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Abstract. It is known that the class of mils generalizes that of pramarts and
martingales in the limit. Also every Banach space-valued mil �Xn� with
lim infnE�kXnk� <1 can be written in a unique form: Xn �Mn � Pn �n 2 N�, where
�Mn� is a uniformly integrable martingale and �Pn� converges to zero a.s. in norm.
We shall show that this result still holds for a class which essentially generalizes that
of mils. Another class of Banach space-valued martingale-like sequences, still con-
taining all pramarts is de®ned and shown to have the decomposition above under
the following much weaker condition: lim inf r2TE�kX�k� <1, where T denotes the
set of all bounded stopping times.

1991 Mathematics Subject Classi®cation. 60G48, 60B11.

0. De®nitions and results. Throughout this note, let �
;A;P� be a complete
probability space, �An� an increasing sequence of sub-�-algebras of A, and T the set
of all bounded stopping times w.r.t. �An�. Then T is a directed set with the usual
order (�), given by � � � iff ��!� � ��!�, a.s. Thus the set of all positive integers N
can be regarded as a co®nal subset of T. Besides co®nal subsets U of N and � of T
we shall be dealing with sequences ��n� of T that are always assumed to be increasing
and co®nal. We write ��n� 2 T c. In particular, if �n � ��ÿ�n�1 �n 2 N�, then ��n� is said to
be strongly increasing, where given � 2 T we denote ��ÿ� � min k 2 N;f
P � � kf g� � > 0g. To avoid any confusion, we shall denote the set of all elements
of ��n� by �nf g. Further, for simplicity, given a co®nal subset � of T; p 2 N and
� 2 T with p � � we use the following notations: ��p� � � 2 �; p � �� 	
and ��p; ~�� � � 2 �; p � � � �� 	

. Now let F be a separable Banach space. We
shall consider in this note only sequences �Xn� of F-valued Bochner integrable func-
tions, de®ned on 
 and assumed to be adapted to �An�; i.e. each Xn is An-measur-
able. For other related notions we refer to [5]. Here we recall only the following
de®nition.

Definition 0.1. A sequence �Xn� is said to be
(a) a pramart if for every " > 0 there exists p 2 N such that, for all � 2 T�p� and

� 2 T�p; ��, we have

P� DX��; ��

 

 > "� < ";

where X���� denotes the A�-conditional expectation of X� and
DX��; �� � X���� ÿ X�;
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(b) a martingale in the limit if

lim
n

sup
m�n

DX�n;m�

 

 � 0 a:s:;

(c) a mil if for every " > 0 there exists p 2 N such that, for all n 2 N�p� we have

P max
q2N�p;n�

DX�q; n�

 

 > "

� �
< ";

(d) a game which becomes fairer with time if for every " > 0 there exists p 2 N
such that, for all m 2 N�p� and n 2 N�p;m�, we have

P DX�n;m�

 

 > "
ÿ �

< ":

Games fairer with time were introduced by L. H. Blake (1970), martingales in
the limit by A. G. Mucci (1976), pramarts by A. Millet and L. Sucheston (1980) and
mils by M. Talagrand (1985). These classes of martingale-like sequences have been
extensively considered by many other authors; e.g. games fairer with time by J.
Subramanian in [17] and D. Q. Luu in [9,10], martingales in the limit by M Peligrad
[15] and J. A. Dvoretzky and A. Bellow in [4], pramarts by L. Egghe in [6] and M.
Slaby [16] and mils by Zen-Peng Wang and Xing-Hong Xue in [19], D. Q. Luu [11]
etc. . . It was shown that every one of the aforementioned classes of martingale-like
sequences is strictly contained in the next one. For some related examples, see A.
Dvoretzky and A. Bellow [4], M. Talagrand [18] and D. Q. Luu [10,11].

The main results we shall prove still hold for the following classes of martingale-
like sequences.

