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Flow through sudden expansion finds its application in several engineering and biological
processes. Though the stability of flow through steady sudden expansion has garnered
much attention, little to none is given to the pulsatile flow through sudden expansion.
Hence, in the present work we study the influence of inflow pulsatility on flow
characteristics in a sudden expansion. The inflow velocity is a sinusoidal waveform that
is modulated to encompass a wide range of amplitudes, a, and reduced velocities, Ur.
We report four different modes, namely, synchronized growth of the recirculation region
(at high Ur), necking and diffusion of the recirculation region (at moderately high Ur),
splitting and convection of the recirculation region (at moderate Ur) and inverse growth
of the recirculation region (at low Ur). In each mode, the symmetry-breaking critical
Reynolds number is obtained through numerical experiments and compared with those
of Floquet stability analysis. We found that diffusion and the convection mode of the
recirculation region increases the stability of the flow while the inverse growth mode of
the recirculation region decreases the same. The effect of the expansion ratio, ER, is also
explored, and we found that as ER increases, the absolute stability of flow decreases, but
relative stability between the modes remains similar. Finally, we explain the dynamics of
the modes by using terms involving the vorticity transport equation.

Key words: shear-flow instability, vortex dynamics, separated flows

1. Introduction

Sudden expansion geometries are used in several engineering and biomedical applications,
such as augmenting heat transfer in heat exchangers (Zohir, Aziz & Habib 2011),
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combustion chambers (Reddy, Sujith & Chakravarthy 2006), fuel injectors, sorting blood
cells in microfluidic devices (Chang et al. 2010), etc. It has also been used for increasing
the nucleation rate of pharmaceuticals by an order of magnitude (Rimez, Debuysschère
& Scheid 2020) and fostering the mixing rate in fluids (Lü et al. 2016). Nature’s refined
designs of expansion are present in the aortic root of the heart, arterial bifurcation, etc.

Early experimental works quantified the velocity patterns downstream of the sudden
expansion (Durst, Melling & Whitelaw 1974; Cherdron, Durst & Whitelaw 1978; Fearn,
Mullin & Cliffe 1990; Durst, Pereira & Tropea 1993). They reported a pair of recirculating
eddies at the top and bottom walls after the expansion. At sufficiently low Reynolds
numbers (Re), the recirculating eddies are equal in size. As Re is increased, this symmetry
vanishes, with one of the recirculation regions growing in size at the expense of the other.
Cherdron et al. (1978) ascertained that the amplification of disturbances generated at the
lee of the expansion by the shear layer is responsible for the asymmetric nature of flow
above a critical Reynolds number. Fearn et al. (1990) and Durst et al. (1993) quantified
the symmetry breaking of the problem numerically by solving a steady, two-dimensional
Navier–Stokes equation and reported a bifurcation diagram. They obtained a critical
Reynolds number, Rec, below which the symmetric solution is stable and above which two
solutions that are antisymmetric with respect to each other exist. Sobey & Drazin (1986)
categorized this instability as pitchfork bifurcation. The observed asymmetry is attributed
to Coanda effects (Pitton, Quaini & Rozza 2017). Investigators have performed bifurcation
analysis, linear stability analysis (LSA) and weakly nonlinear studies to determine the
onset of primary and higher-order instabilities (Alleborn et al. 1997; Hawa & Rusak 2001).
Hawa & Rusak (2001) ascertained that the symmetric state can lose stability due to the
combined effects of convection of base flow vorticity and its perturbation, respectively, by
the perturbed and base axial flow along with viscous dissipation of vorticity perturbation.
The authors also report an additional recirculation region at the side of the smaller eddy
as Re increases.

