J. W. Butters. Esq., M.A., B.Sc., President, in the Chair.

The General Equation of a Geodesic on a Surface of Revolution applied to the Sphere.

By Lamrence Crawford, M.A., D.Ne.

1. In attempting some work on geodesics on a spheroid, I was led to work out the geodesic on a sphere, and it may be interesting to see how the usual Spherical Trigonometry results arise from the general equation of a geodesic on a surface of revolution.
2. The general equation of a geodesic on a surface of revolution is

$$
r: \frac{d \phi}{d_{s}}=\text { constant } .
$$

where r is the distance of a point on geodesic from the axis, and ϕ the angle of azimuth, or angle between the plane through the axis and this point and a fixed plane through the axis, \therefore on a sphere, taking θ as colatitude, ϕ as longitude, a radius of sphere, the equation becomes $a^{2} \sin ^{2} \theta \frac{d \phi}{d s}=$ constant $=a^{2} / k$, say,

$$
\begin{gathered}
\therefore \quad k \sin ^{2} \theta \frac{d \phi}{d s}=1, \\
\text { or } \quad a^{2} d \theta^{2}+a^{2} \sin ^{2} \theta d \phi^{2}=k^{2} \sin ^{4} \theta d \phi^{2}, \\
\text { i.e. } \quad r\left(\phi^{\prime \prime} \sin ^{2} \theta\left(\frac{k^{2}}{a^{2}} \sin ^{2} \theta-1\right)=d \theta^{2}\right.
\end{gathered}
$$

The direct way to evaluate the length of a geodesic would be to integrate this latter equation between θ and ϕ, then find a relation between s and θ from the equation

$$
d s^{2}=k^{2} \sin ^{2} \theta d \theta^{2} /\left(\frac{k^{2}}{a^{2}} \sin ^{2} \theta-1\right)
$$

taking in both as constants initial values θ_{0}, ψ_{0}, and then eliminating k. This gives s in terms of θ and ϕ of points at either end of geodesic. This method is done in $\S 4$, but I give first a more direct method of integration.
3.

$$
\begin{aligned}
& \left(\frac{d \theta}{d \phi}\right)^{2}=\sin ^{2} \theta\left(\frac{k^{2}}{a^{2}} \sin ^{2} \theta-1\right) \\
& \therefore \quad \frac{k^{2}}{a^{2}}=\frac{1}{\sin ^{4} \theta}\left(\frac{d \theta}{d \phi}\right)^{2}+\frac{1}{\sin ^{2} \theta} .
\end{aligned}
$$

Differentiate to get rid of k : after reduction, the equation takes the form $\sin \theta \frac{d^{2} \theta}{d \phi^{2}}-2 \cos \theta\left(\frac{d \theta}{d \phi}\right)^{2}-\cos \theta \sin ^{2} \theta=0$.

The solution is to be periodic in ϕ, \therefore assume a solution of form

$$
\begin{aligned}
& \sin \phi \frac{d \theta}{d \phi}=\mathrm{Q} \cos \phi+\mathrm{R}, \text { where } \mathrm{Q}, \mathrm{R} \text { are functions of } \theta . \\
\therefore & \sin \phi \frac{d^{2} \theta}{d \phi^{2}}+\cos \phi \frac{d \theta}{d \phi}=-\mathrm{Q} \sin \phi+\cos \phi \frac{d \mathrm{Q}}{d \theta} \cdot \frac{d \theta}{d \phi}+\frac{d \mathrm{R}}{d \theta} \cdot \frac{d \theta}{d \phi} ; \\
\therefore \quad & \sin \phi \frac{d^{2} \theta}{d \phi^{2}}-\frac{d \theta}{d \phi}\left\{\cos \phi \frac{d \mathrm{Q}}{d \theta}+\frac{d \mathrm{R}}{d \theta}-\cos \phi\right\}+Q \sin \phi=0 .
\end{aligned}
$$

Our equation to be solved, if it agrees with this, is

$$
\begin{gathered}
\sin \theta \sin \phi \frac{d^{2} \theta}{d \phi^{2}}-2 \cos \theta \frac{d \theta}{d \phi}\{Q \cos \phi+\mathrm{R}\}-\sin \phi \cos \theta \sin ^{2} \theta=0, \\
\text { i.e. } \sin \phi \frac{d^{2} \theta}{d \phi^{2}}-\frac{d \theta}{d \phi}\{2 Q \cot \theta \cos \phi+2 R \cot \theta\}-\sin \phi \sin \theta \cos \theta=0,
\end{gathered}
$$ and is to be same as