Definition 0.2. Let ÿ be a co®nal subset of T. A sequence �Xn� is said to be a ÿ-
mil if for every " > 0 there exists p 2 N such that, for all 
 2 ÿ�p�, we have

P max
q2N�p;
�

DX�q; 
�

 

 > "

� �
< ": �0�

In general if this occurs for some increasing co®nal sequence ÿ � ��n� of �, then
�Xn� is said to be a �-sequential mil. In particular, every T-sequential mil (or T-mil,
respectively will be called a sequential mil (or universal mil, respectively).

Thus by de®nition, when � increases the class of �-sequential mils increases but
conversely the class of �-mils decreases. This implies that among the classes of
martingale-like sequences introduced above, sequential mils (or universal mils,
respectively) form the maximal (or the minimal, respectively) element. Furthermore,
�Xn� is a mil if and only if it is an N-mil. Thus, by Example 3.6 of [11], it follows that
the class of N-sequential mils not only contains all mils but even di�ers from that of
games fairer with time. Here, we construct the following example.

Example 1. There exists a real-valued sequential mil which fails to be either a
game fairer with time or an N-sequential mil.

Further, we say that (Xn) is an L1-amart w.r.t. � if for every " > 0 there exists
p 2 N such that, for all � 2 ��p� and � 2 ��p; ��, we have E DX��; ��

 

 < "

ÿ �
. In the
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case, when � � N, M. Peligrad (1976) used this condition to prove the strong a.s.
convergence for martingales in the limit taking values in a Banach space with the
Radon-Nikodyn property (RNP). Later, we took this condition to de®ne L1-amarts
and completely characterized all the sequences which have a Riesz decomposition in
[7,8]. Here, we are interested in Theorem 3.4. of [11] which says that if �Xn� is an L1-
amart w.r.t. U then �Xn� is a U-mil if and only if it can be written in a unique form

Xn �Mn � Pn;

where �Mn� is a (not necessarily L1-bounded) martingale and �Pn� converges to zero
a.s. It is worth noting that this result still holds true if U is replaced by any �. To
obtain the characterization results we should consider only the ®rst case, where �Xn�
is assumed to be an L1-amart w.r.t. � which guarantees the existence of the mar-
tingale �Mn� without the second L1-boundedness condition. Then the technique,
given by the author in [11], cannot be applied any more to prove the main theorem
in this note. Thus we shall return to the classical result in Martingale Theory which
says that every L1-bounded martingale converges scalarly to zero a.s. and converges
(strongly) to zero, a.s. Based on the lemma and its mil version recently obtained by
M. Talagrand [18, Theorem 6] we get the following result which is of particular
interest.

Theorem 2. Let �Xn� be a �nf g-mil for some ��n� 2 T c. Suppose that

lim infn fEj X�n


 

ÿ �

<1 �1�

and the sequence �X�n � converges to zero a.s., for some ��n� 2 T c. Then �Xn� also con-
verges to zero a.s.

Since every sequence converging in probability contains a subsequence which
converges a.s. we obtain the following result.

Corollary 3. Let �Xn� be a sequential mil satisfying

lim sup�2T

�



X�k kdP <1 �2�

or a universal mil satisfying

lim inf�2T
�




X�k kdP <1: �3�

Suppose that �X�n � converges to zero in probability, for some ��n� 2 T c. Then �Xn�
converges to zero a.s.

Besides the independent result [11, Theorem 3.4], the main interest of the notion
of �-mils is the following result.

Theorem 4. Let �Xn� be a �nf g-mil, for some ��n� 2 T c. Suppose that the condition
(1) is satis®ed. Then �Xn� can be written in a unique form:
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Xn �Mn � Pn; �4�

where �Mn� is a uniformly integrable martingale and �Pn� is a sequential mil which
converges to zero a.s.

Consequently, if either the set Xn�!�
� 	

is relatively weakly compact a.s. or F has
the (RNP), then �Xn� converges a.s.

Returning to Condition (1) in Theorem 2 one sees that it depends on the choice
of �nf g. To avoid this we need the notion of universal mils. But how large is the class
of universal mils? The following remark gives a positive answer to the question.