Battaglia et al. (1997) and Drikakis (1997), amongst others, have studied the effect
of expansion ratio ER, defined as ER = d/D, where d and D are the heights of the
inlet and outlet channel, respectively, on the bifurcation phenomena in the expansion
channel. They found that as ER increases, Rec decreases. The effect of the angle of
expansion has also been studied by investigators (Shapira, Degani & Weihs 1990; Jotkar
& Govindarajan 2019). It was found that as the angle of expansion increased, the size
of the recirculation eddy also increased, with Rec dropping significantly. Drikakis (1997)
also examined various numerical schemes in their ability to predict Rec and found that
higher-order finite-difference schemes accurately predict symmetry-breaking phenomena.
Recently, Debuysschère et al. (2021) investigated the influence of inlet velocity profiles
on flow stability in a sudden expansion channel. Their inlet profiles varied from plug to
Poiseuille profiles, with several intermediate ones. They obtained higher Rec with the plug
than Poiseuille flow at the inlet, with an inverse relationship with the recirculation eddy
length Xr.

Most investigations on the stability of sudden expansion flow are restricted to steady
inflow cases. In the realm of pulsatile inflow in sudden expansion, Ma, Li & Ku (1994)
have compared the role of steady and pulsatile inflow in heat transfer augmentation. They
considered only a single time period of 8.7 s for the case of pulsating inflow and focused
mainly on the heat and mass transfer aspects at different Prandtl numbers. Stephanoff et al.
(1983) considered a pulsating inflow in a one-sided smooth-expansion channel via altering
the height of the channel. They obtained different flow regimes for low and moderate
Strouhal numbers, St = fd/ν, depending on the frequency of oscillation, channel height
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and mean velocity at the inlet. At lower St, the flow behaved quasi-steadily with a single
recirculation eddy behind the expansion. At moderate St, however, a vortex wave-like
phenomenon occurred with the presence of many small asymmetrically placed eddies at
both walls and the core flow moving in a sinuous manner. Sobey (1985) also observed this
phenomenon in their expansion channel and attributed the cause of this sinuous motion to
a shear-layer instability rather than a vortex wave.

Pulsatile sudden expansion flows are often encountered in arteries with stenosis.
Neofytou & Drikakis (2003a) performed simulations for a two-dimensional, pulsatile flow
of Newtonian and non-Newtonian fluids (Casson, power law and Quemada models) over
one-sided stenotic blockage in a channel. Neofytou & Drikakis (2003b) observed that in
steady flows over sudden expansion, both Newtonian and non-Newtonian fluids disembark
symmetry-breaking bifurcations. Wu et al. (2020) reported that the recirculation zone
after a sudden expansion arterial model with pulsatile inflow shows a reduced red blood
cell concentration. They suggested that these recirculation zones may favour platelet
accumulation. They found a red blood cell depletion region just after the sudden expansion,
which might favour platelet accumulation. For high Reynolds number flows, Devenport
& Sutton (1993) performed an experimental study of flow through axisymmetric sudden
expansion with an expansion ratio of 1.875 at Re = 35 000. They found a turbulent free
shear layer (similar to that of a round jet) due to the flow separation glances at the wall at
an angle that reduces in the presence of a centrebody. In the latter case, higher curvature
of the shear layer results in suppression of the turbulence levels. Karantonis et al. (2021)
studied compressibility effects on flows in a sudden expansion channel at high Reynolds
number and moderate Mach numbers. They found that compressibility effects substantially
influence the flow.

However, it may be observed that the effect of inflow pulsatility on the flow structures
in sudden expansion channels has been scarcely reported, although it has relevance in
several biological and engineering applications. Moreover, to the best of our knowledge,
the symmetry-breaking characteristics due to a pulsatile inflow over an expansion have
never been studied. Hence, in the present work we investigate the effect on flow stability
through planar sudden expansion via inflow pulsatility. We vary the amplitude and period
of pulsation to unveil different flow features. We show streamline patterns to qualitatively
describe the flow and define parameters such as scaled recirculation lengths, X∗

r , and scaled
position of the centre of the recirculation region, X∗

c , to quantify the size and location of the
eddying structures. We show four kinds of flow patterns or modes depending on pulsation
amplitude and frequency, which influence the Rec. Here, we denote the temporal evolution
of recirculation zones as modes. We also report the influence of ER on stability.

