Twists of a General Class of *L*-Functions by Highly Ramified Characters

Freydoon Shahidi

Abstract. It is shown that given a local *L*-function defined by Langlands-Shahidi method, there exists a highly ramified character of the group which when is twisted with the original representation leads to a trivial *L*-function.

The purpose of this short note is to prove a general lemma on twists by highly ramified characters of all the *L*-functions which are obtained from the Langlands-Shahidi method [2], [4], [5], [6]. The lemma generalizes Proposition 5.1 of [1] to many other *L*-functions and seems to be useful in applications [3]. The idea of the proof is simple and relies on basic general facts in representation theory. Its bulk, if any, is due to its remarkable generality.

Let *F* be a *p*-adic local field of characteristic zero. Denote by *O* its ring of integers and let *P* be the unique maximal ideal of *O*. Let *q* be the cardinality of the field O/P and normalize an absolute value || on *F* such that the absolute value of a generator of *P* equals q^{-1} .

Let **G** be a quasisplit connected reductive algebraic group over *F*. Fix a Borel subgroup $\mathbf{B} = \mathbf{TU}$ of **G** with unipotent radical **U** and a maximal torus **T**. Let \mathbf{A}_0 be the maximal split torus of **T**. Denote by $W(\mathbf{A}_0)$ the Weyl group of \mathbf{A}_0 . Let Δ be the set of simple roots of \mathbf{A}_0 in **U**. For each subgroup **H** of **G**, we use *H* to denote the group of *F*-points of **H**.

Let **P** be a maximal parabolic subgroup of **G** such that $\mathbf{N} \subset \mathbf{U}$. Let χ be the generic character of *U* defined via a non-trivial character ψ_F of *F* (*cf.* [4]). Fix an irreducible admissible χ -generic representation (*cf.* [4]) π of $M = \mathbf{M}(F)$.

Next let *r* be the adjoint action of ^{*L*}*M*, the *L*-group of **M**, on the Lie algebra ^{*L*}n of the *L*-group ^{*L*}*N* of **N**. Decompose $r = \bigoplus_{i=1}^{m} r_i$ according to the order of eigenvalues of ^{*L*}*A*, the *L*-group of the split center **A** of **M**, in ^{*L*}n as in [5]. Let $s \in \mathbb{C}$. For each $i, 1 \le i \le m$, let $L(s, \pi, r_i)$ denote the *L*-function attached to π and r_i as in [5]. Finally, let $X^*(\mathbf{M})_F$ denote the subgroup of *F*-rational characters of **M**. The purpose of this note is to prove the following useful lemma:

Main Lemma 1 There exists a rational character $\xi \in X^*(\mathbf{M})_F$ of \mathbf{M} such that: Given any irreducible admissible χ -generic representation π of $M = \mathbf{M}(F)$, there exists a character η of F^* so that $L(s, \pi \otimes (\eta \cdot \xi), r_i) \equiv 1, 1 \leq i \leq m$. Moreover η can be replaced by any character of F^* whose conductor is larger than that of η .

The lemma seems to have useful applications in the theory of automorphic forms (*e.g.* [3]) as soon as the general method developed in [2], [4], [5], [6] is used. In particular, in the special case of $\mathbf{G} = \operatorname{GL}_{n+m}$, $\mathbf{M} = \operatorname{GL}_n \times \operatorname{GL}_m$, the lemma is equivalent to the Proposition 5.1 of [1] which uses a completely different method.

Received by the editors August 20, 1998.

Supported by NSF Grant DMS-9622585.

AMS subject classification: Primary: 11F70; secondary: 22E35, 22E50.

[©]Canadian Mathematical Society 2000.

L-Functions

The idea of the proof of Lemma 1 is quite simple, although it becomes cumbersome due to its generality.

Let $\theta \subset \Delta$ be a subset of simple roots so that

$$\pi \hookrightarrow \operatorname{Ind}_{M_a N_a}^M \sigma \otimes \mathbf{1},$$

where $\mathbf{P}_{\theta} = \mathbf{M}_{\theta} \mathbf{N}_{\theta}, \mathbf{N}_{\theta} \subset \mathbf{U} \cap \mathbf{M}$, and σ is an irreducible supercuspidal χ -generic representation of M_{θ} .