Remark 5. The class of universal mils contains all pramarts.

Now, by the remark given after De®nition 0.2, we know that every universal mil
is a �-mil, for any co®nal subset � of T. It is also known that if �Mn� is a uniformly
integrable martingale such that the martingale �M�n � converges weakly a.s., for some
��n� 2 T c, then �Mn� also converges a.s. Thus the interest of the main result and of
the notions of sequential and universal mils is that, in particular, it allows one to
reduce the condition (1) in the case of �nf g-mils to Condition (2) or (3) for the case of
sequential or universal mils, respectively.

Theorem 6. Let �Xn� be a sequential or universal mil, respectively. Suppose that
the condition (2) or (3) is satis®ed. Then �Xn� admits a unique decomposition
Xn �Mn � Pn, where �Mn� is a uniformly integrable martingale and �Pn� is a sequen-
tial or universal mil, respectively, that goes to zero a.s.

Consequently, if the sequence �X�n� converges to an X : 
! F weakly a.s., for some
��n� 2 T c, then the function X is Bochner integrable and �Xn� also converges to X a.s.

Nevertheless, the Talagrand's structure decomposition theorem [18, Theorem 8]
is only a particular case of Theorem 4. It is independent from the last theorem, as
the following example shows.

Example 7. There is a real-valued mil which fails to be a universal mil.

Finally, before going to prove all the aforementioned results, it is worth noting
that in both proofs of Theorem 2 and Theorem 4 we essentially use the following
simple fact and its consequence.

For every adapted sequence �Xn� of E-valued Bochner integrable functions,
p 2 N, � 2 T�p�, and a ®nite sequence �i; i � mf g of T p; ��ÿ�

ÿ �
we have

max
i�m

DX��i; ��


 

 � max

q2N�p;��
DX�q; ��

 

; a:s:

Consequently, if �Xn� is a �nf g-mil, for some strongly increasing sequence ��n� 2 T c,
then the sequence �Yn� de®ned by Yn � X�n ; �n 2 N�, is a mil w.r.t. the increasing
sequence �Bn � A�n� of sub-�-®elds of A.

The following last counterexample will be constructed to show that the fact
above and its consequence, respectively, fails without the assumption ``�i � ��ÿ�,
i � m'' and ``strongly increasing'', respectively.
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Counterexample 8. There exists a mil �Xn� and some ��n� 2 T c with
n � �n � 1 � �n�1, �n 2 N�, such that

lim
m

P DX��2mÿ1; �2m�


 

 � 1
ÿ � � 1:

Hence �X�n � is not even a game fairer with time. However,

lim
n

sup
m�n

P max
q2N�n;�m�

DX�q; �m�


 

 � 0

� �
� 0

and hence �Xn� is a �nf g-mil.

1. Construction of Example 1. Let 0; 1� �;B 0;1� �;P
ÿ �

be the Lebesgue probability
space on [0,1), (where B 0;1� � is the completion of the Borel �-®eld w.r.t. the Lebesgue
measure P). For m � 1, let am �

Q
j�m 2j and Qm the partition of [0,1) in am-intervals

of equal length. For n � 2mÿ 1, let �An� be the �-®eld generated by Qm. De®ne Wn

as follows. For an interval I of Qmÿ1 set Wn � 2m on the ®rst interval of Qm that is
contained in I and Wn � 0, elsewhere. Similarly, for n � 2m let An � � ÿ Qm

� 	
, and

de®ne Wn in such a way that Wn � 2m on the last interval of Qm which is contained
in I and Wn � 0, elsewhere. It is easy to see that, for any n;m 2 N with n < 2mÿ 1,
we have Wn�2m� � 1 �Wn�2mÿ 1�. It follows that �Wn� is neither an N-sequential
mil nor a game fairer with time, since Wn converges to zero a.s.