Arterial flow is pulsatile in nature, and sudden increases in lumen area are often
observed in the vascular networks (e.g. aortic or carotid sinus). Stenotic blockages
also form in the arterial lumen due to cholesterol deposition. The stenosis portion
resembles a smooth contraction–expansion. Depending on the site of the stenosis, the
Reynolds number and Womersley number parameters often change. The vortex dynamics
(i.e. the modes and behaviour) influence the stress field and, thus, atherogenic formation.
Asymmetry in the flow field determines which wall is more susceptible to atheroma.
Similarly, the location of the artery and the degree of stenosis determine the amplitude
of flow undulation. Hence, we have conducted the study encompassing a wide range of
Reynolds numbers, Womersley numbers and amplitude of the inflow pulsation (described
in detail in § 2).
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Figure 1. Schematic of the problem: solid orange line inflow, solid green line outflow, solid black line
bounding walls. The shaded area represents the computational domain. Here, Xr is the length of the
recirculation region, where subscripts 1 and 2 represent the bottom and top walls, respectively. The figure
denotes an asymmetric flow state, and a Poiseuille profile is prescribed at the inlet.

2. Problem description

The geometry consists of an inlet channel of unit non-dimensional height (d = 1), which
expands to a channel of height, D = ER, and length, L, as shown in figure 1. Here L is
chosen to be sufficiently large to satisfy domain independence as discussed in § 4.1. The
figure also represents the notations used for the length of recirculation regions, Xr, which
is the axial location along the walls where shear stress is zero. The expansion ratio, ER, is
the only geometrical parameter influencing the nature of the flow.

We consider both steady and pulsatile incompressible flows of a Newtonian fluid
through the expansion channel. At the inlet, a sinusoidally varying Poiseuille profile is
prescribed of the form

u( y, t) = 3
2
(1 − 4y2)(1 + a sin(2πt/T)) − 1/2 < y < 1/2, t ≥ 0, (2.1)

where a and T are the amplitude and time period of pulsation, respectively.
We define the cross-sectional and temporal average velocity, um(t) and ūm, respectively

as

um(t) = 1
d

∫ 1/2

−1/2
u( y, t) dy, ūm = 1

T

∫ T

0
um(t) dt. (2.2a,b)

The inlet profile (2.1) gives a cycle-averaged inflow of unity (ūm = 1). This leads to the
following important hydrodynamic parameters – the reduced velocity Ur, the amplitude a
and the Reynolds number Re, respectively, given by

Ur = ūmT/d = T, a = amplitude, Re = ūmd/ν, (2.3a–c)

where ν is the kinematic viscosity of the fluid. In the case of steady inflow, the Poiseuille
profile u( y) = (3/2)(1 − 4y2) is directly prescribed. In this case, the Reynolds number,
Re, is defined based on the sectional and time-averaged velocity at the inlet as Re = ūmd/ν.

In this work we examine the stability of pulsating flows through sudden expansion
channels for a wide range of Ur, a and ER (Ur = 0.5, 1, 1.25, 2.5, 5, 10, 20, 40, 80, 160;
a = 0.25, 0.5, 0.75, 1; and ER = 2, 3).
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Although we have considered a modulated Poiseuille velocity profile prescribed directly
at the expansion inlet, we have also simulated flow through a long inlet channel upstream
of the expansion and found that the different modes are similar to that obtained when
prescribing the inlet boundary conditions directly at the plane of expansion (these modes
are described in § 4.2). However, the critical Re values are smaller in long inlet channel
cases. For the details, readers are referred to Appendix A. We have also simulated flow
using the exact Womersley profile at the plane of expansion as an inlet condition and found
similar results in terms of the dynamics of the modes as with time-modulated Poiseuille
profile as an inlet at the expansion. For more details, readers are referred to Appendix B.

In the domain of biological flows, a commonly used non-dimensional parameter to
denote the flow pulsation (period) is the Womersley number, α, which is given as
α = d/

√
νT , representing the ratio of the transient inertial force to the viscous force. In

this work, we, however, use the reduced velocity Ur as a measure of the pulsation time
period, and both the quantities are related by α = √

Re/Ur. Critical Reynolds numbers
obtained in the present study lie between 75 and 400 for ER = 2 for various a and Ur, and
correspondingly, Womersley numbers lie between 1.25 and 18.