$$
\begin{aligned}
& \sin \phi \frac{d^{2} \theta}{d \phi^{2}}-\frac{d \theta}{d \phi}\left\{\left(\frac{d \mathrm{Q}}{d \theta}-1\right) \cos \phi+\frac{d \mathrm{R}}{d \theta}\right\}+\mathrm{Q} \sin \phi=0 \\
& \therefore \quad \mathrm{Q} \sin \phi=-\sin \phi \sin \theta \cos \theta, \quad \therefore \quad \mathrm{Q}=-\sin \theta \cos \theta \\
& \text { and } \quad \frac{d \mathrm{Q}}{d \theta}-1=2 \mathrm{Q} \cot \theta, \quad \text { and } \quad \frac{d \mathrm{R}}{d \theta}=2 \mathrm{R} \cot \theta
\end{aligned}
$$

$\mathbf{Q}=-\sin \theta \cos \theta, \quad \therefore \frac{d \mathrm{Q}}{d \theta}=-\cos 2 \theta, \quad \therefore \frac{d \mathrm{Q}}{d \theta}-1=-2 \cos ^{2} \theta=2 \mathrm{Q} \cot \theta$, agreeing.

$$
\text { If } \frac{d \mathrm{R}}{d \theta}=2 \mathrm{R} \cot \theta, \quad \mathrm{R}=c \sin ^{2} \theta, \text { where } \mathrm{c} \text { is a constant }
$$

\therefore the solution of the equation is

$$
\sin \phi \frac{d \theta}{d \phi}=-\sin \theta \cos \theta \cos \phi+c \sin ^{2} \theta .
$$

Measure for convenience ϕ from starting point of geodesic,

$$
\begin{gathered}
\therefore \text { when } \phi=0, \theta=\theta_{0} \quad \therefore \quad 0=-\sin \theta_{0} \cos \theta_{0}+\operatorname{csin}^{2} \theta_{0}, \\
\therefore \quad c=\cot \theta_{0} ;
\end{gathered}
$$

\therefore the solution is $\sin \theta_{0} \sin \phi \frac{d \theta}{d \phi}=\sin \theta\left[\cos \theta_{0} \sin \theta-\sin \theta_{0} \cos \theta \cos \phi\right]$

$$
=P \sin \theta, \text { say. }
$$

Now $\quad\left(\frac{d s}{d \phi}\right)^{2}=a^{2} \sin ^{2} \theta+a^{2}\left(\frac{d \theta}{d \phi}\right)^{2} ; \quad \therefore \quad$ if $s=a \sigma$,

$$
\sin ^{2} \theta_{0} \sin ^{2} \phi\left(\frac{d \sigma}{d \phi}\right)^{2}=\sin ^{2} \theta_{0} \sin ^{2} \theta \sin ^{2} \phi+\mathbf{P}^{2} \sin ^{2} \theta ;
$$

$$
\therefore \quad \frac{d \sigma}{d \phi}=\frac{\sin \theta\left(\mathrm{P}^{2}+\sin ^{2} \theta_{0} \sin ^{2} \phi\right)}{\sin \theta_{0} \sin \phi \sqrt{\mathrm{P}^{2}+\sin ^{2} \theta_{0} \sin ^{2} \phi}} ;
$$

but $\quad \mathrm{P}^{2} \sin \theta+\sin ^{2} \theta_{0} \sin \theta \sin ^{2} \phi=\mathrm{P} \sin \theta_{0} \sin \phi \frac{d \theta}{d \phi}+\sin ^{2} \theta_{0} \sin \theta \sin ^{2} \phi$;

$$
\therefore \frac{d \sigma}{d \phi}=\frac{\mathrm{P} \frac{d \theta}{d \phi}+\sin \theta_{0} \sin \theta \sin \phi}{\sqrt{\overline{\mathrm{P}}^{2}+\sin ^{2} \theta_{0} \sin ^{2} \phi}} .
$$

Now $\mathrm{P}^{2}+\sin ^{2} \theta_{0} \sin ^{2} \phi+\left(\cos \theta_{0} \cos \theta+\sin \theta_{0} \sin \theta \cos \phi\right)^{2}=1$, and $\frac{d}{d \phi}\left\{\cos \theta_{0} \cos \theta+\sin \theta_{0} \sin \theta \cos \phi\right\}=-\sin \theta_{0} \sin \theta \sin \phi-\mathrm{P} \frac{d \theta}{d \phi} ;$
\therefore integrating, $\sigma=\cos ^{-1}\left\{\cos \theta_{0} \cos \theta+\sin \theta_{0} \sin \theta \cos \phi\right\}+$ constant, and putting $\sigma=0$ when $\theta=\theta_{0}, \phi=\phi_{0}$, we get this constant $=0$,

$$
\therefore \quad \cos \frac{8}{a}=\cos \theta_{0} \cos \theta+\sin \theta_{0} \sin \theta \cos \phi ;
$$

in general, the result will be

$$
\cos \frac{s-s_{0}}{a}=\cos \theta_{0} \cos \theta+\sin \theta_{0} \sin \theta \cos \left(\phi-\phi_{0}\right)
$$

which is the Spherical Trigonometry result.
4. Take now the method mentioned in $\leqslant 2$.