But on the other hand, if we take the increasing co®nal sequence ��n� of non-
trivial stopping times, given by �m � 2mÿ 1 on the set fW2mÿ1 � 0g and �m � 2m,
elsewhere, then by the de®nition of Wn it follows that Wrm � 0, for all m 2 N. Thus,
for all p;m 2 N with p < �m, we have

max
q2N�p;�m�

DW�q; �m� � max
q2N�p;�m�

Wq



 

; a:s:
This with the a.s. convergence to zero of the sequence �Wn� implies that �Wn� must
be a �nf g-mil. Thus the example is well constructed.

2. Proof of Theorem 2. Let �Xn�; ��n� and ��n� be as supposed in the theorem.
Then, by passing �X�n � and �X�n� to subsequences, one can suppose (for simplicity of
the proof) without any loss of generality that, for every n 2 N we have n � �n � ��ÿ�n .
Now assume on the contrary that Xn does not go to zero a.s. Then there exists a > 0
and a set A 2 A with P�A� > 0 such that, for all ! 2 A, we have

lim supn Xn�!�


 

 > 5a=4:

We make the following claim.
For every n1 2 N and 0 < "< P�A�=4 there exists n2 2 N�n1� such that, for each

D 2 A�n1 with P�D� < P�A�=4 and each n 2 N�n2�, there exists a set M 2 A�n2 with
M \D �1 and P�M� < " such that�

M

X�n


 

dP � aP�A�=4: �5�

MARTINGALE-LIKE SEQUENCES 317

https://doi.org/10.1017/S0017089599000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000245


To prove the claim, let n1 2 N and " < P�A�=4 be given. By de®nition, one can ®nd
P 2 N��n1 � so large that, for all n 2 N�p�, we have

P max
q2N�p;�n�

DX�q; �n�


 

 > a=4

� �
< "=2: �6�

First, by the property of the set A, there exists a strictly increasing ®nite
sequence pi; 1 � l

� 	
with p < p1 . . . < pl such that, if we de®ne for i � 1 the sets

Bi � Xpi



 

 > 5a=4
� 	n[

s<i

Xps



 

 > 5a=4
� 	 !

and B � Si�l Bi, then B 2 Apl and P�B� > 15P�A�=16.
Consequently, there exists a ®nite sequence

�
x�j ; j � m

	
of the unit ball of F�

such that, for all i � l, we have P�B1
i � > P�Bi� ÿ P�A�=16l, where F� is the topologi-

cal dual of F and

B1
i � Bi \ max

j�m
�x�j ;Xpi � > 5a=4

� �
:

Then P�B1� > 7P�A�=8, where B1 �Si�l B
1
i .

On the other hand, since �X�n � converges to zero a.s. there exists k 2 N�pl� such
that if we set

C � X�k


 

 > a=4
� 	

then P�C� < "=2.
Now de®ne n2 � k and let D 2 A�n1 with P�D� < P�A�=4 and n 2 N�n2� be given.

For every i � 1, set

Hi � DX�pi; �n�


 

 > a=4
� 	

; H �
[
i�l

Hi;

B2
i � B1

i n�Hi [D� and B2 �
[
i<l

B2
i :

Then, by (6), P�H� < "=2 and P�B2� > 7P�A�=8ÿ 3P�A�=8 � P�A�=2. Further, by
Proposition II.1.3 of J. Neveu [14], for every adapted sequence �Zn� in
L1�F�; s 2 N; � 2 T�s� and � 2 T s; ��ÿ�

ÿ �
we have

Z���� �
X��ÿ�
q�s

I ��qf gZq���:

Hence,

DZ��; ��

 

 � max
q2N�s;��

DZ�q; ��

 

; a:s: �7�

(This fact will be applied also to the proof of Theorem 4.)
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This together with (6) implies that P�G� < "=2, where

G � DX��k; �n�


 

 > a=4
� 	

: �8�

Therefore, by setting S � C
S

G one gets P�S� < ". Then, by taking
Mi � B2

i \ S; i � 1, and M �Si�l Mi, the set M 2 A�k ;P�M� � P�S� < " and
M \D �1. We show now that M satis®es (5). To see this, for every pair i � 1 and
j � m, let