3. Mathematical modelling

The equations governing the flow are the dimensionless incompressible Navier–Stokes and
continuity equation for a Newtonian fluid,

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

�u, (3.1)

∇ · u = 0, (3.2)

where u consists of the x and y direction velocity components (u, v), p is the pressure and t
is the time. The x component of the inlet velocity boundary condition is the same as (2.1),
with the y component velocity being v = 0. The conditions at the outlet are that of a fully
developed flow,

∂u
∂x

= 0, (3.3)

and, at bounding walls, no-slip conditions are imposed,

u = 0. (3.4)

The equations are solved using a fractional step method (Harlow & Welch 1965) in a
staggered grid arrangement. The convection terms are discretized using a third-order
accurate finite difference upwinding scheme, while the diffusion terms use fourth-order
central differencing. The time marching is done by Adam–Bashforth’s explicit scheme,
which is of second-order accuracy. The time step is kept constant at 0.001 for all the
simulations, which is found to be lower than 0.1 Courant–Friedrichs–Lewy criteria. The
in-house code is accelerated with directive-based programming, OpenACC, to harness
the execution capacity on Graphics Processing Units (GPUs). We have used Nvidia
V100 16 GB GPU and Intel Xeon Gold 6148 CPU @2.40 GHz in the present work. The
linear system of equations resulting from Poisson’s equation of pressure is solved by a
preconditioned BiCGStab method implemented in the Amgx library (Naumov et al. 2015).

4. Results and discussion

First, we present grid independence and validation study for the steady inlet sudden
expansion flow. Validation is done for both symmetric and asymmetric flows.
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P REV C

2.55 11.9125 0.91

Table 1. Grid convergence study. Here P, REV and C are the convergence rate, the extrapolated length of the
recirculation region and the asymptotic rate of convergence.

ER Grids Xr1, Xr2 % error

3 d/20 4.17, 11.83 1.4, 0.7
d/40 4.22, 11.90 0.24, 0.08
d/80 4.23, 11.91 —

2 d/20 3.66, 10.00 1.61, 0.6
d/40 3.71, 10.05 0.27, 0.7
d/80 3.72, 10.06 —

Table 2. Mesh resolution study performed for ER = 3 at Re = 100 and ER = 2 at Re = 233.33.

4.1. Grid independence study and validation
Extensive grid resolution studies have been performed, and the accuracy of the solution
is evaluated through Richardson’s extrapolation (Slater 2021). Richardson’s extrapolation
is a method to determine the value of a quantity at a continuum limit (grid size
being infinitesimal) based on the values at a few discrete grid spacing levels. Order
of convergence, P, deals with the rate at which error diminishes with grid size. In a
first-order convergence the solution error scales linearly with the grid size (P = 1), while
in second-order convergence a reduction in grid size reduces the error quadratically (P =
2). Finally, the asymptotic range of convergence, C, refers to convergence behaviour when
grid size is sufficiently small such that changes in grid levels do not affect the solution
substantially (C = 1). For the definitions of P, REV and C please refer to Appendix C.

Table 1 reports the order of convergence, P, the predicted value of the recirculation
length, REV , using Richardson’s extrapolation, and the asymptotic range of convergence,
C. The analysis presented is for three distinct grids with a constant grid ratio, r = 2, for
steady inlet at Re = 100 and ER = 3 (see Xr2 versus grid sizes for ER = 3 in table 2).

Table 2 shows the length of the recirculation eddies, Xr, varying with grid sizes for
steady Poiseuille inflow at ER = 3 for Re = 100 and ER = 2 for Re = 233.33. In both
cases, the Reynolds number was chosen sufficiently above Rec (shown later). As shown in
the table, a cell size of d/40 is sufficient enough to resolve the eddies for both ER values,
and hence, a uniform grid spacing of d/40 is employed in the present study. Flow features
do not change for varying lengths of the domain from L = 50 to L = 400. Hence, the
length of the domain is kept sufficiently long, L = 100, for cases with low-to-moderate
Ur (0.5, 1, 1.25, 2.5, 5, 10, 20, 40). For higher Ur (80, 160, 320), however, the length of the
channel is kept at 2.5Ur to ensure features arising from at least two complete flow cycles
reside in the computational domain at any point in time.

