Twists of a General Class of L-Functions by Highly Ramified Characters

Freydoon Shahidi

Abstract

It is shown that given a local L-function defined by Langlands-Shahidi method, there exists a highly ramified character of the group which when is twisted with the original representation leads to a trivial L function.

The purpose of this short note is to prove a general lemma on twists by highly ramified characters of all the L-functions which are obtained from the Langlands-Shahidi method [2], [4], [5], [6]. The lemma generalizes Proposition 5.1 of [1] to many other L-functions and seems to be useful in applications [3]. The idea of the proof is simple and relies on basic general facts in representation theory. Its bulk, if any, is due to its remarkable generality.

Let F be a p-adic local field of characteristic zero. Denote by O its ring of integers and let P be the unique maximal ideal of O. Let q be the cardinality of the field O / P and normalize an absolute value $\left|\mid\right.$ on F such that the absolute value of a generator of P equals q^{-1}.

Let \mathbf{G} be a quasisplit connected reductive algebraic group over F. Fix a Borel subgroup $\mathbf{B}=\mathbf{T U}$ of \mathbf{G} with unipotent radical \mathbf{U} and a maximal torus \mathbf{T}. Let \mathbf{A}_{0} be the maximal split torus of T. Denote by $W\left(\mathbf{A}_{0}\right)$ the Weyl group of \mathbf{A}_{0}. Let Δ be the set of simple roots of \mathbf{A}_{0} in \mathbf{U}. For each subgroup \mathbf{H} of \mathbf{G}, we use H to denote the group of F-points of \mathbf{H}.

Let \mathbf{P} be a maximal parabolic subgroup of \mathbf{G} such that $\mathbf{N} \subset \mathbf{U}$. Let χ be the generic character of U defined via a non-trivial character ψ_{F} of F (cf. [4]). Fix an irreducible admissible χ-generic representation (cf. [4]) π of $M=\mathbf{M}(F)$.

Next let r be the adjoint action of ${ }^{L} M$, the L-group of \mathbf{M}, on the Lie algebra ${ }^{L_{\mathfrak{H}}}$ of the L-group ${ }^{L} N$ of \mathbf{N}. Decompose $r=\bigoplus_{i=1}^{m} r_{i}$ according to the order of eigenvalues of ${ }^{L} A$, the L-group of the split center \mathbf{A} of \mathbf{M}, in ${ }^{L} \mathfrak{n}$ as in [5]. Let $s \in \mathbb{C}$. For each $i, 1 \leq i \leq m$, let $L\left(s, \pi, r_{i}\right)$ denote the L-function attached to π and r_{i} as in [5]. Finally, let $X^{*}(\mathbf{M})_{F}$ denote the subgroup of F-rational characters of \mathbf{M}. The purpose of this note is to prove the following useful lemma:

Main Lemma 1 There exists a rational character $\xi \in X^{*}(\mathbf{M})_{F}$ of \mathbf{M} such that: Given any irreducible admissible χ-generic representation π of $M=\mathbf{M}(F)$, there exists a character η of F^{*} so that $L\left(s, \pi \otimes(\eta \cdot \xi), r_{i}\right) \equiv 1,1 \leq i \leq m$. Moreover η can be replaced by any character of F^{*} whose conductor is larger than that of η.

The lemma seems to have useful applications in the theory of automorphic forms (e.g. [3]) as soon as the general method developed in [2], [4], [5], [6] is used. In particular, in the special case of $\mathbf{G}=\mathrm{GL}_{n+m}, \mathbf{M}=\mathrm{GL}_{n} \times \mathrm{GL}_{m}$, the lemma is equivalent to the Proposition 5.1 of [1] which uses a completely different method.

[^0]The idea of the proof of Lemma 1 is quite simple, although it becomes cumbersome due to its generality.