Qij � B2
i \ x�j ;Xpi � > 5a=4

n o
:

Then it is evident that, for every i � l; Qij; j � m
� 	

is a partition of B2
i . Hence

Qij; i � l; j � m
� 	

forms a partition of B2. Moreover, since Qij \Hi �1 and
Qij 2 Api then on Qij we have

x�j ;Xpi��n�
� �

� �x�j ;Xpi� ÿ a=4 � 5a=4ÿ a=4 � a

and �
Qij

�x�j ;Xpi�dP �
�
Qij

x�j ;Xpi��n�
� �

dP � aP�Qij�: �9�

Similarly, since �QijnS� \ C �1 and �QijnS� 2 A�k , then on QijnS we haveÿ
x�j ;Xpi��n�

� � �x�j ;Xpi� � a=4 � a=4� a=4 � a=2 and�
QijnS
�x�j ;X�i�dP � aP�Qij�=2:

Combining this with (9) we obtain�
Mi

�x�j ;X�i�dP � aP�Qij�=2:

Thus, by summation over all i � l and j � m, we get (5) and the claim is established.
Returning to the proof of the theorem, we construct by induction an increasing

sequence �np; p 2 N� with the following property: whenever D 2 A�np with
P�D� < P�A�=4 and n � np�1 there exists M 2 A�np�1 with P�M� < 2ÿ�p�1�P�A�,
M \D �1 and

�
M X�n


 

dP � aP�A�=4. Thus given p 2 N and n � np we can con-

struct, by ®nite induction for i � p, disjoint sets Di with D1 �1, P�Di� <
2ÿ�i�1�P�A� and

�
Di

X�n


 

dP � aP�A�=4, for all i � p. Then

�
D X�n


 

dP �

�pÿ 1�aP�A�=4, where D � Si�p Di. This implies that limn E X�n


 

ÿ � � 1, contra-

dicting the condition (1). This completes the proof.

3. Proof of Theorem 4. Let �Xn� be as supposed in the theorem. Then, as in the
proof of Theorem 2, one can suppose without any loss of generality that �Xn� is a
�nf g-mil, for some strongly increasing ��n� 2 T c. Thus, if we de®ne the sequence �Yn�
by Yn � X�n , �n 2 N�, then by (7) and the de®nition of �nf g-mils, it follows that �Yn�
is a mil w.r.t. the increasing sequence �Bn� of sub-�-algebras, given by Bn � A�n ,
�n 2 N�, with
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lim infnE Ynk k� � � lim infnE X�n


 

ÿ �

<1:

Consequently, by the proof of Theorem 8 of [18], �Yn� can be written in a unique
form:

Yn �Wn � Zn; �n 2 N�; �10�

where w.r.t. �Bn�; �Wn� is a uniformly integrable martingale and �Zn� is a mil that
goes to zero a.s. Here, it should be noted that in Theorem 8 of [18] M. Talagrand
only claimed that the martingale �Wn� is L1-bounded. But in fact, he proved that if
we de®ne h � lim infn Ynk k, a.s. then h is integrable and for every n 2 N we have
Wnk k � En�h� a.s. This implies that �Wn� must be uniformly integrable and only its
uniform integrability guarantees the uniqueness of (10). Returning to the proof, for
every n 2 N, let us de®ne Mn �Wn�tn�, where tn � min k 2 N; n � �kf g, and put
Pn � Xn ÿMn. Then it is clear that, by the de®nitions of �Yn�; �Mn�; �Pn� and the
properties of the decomposition (10), it follows that �Mn� is a uniformly integrable
martingale with M�n �Wn; �n 2 N� and �Pn� is a �nf g-mil, satisfying the condition
lim infnE� P�n



 

� <1 and such that the sequence �P�n � Zn� converges to zero a.s.
This together with Theorem 2 implies that �Pn� also converges to zero a.s. It proves
the decomposition (4) in the theorem, taking into account that any decomposition
like (4) is always unique.