For validation, we compare the length of the recirculation region obtained from our
simulations using a steady inlet against that of Debuysschère et al. (2021). As presented in
table 3, the results closely match. We also present the critical Reynolds number obtained
for both geometric configurations in table 4, which is in good agreement with the
direct numerical simulation (DNS) and LSA results of Debuysschère et al. (2021).
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Inlet profile Re Xr (Present) Xr (Debuysschère et al. 2021)

Poiseuille 56.5 5.96, 5.96 5.98, 5.98
58 5.24, 6.86 5.30, 6.92
60 4.72, 7.53 4.77, 7.57
66 4.24, 8.8 4.29, 8.81

Uniform 100 6.23, 6.23 6.26, 6.26

Table 3. Comparison of the length of the recirculation region Xr at ER = 3 with that of Debuysschère et al.
(2021).

ER Rec DNS LSA

3 57.25 ± 0.25 57 ± 1 57 ± 0.3
2 169.5 ± 0.5 170 ± 3.3 169.2 ± 0.8

Table 4. Critical Reynolds number (Rec) for different expansion ratios (ER). Comparison with DNS and LSA
results of Debuysschère et al. (2021).

u
0 0.5 1.0 1.5

–1.0

–0.5

0

0.5

1.0

y

u
0 0.5 1.0 1.5

–1.0

–0.5

0

0.5

1.0

(a) (b)

Figure 2. Velocity profiles for (a) Re = 167, (b) Re = 233.33 at ER = 2. At y = 0 from right to left, the
velocity profiles are for axial distances x = (1, 2, 4, 6, 10, 25). Solid lines represent profiles obtained by our
in-house CFD code, while symbols represent those of Nektar++.

Furthermore, in figure 2 we show the comparison of the velocity profiles for the case of
Re = 167 and Re = 233.33 at ER = 2 with those obtained through Nektar++ (Cantwell
et al. 2015), which is an open-source spectral element method based flow solver. An
excellent match is obtained with Nektar++’s prediction. Note the symmetric nature of
flow with respect to the y axis in figure 2(a) and asymmetric nature in figure 2(b). This is
due to the occurrence of a symmetry-breaking bifurcation at Rec = 169.5 ± 0.5.

In the next section we first introduce the four different kinds of flow modes (denoted
as modes A, B, C and D) observed in pulsatile sudden expansion channels. Then, we
present the mapping of the modes with varying Ur and a and discuss their influence on the
critical Reynolds number. The effect of amplitude on the modes is shown next for different
values of Ur. Then, we present the mode mapping at a higher ER. Finally, we explain the
modes via the levels of convection and diffusion terms in the vorticity transport equation
as well as vorticity production at channel walls and undergo a Floquet analysis to verify the
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Figure 3. Streamlines for Ur = 160 at a = 0.25, and Re = 170 at different phases: (a–d) in steps of T/4. Here,
Re is below the critical value and the flow is symmetric. The flow is described by mode A, i.e. conformal growth
of recirculation regions with incoming pulsation.

symmetry-breaking Rec from our simulations as well as delve into the perturbation flow
features responsible for the symmetry breaking.

4.2. General flow features for pulsatile inflow
Here, we report the pulsatile flow features for ER = 2 over a wide range of Ur (0.5–160)
at a constant a of 0.25. Then, we investigate various flow modes over a range of inflow
amplitudes and at a different expansion ratio.

4.2.1. Ur = 160, 80, 40, mode A – synchronized growth of recirculation regions
Figure 3 shows the phase-resolved streamlines at Ur = 160, a = 0.25 and Re = 170. At
such high reduced velocities (pulsation time period) the eddies behind the step show
temporal synchronization with the inflow profile. We see that in the early accelerating part
of the cycle, these eddies grow in length (figure 3a,b) and then diminish in the later part
of the cycle (figure 3b–d), due to local deceleration at the inlet. We denote this conformal
behaviour of the eddies as mode A.

