a j ≥ 1 from
Lemma 3.3 and b, c ≥ 1 from Lemma 3.4 to calculate that

Tr(W ) = aa j + ba j−1 + ca j+1 + da j

≥ a + d + a j−1 + a j+1

≥ kλ + a j−1 + a j+1,

by the induction hypothesis. But a j−1 + a j+1 ≥ λ for 1 ≤ j ≤ p − 1 by
part (iv) of Lemma 3.3, so Tr(W ) ≥ (k + 1)λ.

Case 2: Suppose that Wk = V k
1 . Then Wk =

(
1 kλ
0 1

)
and V j 6= V1 (or we would have

W = V k+1
1 ). We calculate that W =

( a j +kλa j−1 ∗
∗ a j

)
, so Tr(W ) = 2a j +kλa j−1.

Now a j ≥ 1 and a j−1 ≥ 1 for 2 ≤ j ≤ p− 1, so Tr(W ) ≥ 2 + kλ ≥ (k + 1)λ.
Case 3: Suppose that Wk = V k

p−1. Then Wk =
(

1 0
kλ 1

)
and V j 6= V p−1 (or we

would have W = V k+1
p−1). We calculate that W =

( a j ∗
∗ kλa j+1+a j

)
, so Tr(W ) =

2a j + kλa j+1. Now a j ≥ 1 and a j+1 ≥ 1 for 1 ≤ j ≤ p − 2, so Tr(W ) ≥
2 + kλ ≥ (k + 1)λ.

In every case we have that Tr(W ) ≥ (k + 1)λ, so the result follows by induction.

Corollary 3.7 For each p ≥ 3, Gp has finitely many hyperbolic conjugacy classes of
any given trace.

Proof By Lemma 3.1 every conjugacy class of a given trace contains an element that
is a product of the matrices V j = U j−1S, 1 ≤ j ≤ p − 1. Hyperbolic conjugacy
classes cannot contain V n

1 or V n
p−1, which are parabolic, so by Theorem 3.6 the trace

provides a bound on the block length of any product of the V j in classes of a given
trace. There are finitely many such products, so there are a finite number of conjugacy
classes of a given trace.

4 Application to Z[λ]-binary Quadratic Forms

We would like to define and study class numbers of Z[λ]-binary quadratic forms.
For λ > 1 the presence of nontrivial units in Z[λ] appears to make the general class
number problem intractable. Nevertheless if we restrict our attention to hyperbolic
λ-BQFs we have the following result.

Corollary 4.1 Fix p ≥ 3 and put λ = λp. There are finitely many distinct equiva-
lence classes of hyperbolic Z[λ]-binary quadratic forms of any given discriminant. More-
over, if a hyperbolic λ-BQF of discriminant D corresponds to an element of Gp of block
length n, then D ≥ n2λ2 − 4.
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Proof Every hyperbolic equivalence class of λ-BQFs of discriminant D is associated
with a hyperbolic conjugacy class of in Gp of trace T =

√
D + 4. By Corollary 3.7

there are finitely many such classes. The bound in Theorem 3.6 gives the bound on
the discriminant.

Definition 4.2 Fix p ≥ 3 and put λ = λp. The number of distinct hyperbolic
equivalence classes of Z[λ]-binary quadratic forms with discriminant D > 0 is the
Gp-class number of D, denoted hp,D.

We now describe a procedure for calculating class numbers of hyperbolic λ-BQFs.
Given a discriminant bound D∗, we use Theorem 3.6 and Corollary 4.1 to find a
unique reduced λ-BQF for every hyperbolic equivalence class of discriminant D ≤
D∗. We calculate class numbers by counting these equivalence class representatives.