Finally, the conclusion of the theorem follows from Decomposition (4) and
Chaterji's results Proposition 4.4. of [3] and Theorem 6 of [2] respectively. It com-
pletes the proof.

4. Construction of Example 7 and Counterexample 8. We shall construct large
classes of Examples 7 and Counterexamples 8. Indeed, let f be an arbitrary but ®xed
strictly increasing function from N to N. Then f�m� � m, for all m 2 N. Let ([0,1),
B�0;1�;P) and Qk with k � 0 be respectively the Lebesgue probability space and the
partition of [0,1) into 2k intervals of equal length. For m � 0, set a0 � 0 � b0. For
m 2 N, de®ne am � amÿ1 � f�m� and bm � bmÿ1 � 2amÿ1 . Then, every n 2 N can be
written in a unique way n � bmÿ1 � j, with some m 2 N and 1 � j � 2amÿ1 . For
arbitrary but ®xed n 2 N with the decomposition above, take An � � ÿ Qamÿ1�f�m�

� 	
and ®rst de®ne the real-valued random variable Zn on [0,1) as follows. On the j-th
interval I

�mÿ1�
j of Qamÿ1 , set either Zn � 2f�m� or Zn � ÿ2f�m�, respectively on the ®rst

interval of Qam that is contained in I
�mÿ1�
j , if either j � 2pÿ 1 or j � 2p, respectively,

with 1 � j � 2ÿ1�amÿ1 and Zn � 0, elsewhere. Then, by the property of f, it is easy to
check that, constructed in such a way, the sequence �Zn� still converges a.s. and in L1

simultaneously. Thus, by Theorem [18], �Zn� is a mil. But with this construction �Zn�
is not a universal mil. To see this, let us de®ne the increasing co®nal sequence ��n� as
follows. For every m 2 N, set �m � n on I

�mÿ1�
j , for 1 � j � 2amÿ1 . Then it is not hard

to check that bmÿ1 < �m and P Zbmÿ1 ��m�


 

 � 1
ÿ � � 1. This with the a.s. convergence

to zero of �Zn� implies that �Zn� cannot be a universal mil. This completes the proof
of the ®rst example.

To construct a class of Counterexamples 8 we proceed as in the construction of
Example 7. Indeed, let a0 � 0 � b0; am � amÿ1 � f�m�2amÿ1 ;Qamÿ1 the partition
fI�mÿ1�j ; 1 � j � 2amÿ1g of [0,1) into 2amÿ1 intervals of equal length. Given 1 � j � 2amÿ1 ,
let fI�mÿ1�j;k g, 1 � k � 2�jÿ1�f�m�, denote the partition of I

�mÿ1�
j into 2�jÿ1�f�m� intervals of
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equal length. For any ®xed n 2 N with the decomposition above, let us de®ne
An � � ÿ Qamÿ1�jf�m�

� 	
and the real-valued function Xn on [0,1) as follows. On I

�mÿ1�
j;k

set Xn � 2f�m� or Xn � ÿ2f�m�, respectively, on the ®rst interval of Qamÿ1�jf�m� that is
contained in I

�mÿ1�
j;k , if k � 2pÿ 1 or k � 2p, respectively, with 1 � p � 2�jÿ1�f�m�ÿ1.

Then, by the construction and the property of f; �Xn� converges to zero a.s. and in
L1, and �Xn� is a mil. Now, let us de®ne the increasing co®nal sequence ��n� of
bounded stopping times as follows. For m 2M, set �2mÿ1 � nÿ 1 and �2m � n on
I
�mÿ1�
j with n � bmÿ1 � j; 1 � j � 2amÿ1 . Then it is easy to check that n � �n � 1 � �n�1
and

lim
k

sup
n�k

P max
q2N�k;n�

DX�q; �n�


 

 � 0

� �
� 0

but

lim
m

P DX��2mÿ1�2m�


 

ÿ � � 1:

It proves that the mil �Xn� and the sequence ��n� of bounded stopping times
satisfy all the requirements of the counterexample. This completes the construction.
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