For quantification purposes, we define a scaled recirculation length, X∗
r , as X∗

r = Xr/X̄r,
where X̄r denotes the time-average value of Xr. Figure 4(a) shows the temporal variation
of X∗

r and the sectional averaged inflow, um(t), at Re = 170 (Ur = 160 and a = 0.25). We
observe a similar response of the recirculation eddies compared with variation in um(t)
(25 % growth and decay in size about the mean, similar to the amplitude of incoming
pulsation). As Re is increased, the flow becomes unstable and the recirculation regions
become unequal in length at the top and bottom walls. This asymmetric behaviour (Ur =
160 and a = 0.25) is shown in figure 4(b) for Re = 180. As plotted against time, the shorter
eddy, with a mean length of 4.67 (X∗

r2), becomes phase locked with the inflow profile,
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0.5
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2.5
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X ∗
r2 Ur=640
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(c) (d )

Figure 4. Scaled recirculation length X∗
r at different phases for Ur = 160, a = 0.25 and (a) Re = 170,

(b) Re = 180. Results are shown for (c) X∗
r for Ur = 640, 160, 80, 40 at a = 0.25 and Re = 170; (d) X∗

r for
Ur = 640, 160, 80, 40 at a = 0.25 and Re = 180. Flow mode A: conformal growth of recirculation regions.
Comparison with sectional averaged inflow, um(t). Plots are dimensionless and shown on the same y-axis scale.

while the bigger, lower eddy (with a mean length of 7.1, X∗
r1) shows an increased phase

lag. The phase-locking phenomena of the shorter eddy can be addressed due to its core’s
close proximity to the inlet since, in this case, the jet first strikes the upper wall before
deflecting towards the lower wall. Based on the average flow field, the critical Reynolds
number for symmetry-breaking bifurcation, Rec, is 175.5 ± 0.5 (Ur = 160 and a = 0.25),
which is slightly higher than that of steady inflow at the same ER (Rec = 169.5 ± 0.5).

To further explore mode A (at a = 0.25), we observe the response of recirculation
regions for other values of Ur (at Re = 170). When Ur is large (e.g. Ur = 640), the
growth of the recirculation region shows negligible phase lag with the inflow profile
(see figure 4(c), X∗

r for Ur = 640). At Ur = 160, the recirculation zone reaches its peak
at t/T = 5/8, showing a phase lag of 1/8T with the inflow pulsation. This lag increases to
1/4T and 3/8T for Ur = 80 and Ur = 40, respectively. Note that the recirculation region
diminishes in size in the last 1/8th part of the pulsation cycle, whereas the inflow shows
an acceleration for all cases, except for the lowest period case (Ur = 640), in which the
response of the recirculation region is nearly synchronized with the inflow. The Rec in this
regime increases slightly with a reduction in Ur, as Rec = 176.5 ± 0.5 for Ur = 80, and
Rec = 178.5 ± 0.5 for Ur = 40 at constant a = 0.25.

The phase lag observed in this case (figure 4c) is similar to the phase lag
prevalent in pulsatile flows in a straight channel between the driving pressure gradient
and its associated flow rate. As Ur decreases, the associated phase lag increases.
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Figure 5. Scaled pressure drop dp∗ at different phases for a = 0.25 and Re = 170 for various Ur = 640, 160,
80 and 40.

We define a scaled pressure drop parameter, dp∗(t) = p(10, 0, t) − p(0, 0, t)/( p(10, 0)

− p(0, 0))time-averaged field, where p(10, 0, t) is considered sufficiently downstream from
the end of the recirculation regions. Figure 5 shows the time series plot of dp∗ for
Ur = 640, 160, 80, 40 at a = 0.25 and Re = 170. At Ur = 640, the dp∗ shows a negligible
phase lag, but as Ur decreases, the associated phase lag increases. This may result in
the phase lag of the growth of the recirculation region as shown in figure 4(c). It can
also be observed in figure 5 that as Ur decreases, the amplitude of oscillation of dp∗
increases, suggesting an increased growth and shrinkage of the recirculation region from
their respective mean lengths (as observed in figure 4c).