There exists the natural restriction map from $X^*(\mathbf{M})_F$ into $X^*(\mathbf{M}_\theta)_F$, sending $\xi \mapsto \xi_\theta \in X^*(\mathbf{M}_\theta)_F$. Then

$$(\operatorname{Ind}_{M_{\theta}N_{\theta}}^{M}\sigma)\otimes(\eta\cdot\xi)\cong\operatorname{Ind}_{M_{\theta}N_{\theta}}^{M}\left(\sigma\otimes(\eta\cdot\xi_{\theta})
ight)$$

and therefore

$$\pi \otimes (\eta \cdot \xi) \hookrightarrow \operatorname{Ind}_{M_{\theta}N_{\theta}}^{M} \left(\sigma \otimes (\eta \cdot \xi_{\theta}) \right)$$

Let \tilde{w}_0 be the longest element in $W(\mathbf{A}_0)$ modulo that of the Weyl group of \mathbf{A}_0 in \mathbf{M} . Then \tilde{w}_0 sends the unique simple root in \mathbf{N} to a negative root, while $\tilde{w}_0(\theta) \subset \Delta$.

Decompose \tilde{w}_0 as $\tilde{w}_0 = \tilde{w}_{n-1} \cdots \tilde{w}_1$ with respect to θ as in Lemma 2.1.1 of [6]. Then for each *j* there exists a unique root $\alpha_j \in \Delta$ such that $\tilde{w}_j(\alpha_j) < 0$. For each *j*, $2 \leq j \leq n-1$, let $\bar{w}_j = \tilde{w}_{j-1} \cdots \tilde{w}_1$ with $\bar{w}_1 = 1$. Let $\theta_{j+1} = \tilde{w}_j(\theta_j)$, $\theta_1 = \theta$ and for each *j*, let $\Omega_j = \theta_j \cup \{\alpha_j\}$. Then \mathbf{M}_{Ω_j} contains \mathbf{M}_{θ_j} as a maximal Levi subgroup. Moreover \bar{w}_j : $\mathbf{M}_{\theta} \cong \mathbf{M}_{\theta_j}$ and \bar{w}_j : $\mathbf{A}_{\theta} \cong \mathbf{A}_{\theta_j}$, their split components, and $\bar{w}_j(\sigma) = \sigma_j$ becomes an irreducible supercuspidal representation of M_{θ_j} . Finally, if

$$\gamma_i(s,\pi,\psi_F,\tilde{w}_0) = \varepsilon(s,\pi,r_i,\psi_F)L(1-s,\pi,\tilde{r}_i)/L(s,\pi,r_i),$$

then by Theorem 3.5, part 3, of [5],

$$\gamma_i(s,\pi,\psi_F, ilde w_0) = \prod_{j\in S_i} \gamma_{i(j)}ig(s,ar w_j(\sigma),\psi_F,ar w_jig),$$

where i(j) and S_i are as in [5] and the factors on the right are defined the same way for the triple $(M_{\Omega_j}, M_{\theta_j}, \sigma_j)$. Here $\varepsilon(s, \pi, r_i, \psi_F)$ is the corresponding root number defined in [5].

A similar identity holds if π and σ are replaced by $\pi \otimes (\eta \cdot \xi)$ and $\sigma \otimes (\eta \cdot \xi_{\theta})$, respectively. To prove the main lemma it would be enough to show that η and ξ can be chosen in such a way that each $\gamma_{i(j)}\left(s, \bar{w}_{j}\left(\sigma \otimes (\eta \cdot \xi_{\theta})\right), \psi_{F}, \tilde{w}_{j}\right)$ becomes a monomial in q^{-s} for each j. For, then the *L*-functions $L(s, \pi \otimes (\eta \cdot \xi_{\theta}), r_{i}) \equiv 1$ for tempered π and consequently the same holds for arbitrary π by further induction and analytic continuation.

But $\gamma_{i(j)}\left(s, \bar{w}_{j}\left(\sigma \otimes (\eta \cdot \xi_{\theta})\right), \psi_{F}, \tilde{w}_{j}\right)$ becomes a monomial in q^{-s} as soon as the representation of $M_{\Omega_{j}}$ induced from any unramified twist of the representation $\bar{w}_{j}\left(\sigma \otimes (\eta \cdot \xi_{\theta})\right)$ of $M_{\theta_{j}}$ is irreducible. More precisely, the irreducibility implies that the local coefficient $C_{\bar{\chi}}\left(s\tilde{\alpha}_{j}, \bar{w}_{j}\left(\bar{\sigma} \otimes (\eta^{-1} \cdot \xi_{\theta})\right), \bar{w}_{j}\right) (cf. [5])$ is a monomial in q^{-s} which then implies the same fact about $\gamma_{i(j)}\left(s, \bar{w}_{j}(\sigma \cdot \xi_{\theta}), \psi_{F}, \tilde{w}_{j}\right)$. Here one only needs to use Proposition 7.3 of [5] which implies that no cancellations take place among factors of γ 's appearing in the local coefficient (Theorem 3.5 of [5], equation (3.11)).