Let $\theta \subset \Delta$ be a subset of simple roots so that

$$
\pi \hookrightarrow \operatorname{Ind}_{M_{\theta} N_{\theta}}^{M} \sigma \otimes \mathbf{1}
$$

where $\mathbf{P}_{\theta}=\mathbf{M}_{\theta} \mathbf{N}_{\theta}, \mathbf{N}_{\theta} \subset \mathbf{U} \cap \mathbf{M}$, and σ is an irreducible supercuspidal χ-generic representation of M_{θ}.

There exists the natural restriction map from $X^{*}(\mathbf{M})_{F}$ into $X^{*}\left(\mathbf{M}_{\theta}\right)_{F}$, sending $\xi \mapsto \xi_{\theta} \in$ $X^{*}\left(\mathbf{M}_{\theta}\right)_{F}$. Then

$$
\left(\operatorname{Ind}_{M_{\theta} N_{\theta}}^{M} \sigma\right) \otimes(\eta \cdot \xi) \cong \operatorname{Ind}_{M_{\theta} N_{\theta}}^{M}\left(\sigma \otimes\left(\eta \cdot \xi_{\theta}\right)\right)
$$

and therefore

$$
\pi \otimes(\eta \cdot \xi) \hookrightarrow \operatorname{Ind}_{M_{\theta} N_{\theta}}^{M}\left(\sigma \otimes\left(\eta \cdot \xi_{\theta}\right)\right)
$$

Let \tilde{w}_{0} be the longest element in $W\left(\mathbf{A}_{0}\right)$ modulo that of the Weyl group of \mathbf{A}_{0} in \mathbf{M}. Then \tilde{w}_{0} sends the unique simple root in \mathbf{N} to a negative root, while $\tilde{w}_{0}(\theta) \subset \Delta$.

Decompose \tilde{w}_{0} as $\tilde{w}_{0}=\tilde{w}_{n-1} \cdots \tilde{w}_{1}$ with respect to θ as in Lemma 2.1.1 of [6]. Then for each j there exists a unique root $\alpha_{j} \in \Delta$ such that $\tilde{w}_{j}\left(\alpha_{j}\right)<0$. For each $j, 2 \leq$ $j \leq n-1$, let $\bar{w}_{j}=\tilde{w}_{j-1} \cdots \tilde{w}_{1}$ with $\bar{w}_{1}=1$. Let $\theta_{j+1}=\tilde{w}_{j}\left(\theta_{j}\right), \theta_{1}=\theta$ and for each j, let $\Omega_{j}=\theta_{j} \cup\left\{\alpha_{j}\right\}$. Then $\mathbf{M}_{\Omega_{j}}$ contains $\mathbf{M}_{\theta_{j}}$ as a maximal Levi subgroup. Moreover $\bar{w}_{j}: \mathbf{M}_{\theta} \cong \mathbf{M}_{\theta_{j}}$ and $\bar{w}_{j}: \mathbf{A}_{\theta} \cong \mathbf{A}_{\theta_{j}}$, their split components, and $\bar{w}_{j}(\sigma)=\sigma_{j}$ becomes an irreducible supercuspidal representation of $M_{\theta_{j}}$. Finally, if

$$
\gamma_{i}\left(s, \pi, \psi_{F}, \tilde{w}_{0}\right)=\varepsilon\left(s, \pi, r_{i}, \psi_{F}\right) L\left(1-s, \pi, \tilde{r}_{i}\right) / L\left(s, \pi, r_{i}\right),
$$

then by Theorem 3.5, part 3, of [5],

$$
\gamma_{i}\left(s, \pi, \psi_{F}, \tilde{w}_{0}\right)=\prod_{j \in S_{i}} \gamma_{i(j)}\left(s, \bar{w}_{j}(\sigma), \psi_{F}, \tilde{w}_{j}\right)
$$

where $i(j)$ and S_{i} are as in [5] and the factors on the right are defined the same way for the triple $\left(M_{\Omega_{j}}, M_{\theta_{j}}, \sigma_{j}\right)$. Here $\varepsilon\left(s, \pi, r_{i}, \psi_{F}\right)$ is the corresponding root number defined in [5].