4.2.2. Ur = 20, mode B – necking and diffusion of recirculation region
At Ur = 20, a = 0.25, we observe a different flow pattern than discussed in the previous
subsection. The streamlines are depicted in figure 6 for Re = 180 (which is below the
Rec for the chosen pulsation parameters). There is a large growth in the size of the
recirculation region during a major part of the inflow pulsation cycle (t/T = 0 to 3/4;
see figure 6a–d), and then it diminishes rapidly over a very short duration of time
(t/T = 3/4 to 1; see figure 6d–a).

This abrupt reduction in the size of the recirculation region occurs via a necking
phenomenon (here it occurs at t/T = 0.86; see figure 6), which splits the recirculation
region into a proximal (at the corner of the expansion) and distal portion. The distal
portion then diffuses rapidly into the flow. The scaled recirculation length is shown in
figure 7, which signifies the abrupt decline in the size of the recirculation region after
reaching maximum growth. This necking and diffusion of the recirculation zone is termed
mode B here. The critical Reynolds number in this regime is higher than that of mode A,
i.e. for Ur = 20 and a = 0.25, Rec = 187.5 ± 0.5. We also plot the scaled pressure drop,
dp∗, in this case (see figure 7b). The scaled pressure drop changes its sign from being
adverse (dp∗ = +ve) to being favourable (dp∗ = −ve) at t/T = 0.8, during the lower
inflow velocity phase, which corresponds to the necking behaviour of the recirculation
zones at t/T = 0.86.

Above Rec, asymmetricity in this regime is observed throughout the cycle. The necking
takes place at two locations in the eddy associated with the upper wall while a single
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Figure 6. Streamlines for Ur = 20 at a = 0.25 and Re = 180 at different phases (a–g). Flow mode B:
necking and diffusion of the recirculation region.

necking occurs in that of the lower wall beyond Rec. This necking phenomenon can be
attributed to an increased convection and smaller diffusion rates of vorticity. This will be
discussed in a later subsection.

4.2.3. Ur = 10, 5, mode C – splitting of recirculation region
In this high-frequency pulsatile flow regime there is a similar necking phenomenon as
discussed in mode B; however, the distal eddy advects downstream instead of diffusing
in the flow in this mode. Flow behaviour for this case is shown as a streamline plot in
figure 8 for Ur = 10. The recirculation eddies generated at the corner of expansion advects
to a distal position after necking and subsequent breakdown (see x = 5.5 in figure 8(a);
the necking occurs in the last 1/8th part of the cycle as in the previous subsection). The
advected eddy diffuses later through the subsequent cycles. We do not provide the length
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Figure 7. (a) Scaled recirculation length X∗
r at different phases for Ur = 20 at a = 0.25 and Re = 180.

Comparison with sectional averaged inflow, ūm(t). Parameters, ūm(t) and X∗
r , are dimensionless and shown on

the same axis scale. (b) Scaled pressure drop dp∗ at different phases for a = 0.25 and Re = 180 for Ur = 20.

of the recirculation zone here because the recirculation eddies split and convect. Rather, we
present the scaled location of the centre of the eddy X∗

c , (X∗
c = Xc/X̄c, where X̄c denotes

the time-average value of Xc) in figure 9(a). We observe that the core position of the
recirculation zone moves at a constant speed. The scaled pressure drop, dp∗, shown in
figure 9(b), shows a higher amplitude compared with the two low-frequency modes (A
and B) discussed earlier. The critical Reynolds number for Ur = 10 and Ur = 5 is Rec =
201.5 ± 0.5 and Rec = 180.5 ± 0.5, respectively. This splitting of the recirculation region
is termed mode C for subsequent discussion. A similar observation of the recirculation
region splitting and convection is found in pulsatile flow over a constricted tube (figure 2
in Barrere et al. 2023). Higher rates of vortex convection in this regime are attributed
to both mean and fluctuating components of convection of vorticity (discussed in a later
subsection).