For representations of M_{Ω_j} , induced from unramified twists of $\bar{w}_j (\sigma \otimes (\eta \cdot \xi_{\theta})) = \sigma_j \otimes (\eta \cdot \xi_{\theta_i})$, to become irreducible, it is enough to have

(1)
$$\tilde{w}_j \big(\sigma'_j \otimes (\eta \cdot \xi_{\theta_j}) \big) \ncong \sigma'_j \otimes (\eta \cdot \xi_{\theta_j}),$$

where σ'_j denotes an arbitrary unramified twist of $\sigma_j = \bar{w}_j(\sigma)$ and $\xi_{\theta_j} = \bar{w}_j(\xi_{\theta})$. Observe that we may assume $\tilde{w}_j(\mathbf{A}_{\theta_j}) = \mathbf{A}_{\theta_j}$.

Now, by taking central characters in (1), it is enough to show that there exists a choice of ξ and η such that

$$ilde{w}_j(\omega_j')(a)\eta\Big(\xi_{ heta_j}ig(ilde{w}_j(a)ig)\Big)=\omega_j'(a)\etaig(\xi_{ heta_j}(a)ig)$$

or

(2)
$$\eta \cdot \xi_{\theta_j} \left(\tilde{w}_j(a) a^{-1} \right) = \omega'_j \left(a \tilde{w}_j(a^{-1}) \right)$$

does not hold for all $a \in A_{\theta_j}$, where ω'_j is the central character of σ'_j . Moreover the same is true if η is replaced with another character of higher conductor than η .

Consider the exact sequence

$$0
ightarrow \mathbf{A}_{ heta_j}'
ightarrow \mathbf{A}_{ heta_j}
ightarrow ilde{w}_j(\mathbf{A}_{ heta_j}) \mathbf{A}_{ heta_j}^{-1}
ightarrow 0$$

in which the one before last arrow is defined by

$$a \mapsto \tilde{w}_i(a)a^{-1}$$
.

Its kernel \mathbf{A}'_{θ_i} consists of all *a* with $\tilde{w}_j(a) = a$. It contains \mathbf{A}_{Ω_j} . Set

$$\mathbf{A}_{\theta_j}^1 = \tilde{w}_j(\mathbf{A}_{\theta_j})\mathbf{A}_{\theta_j}^{-1} = \{a \in \mathbf{A}_{\theta_j} \mid \tilde{w}_j(a) = a^{-1}\},$$

where the last equality is easy to check. Observe that

$$\mathbf{A}_{\theta_{j}}^{1} \cong \mathbf{A}_{\theta_{j}} / \mathbf{A}_{\theta_{j}}'$$

is connected.

We first specify ξ . Let n be the Lie algebra of N and set

$$\xi(m) = \det(\operatorname{Ad}(m) \mid \mathfrak{n}),$$

 $m \in \mathbf{M}$. Then $\xi \in X^*(\mathbf{M})$ and defines $\xi_{\theta} \in X^*(\mathbf{M}_{\theta})$ by restriction. Define $\xi_j = \xi_{\theta_j} \in X^*(\mathbf{M}_{\theta_i})$ as before by

$$\xi_i(\bar{w}_i(m)) = \xi_\theta(m),$$

 $m \in \mathbf{M}_{\theta}$. We need:

Lemma 2 $\xi_j \mid \mathbf{A}^1_{\theta_j} \neq 1.$

L-Functions

Proof Suppose $\xi_j(\tilde{w}_j(a_j)) = \xi_j(a_j), \forall a_j \in \mathbf{A}_{\theta_j}$ which makes sense since we have assumed $\tilde{w}_j(\mathbf{A}_{\theta_j}) = \mathbf{A}_{\theta_j}$. Then

$$\begin{split} \xi_j(m_j) &= \xi_j \big(\bar{w}_j(m) \big) \\ &= \det \big(\operatorname{Ad}(m) \mid \mathfrak{n} \big) \\ &= \det \big(\operatorname{Ad}(m_j) \mid \mathfrak{n}_j \big), \end{split}$$