A similar identity holds if π and σ are replaced by $\pi \otimes(\eta \cdot \xi)$ and $\sigma \otimes\left(\eta \cdot \xi_{\theta}\right)$, respectively.
To prove the main lemma it would be enough to show that η and ξ can be chosen in such a way that each $\gamma_{i(j)}\left(s, \bar{w}_{j}\left(\sigma \otimes\left(\eta \cdot \xi_{\theta}\right)\right), \psi_{F}, \tilde{w}_{j}\right)$ becomes a monomial in q^{-s} for each j. For, then the L-functions $L\left(s, \pi \otimes\left(\eta \cdot \xi_{\theta}\right), r_{i}\right) \equiv 1$ for tempered π and consequently the same holds for arbitrary π by further induction and analytic continuation.

But $\gamma_{i(j)}\left(s, \bar{w}_{j}\left(\sigma \otimes\left(\eta \cdot \xi_{\theta}\right)\right), \psi_{F}, \tilde{w}_{j}\right)$ becomes a monomial in q^{-s} as soon as the representation of $M_{\Omega_{j}}$ induced from any unramified twist of the representation $\bar{w}_{j}\left(\sigma \otimes\left(\eta \cdot \xi_{\theta}\right)\right)$ of $M_{\theta_{j}}$ is irreducible. More precisely, the irreducibility implies that the local coefficient $C_{\bar{\chi}}\left(s \tilde{\alpha}_{j}, \bar{w}_{j}\left(\tilde{\sigma} \otimes\left(\eta^{-1} \cdot \xi_{\theta}\right)\right), \tilde{w}_{j}\right)(c f .[5])$ is a monomial in q^{-s} which then implies the same fact about $\gamma_{i(j)}\left(s, \bar{w}_{j}\left(\sigma \cdot \xi_{\theta}\right), \psi_{F}, \tilde{w}_{j}\right)$. Here one only needs to use Proposition 7.3 of [5] which implies that no cancellations take place among factors of γ 's appearing in the local coefficient (Theorem 3.5 of [5], equation (3.11)).

For representations of $M_{\Omega_{j}}$, induced from unramified twists of $\bar{w}_{j}\left(\sigma \otimes\left(\eta \cdot \xi_{\theta}\right)\right)=$ $\sigma_{j} \otimes\left(\eta \cdot \xi_{\theta_{j}}\right)$, to become irreducible, it is enough to have

$$
\begin{equation*}
\tilde{w}_{j}\left(\sigma_{j}^{\prime} \otimes\left(\eta \cdot \xi_{\theta_{j}}\right)\right) \not \not \sigma_{j}^{\prime} \otimes\left(\eta \cdot \xi_{\theta_{j}}\right) \tag{1}
\end{equation*}
$$

where σ_{j}^{\prime} denotes an arbitrary unramified twist of $\sigma_{j}=\bar{w}_{j}(\sigma)$ and $\xi_{\theta_{j}}=\bar{w}_{j}\left(\xi_{\theta}\right)$. Observe that we may assume $\tilde{w}_{j}\left(\mathbf{A}_{\theta_{j}}\right)=\mathbf{A}_{\theta_{j}}$.

Now, by taking central characters in (1), it is enough to show that there exists a choice of ξ and η such that

$$
\tilde{w}_{j}\left(\omega_{j}^{\prime}\right)(a) \eta\left(\xi_{\theta_{j}}\left(\tilde{w}_{j}(a)\right)\right)=\omega_{j}^{\prime}(a) \eta\left(\xi_{\theta_{j}}(a)\right)
$$

or

$$
\begin{equation*}
\eta \cdot \xi_{\theta_{j}}\left(\tilde{w}_{j}(a) a^{-1}\right)=\omega_{j}^{\prime}\left(a \tilde{w}_{j}\left(a^{-1}\right)\right) \tag{2}
\end{equation*}
$$

does not hold for all $a \in A_{\theta_{j}}$, where ω_{j}^{\prime} is the central character of σ_{j}^{\prime}. Moreover the same is true if η is replaced with another character of higher conductor than η.