Given p and D∗, we first list all products of generators of block length n ≤√
D∗ + 4/λ that have the form (3.1). By the proof of Lemma 3.1, every hyperbolic

conjugacy class in Gp contains an element of this form. We discard cyclic permu-
tations of previously listed products because they correspond to other reduced λ-
BQFs in the same equivalence class. We also discard V m

1 and V m
p−1 because they are

parabolic. For each remaining product we calculate that

W = V m1
1 V j1V

m2
1 V j2 · · ·V

m`
1 V j`

= Sm1V j1 Sm2V j2 · · · Sm`V j`

= Sm1U j1−1Sm2+1U j2−1 · · · Sm`+1U j`−1S

= Sm1+1T(ST) j1−2Sm2+2T(ST) j2−2 · · · Sm`+2T(ST) j`−2S.

We recall that mk ≥ 0 and 2 ≤ jk ≤ p − 1 for 1 ≤ k ≤ `. Then W is conjugate to

M = SW S−1 = Sm1+2T(ST) j1−2Sm2+2T(ST) j2−2 · · · Sm`+2T(ST) j`−2,

which corresponds to the attracting fixed point

α = [m1 + 2; 1, 1, . . . , 1︸ ︷︷ ︸
j1−2

,m2 + 2, 1, 1, . . . , 1︸ ︷︷ ︸
j2−2

, . . . ,m` + 2, 1, 1, . . . , 1︸ ︷︷ ︸
j`−2

].

Now m j + 2 ≥ 2 for 1 ≤ j ≤ ` and 0 ≤ jk − 2 ≤ p − 3 for 1 ≤ k ≤ `, so the λ-CF
for α is admissible.

We use the map ρ to find the corresponding reduced λ-BQFs; our list contains
a single representative λ-BQF for every hyperbolic equivalence class of discriminant
D ≤ D∗. For each D we count equivalence class representatives of discriminant D to
determine the class number hp,D.

We include tables with some results for p = 4, 5 and 6. In order to highlight
patterns and to save space we have used exponents to indicate certain repetitions in a
continued fraction period. For example, [2; (2, 1)3] = [2; 2, 1, 2, 1, 2, 1].
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• Table 1 includes every λ4-BQF that corresponds to a product of block length 3 or
less, and every form with discriminant less than 100.

• Table 2 includes every λ5-BQF that corresponds to a product of block length 2 or
less, and every form with discriminant less than 100.

• Table 3 includes every λ6-BQF that corresponds to a product of block length 1,
and every form with discriminant less than 100.

discriminant class
number

associated
period

reduced
form

block
length

D h4,D [ri] [A,B,C] n

4 1 [2] [1,−2
√

2, 1] 1

12 1 [3, 1] [
√

2,−6, 3
√

2] 2

14 2 [3] [1,−3
√

2, 1]

[2, 2, 1] [3,−7
√

2, 7]

28 2 [4] [1,−4
√

2, 1] 3

[2, (2, 1)2] [5,−12
√

2, 13]

32 2 [4, 1] [
√

2,−8, 4
√

2]

[3, 1, 2, 1] [2
√

2,−12, 7
√

2]

46 2 [5] [1,−5
√

2, 1] 4

[2, (2, 1)3] [7,−17
√

2, 19]

60 2 [5, 1] [
√

2,−10, 5
√

2]

[3, 1, (2, 1)2] [3
√

2,−18, 11
√

2]

68 4 [3, 2, 1] [3,−10
√

2, 11] 3

[3, 1, 2] [3,−8
√

2, 5]

[6] [1,−6
√

2, 1] 5

[2, (2, 1)4] [9,−22
√

2, 25]

94 2 [7] [1,−7
√

2, 1] 6

[2, (2, 1)5] [11,−27
√

2, 31]

96 5 [3, 2] [2
√

2,−12, 3
√

2] 3

[2, 2, 2, 1] [5
√

2,−24, 12
√

2]

[4, 1, 2, 1] [2
√

2,−16, 10
√

2] 4

[6, 1] [
√

2,−12, 6
√

2] 5

[3, 1, (2, 1)3] [4
√

2,−24, 15
√

2]
...