where $\mathfrak{n}_j = \bar{w}_j(\mathfrak{n}), \forall m_j = \bar{w}_j(m) \in \mathbf{M}_{\theta_j}$. We therefore have

$$\left\langle \sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha, \tilde{w}_{j}(a_{j}) \right\rangle = \left\langle \sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha, a_{j} \right\rangle \quad (\forall a_{j} \in \mathbf{A}_{\theta_{j}})$$

or

$$\left\langle \sum_{X_{\alpha}\in\mathfrak{n}_{j}} \tilde{w}_{j}(\alpha), a_{j} \right\rangle = \left\langle \sum_{X_{\alpha}\in\mathfrak{n}_{j}} \alpha, a_{j} \right\rangle.$$

Thus

$$\sum_{X_{\alpha}\in\mathfrak{n}_{j}}\tilde{w}_{j}(\alpha)=\sum_{X_{\alpha}\in\mathfrak{n}_{j}}\alpha.$$

Write:

$$\alpha = \alpha_j + \sum_{\beta \in \theta_j} m_{\beta}^{\alpha} \beta,$$

with $m_{\beta}^{\alpha} \in \mathbb{Z}$. Then

$$\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha = n_{j} \alpha_{j} + \sum_{\alpha} \sum_{\beta \in \theta_{j}} m_{\beta}^{\alpha} \beta,$$

where n_i is a positive integer. On the other hand

$$\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \tilde{w}_{j}(\alpha) = n_{j} \tilde{w}_{j}(\alpha_{j}) + \sum_{\alpha} \sum_{\beta \in \theta_{j}} m_{\beta}^{\alpha} \tilde{w}_{j}(\beta)$$

But $\tilde{w}_i(\alpha_i) = -\alpha_i$ and $\tilde{w}_i(\beta) \neq \pm \alpha_i$. Equality

$$n_j \alpha_j + \sum_{\alpha} \sum_{\beta} m_{\beta}^{\alpha} \beta = -n_j \alpha_j + \sum_{\alpha} \sum_{\beta} m_{\beta}^{\alpha} \tilde{w}_j(\beta)$$

is impossible since α_j and $\beta \in \Delta$ and $n_j > 0$. This proves the lemma.

Corollary $\xi_j : \mathbf{A}^1_{\theta_i} \to \mathbb{G}_m$ is onto.

Proof By Lemma 2 this is a non-constant morphism of a connected variety (of dimension 1) into \mathbb{G}_m .

Proof of Main Lemma 1 By Corollary $\xi_j \left(\tilde{w}_j(A_{\theta_j}) A_{\theta_j}^{-1} \right)$ is open in F^* . Choose $\ell_j \in \mathbb{Z}^+$ such that $1 + P^{\ell_j} \subset \xi_j \left(\tilde{w}_j(A_{\theta_j}) A_{\theta_j}^{-1} \right)$. Take η with conductor larger than the larger of ℓ_j and

the conductor of ω_j , the central character of σ_j , which is the same for all σ'_j , for all j. This completes the proof.

Corollary of Lemma 1 There exist a positive integer N such that for every character η of F^* with conductor larger than N, the function

$$\gamma(s,\pi_{\eta},r_i,\psi_F) = \varepsilon(s,\pi_{\eta},r_i,\psi_F)L(1-s,\pi_{\eta},\tilde{r}_i)/L(s,\pi_{\eta},r_i),$$

 $\pi_n = \pi \otimes (\eta \cdot \xi)$, is a monomial in q^{-s} .

References

- [1] H. Jacquet and J. A. Shalika, A lemma on highly ramified ε -factors. Math. Ann. 84(1985), 319–332.
- [2] R. P. Langlands, *Euler Products*. Yale Univ. Press, New Haven, Connecticut, 1971.
- [3] D. Prasad and D. Ramakrishnan, On the global root numbers of $GL(n) \times GL(m)$. To appear in Shimura's volume.
- [4] F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions. Ann. of Math. 127(1988), 547–584.
- [5] _____, A proof of Langlands' conjecture on Plancherel measures: Complementary series for p-adic groups. Ann. of Math. 132(1990), 273–330.
- [6] _____, On certain L-functions. Amer. J. Math. 103(1981), 297–356.

Department of Mathematics Purdue University West Lafayette, Indiana 47907 U.S.A. email: shahidi@math.purdue.edu