Consider the exact sequence

$$
0 \rightarrow \mathbf{A}_{\theta_{j}}^{\prime} \rightarrow \mathbf{A}_{\theta_{j}} \rightarrow \tilde{w} j\left(\mathbf{A}_{\theta_{j}}\right) \mathbf{A}_{\theta_{j}}^{-1} \rightarrow 0
$$

in which the one before last arrow is defined by

$$
a \mapsto \tilde{w}_{j}(a) a^{-1}
$$

Its kernel $\mathbf{A}_{\theta_{j}}^{\prime}$ consists of all a with $\tilde{w}_{j}(a)=a$. It contains $\mathbf{A}_{\Omega_{j}}$. Set

$$
\mathbf{A}_{\theta_{j}}^{1}=\tilde{w}_{j}\left(\mathbf{A}_{\theta_{j}}\right) \mathbf{A}_{\theta_{j}}^{-1}=\left\{a \in \mathbf{A}_{\theta_{j}} \mid \tilde{w}_{j}(a)=a^{-1}\right\}
$$

where the last equality is easy to check. Observe that

$$
\mathbf{A}_{\theta_{j}}^{1} \cong \mathbf{A}_{\theta_{j}} / \mathbf{A}_{\theta_{j}}^{\prime}
$$

is connected.
We first specify ξ. Let \mathfrak{n} be the Lie algebra of \mathbf{N} and set

$$
\xi(m)=\operatorname{det}(\operatorname{Ad}(m) \mid \mathfrak{n}),
$$

$m \in \mathbf{M}$. Then $\xi \in X^{*}(\mathbf{M})$ and defines $\xi_{\theta} \in X^{*}\left(\mathbf{M}_{\theta}\right)$ by restriction. Define $\xi_{j}=\xi_{\theta_{j}} \in$ $X^{*}\left(\mathbf{M}_{\theta_{j}}\right)$ as before by

$$
\xi_{j}\left(\bar{w}_{j}(m)\right)=\xi_{\theta}(m)
$$

$m \in \mathbf{M}_{\theta}$. We need:
Lemma $2 \xi_{j} \mid \mathbf{A}_{\theta_{j}}^{1} \neq 1$.

Proof Suppose $\xi_{j}\left(\tilde{w}_{j}\left(a_{j}\right)\right)=\xi_{j}\left(a_{j}\right), \forall a_{j} \in \mathbf{A}_{\theta_{j}}$ which makes sense since we have assumed $\tilde{w}_{j}\left(\mathbf{A}_{\theta_{j}}\right)=\mathbf{A}_{\theta_{j}}$. Then

$$
\begin{aligned}
\xi_{j}\left(m_{j}\right) & =\xi_{j}\left(\bar{w}_{j}(m)\right) \\
& =\operatorname{det}(\operatorname{Ad}(m) \mid \mathfrak{n}) \\
& =\operatorname{det}\left(\operatorname{Ad}\left(m_{j}\right) \mid \mathfrak{n}_{j}\right)
\end{aligned}
$$

where $\mathfrak{n}_{j}=\bar{w}_{j}(\mathfrak{t}), \forall m_{j}=\bar{w}_{j}(m) \in \mathbf{M}_{\theta_{j}}$. We therefore have

$$
\left\langle\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha, \tilde{w}_{j}\left(a_{j}\right)\right\rangle=\left\langle\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha, a_{j}\right\rangle \quad\left(\forall a_{j} \in \mathbf{A}_{\theta_{j}}\right)
$$

or

$$
\left\langle\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \tilde{w}_{j}(\alpha), a_{j}\right\rangle=\left\langle\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha, a_{j}\right\rangle .
$$

Thus

$$
\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \tilde{w}_{j}(\alpha)=\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha
$$