$$
\begin{gathered}
d \theta^{2}=d \phi^{2} \sin ^{2} \theta\left(\frac{k^{2}}{a^{2}} \sin ^{2} \theta-1\right)=d \phi^{2} \sin ^{2} \theta\left(m^{2} \sin ^{2} \theta-1\right), \text { where } m=\frac{k}{a} . \\
\therefore \quad d \phi=\frac{d \theta \operatorname{cosec} \theta}{\sqrt{m^{2}-\operatorname{cosec}^{2} \theta}}=-\frac{d v}{\sqrt{m^{2}-1-v^{2}}}, \text { where } v=\cot \theta \\
\therefore \quad \phi=\cos ^{-1} \frac{v}{\sqrt{m^{2}-1}}+\text { constant. } \\
\therefore \quad \phi-\phi_{0}=\cos ^{-1} \frac{\cot \theta}{\sqrt{m^{2}-1}}-\cos ^{-1} \frac{\cot \theta_{0}}{\sqrt{m^{2}-1}} . \\
d s^{2}=k^{2} \sin ^{2} \theta d \theta^{2} /\left(\frac{k^{2}}{a^{2}} \sin ^{2} \theta-1\right)
\end{gathered}
$$

$$
\therefore \quad d \sigma=\frac{m \sin \theta d \theta}{\sqrt{m^{2} \sin ^{2} \theta-1}}=-\frac{m d \xi}{\sqrt{m^{2}-1-m^{2} \xi^{2}}}, \text { where } \dot{\xi}=\cos \theta
$$

$$
\therefore \quad \sigma=\cos ^{-1} \frac{m \xi}{\sqrt{m^{2}-1}}+\text { constant }
$$

$$
\therefore \quad \sigma-\sigma_{0}=\cos ^{-1} \frac{m \cos \theta}{\sqrt{m^{2}-1}}-\cos ^{-1} \frac{m \cos \theta_{0}}{\sqrt{m^{2}-1}} .
$$

$$
\therefore \cos \left(\sigma-\sigma_{0}\right)=\frac{m^{2} \cos \theta \cos \theta_{0}}{m^{2}-1}+\frac{1}{m^{2} \cdots 1} \sqrt{\left(m^{2} \sin ^{2} \theta-1\right)\left(m^{2} \sin ^{2} \theta_{0}-1\right)}
$$

$$
\text { and } \cos \left(\phi-\phi_{0}\right)=\frac{\cot \theta \cot \theta_{1}}{m^{2}-1}+\frac{1}{m^{2}-1} \sqrt{\left(m^{2}-\operatorname{cosec} c^{2} \theta\right)\left(m^{2}-\operatorname{cosec}^{2} \theta_{0}\right)} .
$$

$\therefore \cos \left(\sigma-\sigma_{0}\right)=\cos \frac{s-s_{0}}{a}=\sin \theta \sin \theta_{0} \cos \left(\phi-\phi_{0}\right)+\cos \theta \cos \theta_{0}$, as before.
j. We can also find s in terms of $\phi-\phi_{0}$, and the inclinations of the tangents at the extremities of the arc to the meridian.

Let 〔 be inclination at point where colatitude $=\theta$, and length of arc s, and a at point θ_{0}, s_{0}, then equation of the geodesic may be written

$$
a^{2} \sin ^{2} \theta \frac{d \phi}{d s}=\text { constant },
$$

i.e. $\quad a \sin \theta \sin \zeta=$ constant $=a \sin \theta_{0} \sin a=a^{2} / k$;
$\therefore \quad \sin \theta \sin \zeta=\sin \theta_{0} \sin \alpha$ and $m \sin \theta_{0} \sin \alpha=1$.