...

Table 1: Discriminants and class numbers for λp-BQFs, p = 4, λ =
√

2.
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discriminant class
number

associated
period

reduced
form

block
length

D h5,D [ri] [A,B,C] n

4λ ≈ 6.47 2 [2] [1,−2λ, 1] 1

[2, 1] [λ,−2λ− 2, 2λ]

7λ + 6 ≈ 17.33 1 [3, 1, 1] [λ,−3λ− 3, 3λ + 2] 2

9λ + 5 ≈ 19.56 2 [3] [1,−3λ, 1]

[2, 1, 2, 1, 1] [2λ + 1,−7λ− 4, 6λ + 3]

15λ + 6 ≈ 30.27 2 [3, 1] [λ,−3λ− 3, 3λ]

[2, 2, 1, 1] [λ + 2,−7λ− 3, 5λ + 4]

16λ + 12 ≈ 37.89 2 [4] [1,−4λ, 1] 3

[2, 1, (2, 1, 1)2] [3λ + 2,−12λ− 6, 10λ + 6]

20λ + 16 ≈ 48.36 2 [4, 1, 1] [λ,−4λ− 4, 4λ + 3]

[3, 1, 1, 2, 1, 1] [2λ,−6λ− 6, 7λ + 4]

25λ + 21 ≈ 61.45 2 [5] [1,−5λ, 1] 4

[2, 1, (2, 1, 1)3] [4λ + 3,−17λ− 8, 14λ + 9]

32λ + 16 ≈ 67.78 2 [4, 1] [λ,−4λ− 4, 4λ] 3

[2, (2, 1, 1)2] [2λ + 3,−12λ− 6, 10λ + 7]

33λ + 21 ≈ 74.40 1 [2, 2, 1] [2λ + 1,−7λ− 4, 4λ + 3] 2

36λ + 32 ≈ 90.25 1 [6] [1,−6λ, 1] 5

39λ + 30 ≈ 93.10 2 [5, 1, 1] [λ,−5λ− 5, 5λ + 4] 4

[3, 1, 1, (2, 1, 1)2] [3λ,−9λ− 9, 11λ + 6]
...

...

Table 2: Discriminants and class numbers for λp-BQFs, p = 5, λ = 1+
√

5
2 .
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discriminant class number associated period reduced form block length

D h6,D [ri] [A,B,C] n

8 2 [2] [1,−2
√

3, 1] 1

[2, 1, 1] [2,−4
√

3, 5]

12 1 [2, 1] [
√

3,−6, 2
√

3]

21 1 [3, 1, 1, 1] [
√

3,−9, 5
√

3] 2

23 2 [3] [1,−3
√

3, 1]

[2, 1, 1, 2, 1, 1, 1] [5,−11
√

3, 17]

44 4 [3, 1, 1] [2,−6
√

3, 8]

[2, 2, 1, 1, 1] [4,−10
√

3, 16]

[4] [1,−4
√

3, 1] 3

[2, 1, 1, (2, 1, 1, 1)2] [8,−18
√

3, 29]

45 2 [3, 1] [
√

3,−9, 3
√

3] 2

[2, 1, 2, 1, 1, 1] [3
√

3,−21, 11
√

3]

60 2 [4, 1, 1, 1] [
√

3,−12, 7
√

3] 3

[3, 1, 1, 1, 2, 1, 1, 1] [2
√

3,−18, 11
√

3]

71 2 [5] [1,−5
√

3, 1] 4

[2, 1, 1, (2, 1, 1, 1)3] [11,−25
√

3, 41]

96 2 [4, 1] [
√

3,−12, 4
√

3] 3

[2, 1, (2, 1, 1, 1)2] [5
√

3,−36, 20
√

3]
...

...

Table 3: Discriminants and class numbers for λp-BQFs, p = 6, λ =
√

3.
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