Write:

$$
\alpha=\alpha_{j}+\sum_{\beta \in \theta_{j}} m_{\beta}^{\alpha} \beta
$$

with $m_{\beta}^{\alpha} \in \mathbb{Z}$. Then

$$
\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \alpha=n_{j} \alpha_{j}+\sum_{\alpha} \sum_{\beta \in \theta_{j}} m_{\beta}^{\alpha} \beta,
$$

where n_{j} is a positive integer. On the other hand

$$
\sum_{X_{\alpha} \in \mathfrak{n}_{j}} \tilde{w}_{j}(\alpha)=n_{j} \tilde{w}_{j}\left(\alpha_{j}\right)+\sum_{\alpha} \sum_{\beta \in \theta_{j}} m_{\beta}^{\alpha} \tilde{w}_{j}(\beta) .
$$

But $\tilde{w}_{j}\left(\alpha_{j}\right)=-\alpha_{j}$ and $\tilde{w}_{j}(\beta) \neq \pm \alpha_{j}$. Equality

$$
n_{j} \alpha_{j}+\sum_{\alpha} \sum_{\beta} m_{\beta}^{\alpha} \beta=-n_{j} \alpha_{j}+\sum_{\alpha} \sum_{\beta} m_{\beta}^{\alpha} \tilde{w}_{j}(\beta)
$$

is impossible since α_{j} and $\beta \in \Delta$ and $n_{j}>0$. This proves the lemma.
Corollary $\xi_{j}: \mathbf{A}_{\theta_{j}}^{1} \rightarrow \mathbb{G}_{m}$ is onto.

Proof By Lemma 2 this is a non-constant morphism of a connected variety (of dimension 1) into \mathbb{G}_{m}.

Proof of Main Lemma 1 By Corollary $\xi_{j}\left(\tilde{w}_{j}\left(A_{\theta_{j}}\right) A_{\theta_{j}}^{-1}\right)$ is open in F^{*}. Choose $\ell_{j} \in \mathbb{Z}^{+}$ such that $1+P^{\ell_{j}} \subset \xi_{j}\left(\tilde{w}_{j}\left(A_{\theta_{j}}\right) A_{\theta_{j}}^{-1}\right)$. Take η with conductor larger than the larger of ℓ_{j} and
the conductor of ω_{j}, the central character of σ_{j}, which is the same for all σ_{j}^{\prime}, for all j. This completes the proof.

Corollary of Lemma 1 There exist a positive integer N such that for every character η of F^{*} with conductor larger than N, the function

$$
\gamma\left(s, \pi_{\eta}, r_{i}, \psi_{F}\right)=\varepsilon\left(s, \pi_{\eta}, r_{i}, \psi_{F}\right) L\left(1-s, \pi_{\eta}, \tilde{r}_{i}\right) / L\left(s, \pi_{\eta}, r_{i}\right)
$$

$\pi_{\eta}=\pi \otimes(\eta \cdot \xi)$, is a monomial in q^{-s}.

References

[1] H. Jacquet and J. A. Shalika, A lemma on highly ramified ε-factors. Math. Ann. 84(1985), 319-332.
[2] R. P. Langlands, Euler Products. Yale Univ. Press, New Haven, Connecticut, 1971.
[3] D. Prasad and D. Ramakrishnan, On the global root numbers of GL $(n) \times \operatorname{GL}(m)$. To appear in Shimura's volume.
[4] F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions. Ann. of Math. 127(1988), 547-584.
[5] A proof of Langlands' conjecture on Plancherel measures: Complementary series for p-adic groups. Ann. of Math. 132(1990), 273-330.
[6] On certain L-functions. Amer. J. Math. 103(1981), 297-356.

Department of Mathematics
Purdue University
West Lafayette, Indiana 47907
U.S.A.
email: shahidi@math.purdue.edu

[^0]: Received by the editors August 20, 1998.
 Supported by NSF Grant DMS-9622585.
 AMS subject classification: Primary: 11F70; secondary: 22E35, 22E50.
 (C)Canadian Mathematical Society 2000.