Get equations for ϕ, ε in terms of ζ, integrate, and then eliminate θ_{0}.

$$
\begin{aligned}
& \sin \theta= \sin \theta_{0} \sin \alpha \operatorname{cosec} \zeta ; \\
& \therefore \quad \cos \theta \frac{d \theta}{d \phi}=-\sin \theta_{0} \sin \alpha \cot \zeta \operatorname{cosec} \zeta \frac{d \zeta}{d \phi} ; \\
& \therefore \quad \sin ^{2} \theta \cos ^{2} \theta\left(m^{2} \sin ^{2} \theta-1\right)=\cos ^{2} \theta\left(\frac{d \theta}{d \phi}\right)^{2} \\
&=\sin ^{2} \theta_{0} \sin ^{2} \alpha \cot ^{2} \zeta \operatorname{cosec}^{2} \zeta\left(\frac{d \zeta}{d \phi}\right)^{2} .
\end{aligned}
$$

Substitute for $\sin \theta, \cos \theta$ in terms of ζ, and the equation becomes

$$
\sin ^{2} \zeta\left(\frac{d \zeta}{d \phi}\right)^{2}=\sin ^{2} \zeta-\sin ^{2} \theta_{0} \sin ^{2} \alpha
$$

$\therefore d \phi=\frac{\sin \zeta d \zeta}{\sqrt{\sin ^{2} \zeta-\sin ^{2} \theta_{0} \sin ^{2} \alpha}}=-\frac{d \eta}{\sqrt{1-\sin ^{2} \theta_{0} \sin ^{2} a-\eta^{2}}}$, where $\eta=\cos \zeta$,

$$
\begin{aligned}
\therefore \quad \phi-\phi_{0} & =\cos ^{-1} \frac{\cos \zeta}{\sqrt{1-\sin ^{2} \theta_{0} \sin \alpha}}-\cos ^{-1} \frac{\cos ^{2} \alpha}{\sqrt{1-\sin ^{2} \theta_{0} \sin ^{2} \alpha}} \\
& =\cos ^{-1} \frac{m \cos \zeta}{\sqrt{m^{2}-1}}-\cos ^{-1}-\frac{m \cos \alpha}{\sqrt{m^{2}-1}} .
\end{aligned}
$$

Now $\mathrm{d} \sigma^{2}=\sin ^{2} \theta d \phi^{2}+d \theta^{2}$,

$$
\begin{aligned}
& \therefore \quad\left(\frac{d \sigma}{d \zeta}\right)^{2}=\sin ^{2} \theta \cdot \frac{\sin ^{2} \zeta}{\sin ^{2} \zeta-\sin ^{2} \theta_{0} \sin ^{2} \alpha}+\frac{\sin ^{2} \theta_{0} \sin ^{2} a \cot ^{2} \zeta \operatorname{cosec} \zeta}{\cos ^{2} \theta} \\
&=\frac{\sin ^{2} \theta_{0} \sin ^{2} \alpha}{\sin ^{2} \zeta\left(\sin ^{2} \zeta-\sin ^{2} \theta_{0} \sin ^{2} \alpha\right)}, \quad \text { on reduction }, \\
& \therefore \quad d \sigma=\frac{d \zeta}{\sin \zeta \sqrt{m^{2} \sin ^{2} \zeta-1}}=-\frac{d v}{\sqrt{m^{2}-1-v^{2}}}, \text { where } v=\cot \zeta, \\
& \therefore \quad \sigma-\sigma_{0}=\cos ^{-1} \frac{\cot \zeta}{\sqrt{m^{2}-1}}-\cos ^{-1} \frac{\cot \alpha}{\sqrt{m^{2}-1}}
\end{aligned}
$$

$\therefore \cos \left(\sigma-\sigma_{0}\right)=\cos \frac{s-\varepsilon_{0}}{a}=\frac{\cot \zeta \cot \alpha}{m^{2}-1}+\frac{1}{m^{2}-1} \sqrt{\left(m^{2}-\operatorname{cosec}^{2} \delta\right)\left(m^{2}-\operatorname{cosec}^{2} a\right)}$.
And $\cos \left(\phi-\phi_{0}\right)=\frac{m^{2} \cos \zeta \cos \alpha}{m^{2}-1}+\frac{1}{m^{2}-1} \sqrt{\left(m^{2} \sin ^{2} \zeta-1\right)\left(m^{2} \sin ^{2} \alpha-1\right)}$, $\therefore \quad \cos \left(\phi-\phi_{0}\right)=\cos \alpha \cos \zeta+\sin \alpha \sin \zeta \cos \frac{8-\varepsilon_{0}}{a}$, the known result in
Spherical Trigonometry from triangle with side $s-s_{0}$, and angles $\phi-\phi_{\theta}, \pi-a, \zeta$ or $\phi-\phi_{0}, u, \pi-\zeta$.