4.2.4. Ur = 2.5, 1.25, 1, 0.5, mode D – inverse growth of recirculation region
When Ur is small, we observe a high phase lag in the behaviour of eddies with respect
to the inflow pulsation. Figure 10 shows the streamlines in this regime for Ur = 1.25
and Re = 160 at a = 0.25. During acceleration (figures 10a,b and 10d,a), the size of the
recirculation region shrinks, while during deceleration (figure 10b–d) it grows, showing an
anti-phase behaviour with inflow pulsation. The critical Reynolds number for this case is
161.5 ± 0.5, which is lower than the steady inflow case at this ER. The temporal variation
of X∗

r for different Ur is shown in figure 11(a), and it shows a complete off-phase nature
as compared with the variation of sectional averaged inflow. The scaled pressure drop,
dp∗, for the case of Ur = 1.25, is shown in figure 11(b). We can observe a very high
amplitude of the pressure drop compared with the previous cases. When the pressure
drop is favourable (dp∗ = −ve, 0 ≤ t/T ≤ 0.25), the recirculation region shrinks in size
(see figure 11(a), 0 ≤ t/T ≤ 0.25). Then, when the pressure drop is adverse (dp∗ = +ve,
0.25 ≤ t/T ≤ 0.75), the recirculation zone grows in size. Finally, the pressure drop
becomes favourable (dp∗ = +ve, 0.75 ≤ t/T ≤ 1), resulting in a decline in the size of
the recirculation region. Therefore, the recirculation zone shrinks and grows following
the sign of the pressure drop and, hence, shows phase lag with both inflow pulsation and
pressure drop variation cycles. This subsection describes the fourth mode, i.e. mode D –
showing inverse growth of the recirculation region. Compared with other modes, this
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Figure 8. Streamlines for Ur = 10 at a = 0.25 and Re = 180 at different phases: (a–d) phases in steps of
T/4. Flow mode C: splitting and advection of the recirculation region.
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Figure 9. (a) Scaled recirculation region centre position X∗
c at different phases for Ur = 10, Re = 180 and

a = 0.25. Comparison with sectional averaged inflow, ūm(t). Parameters, ūm(t) and X∗
c , are dimensionless and

shown on the same axis scale. (b) Scaled pressure drop dp∗ at different phases for a = 0.25 and Re = 180 for
Ur = 10.

mode shows a higher diffusion and comparable convection rates of vorticity. We have
also observed higher rates of convection of fluctuating vorticity (described in § 4.6).

The above results describe in detail the nature of various flow modes at a = 0.25. These
modes encompass the flow description at other a and ER as well. It is to be mentioned that
the modes for different a and Ur regimes are similar for a long inlet channel flow as well
as for a Womersley inlet velocity profile as discussed in Appendices A and B.
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Figure 10. Streamlines for Ur = 1.25 at a = 0.25 and Re = 160 at different phases: (a–d) phases in steps of
T/4. Flow mode D: inverse growth of the recirculation region.
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Figure 11. (a) Scaled recirculation length X∗
r at different phases for Ur = 2.5, 1.25, 1, 0.5 at a = 0.25 and

Re = 160. Comparison with sectional averaged inflow, ūm(t). Parameters, ūm(t) and X∗
r , are dimensionless and

shown on the same axis scale. (b) Scaled pressure drop dp∗ at different phases for a = 0.25 and Re = 160 for
Ur = 1.25.

4.3. Critical Reynolds number and mode map
Figure 12(a) shows the Rec associated with differing Ur and a along with the modes. At
low Ur (0.5, 1, 1.25, 2.5), mode D (inverse growth of recirculation region) is prevalent,
with increasing a leading to a reduction in stability. At moderate Ur (5, 10, 20), mode C
(splitting and advection of the recirculation region) is seen, which is associated with higher
stability. At high Ur (40, 80, 160), mode B (necking and diffusion of the recirculation
region) is prevalent with some of the highest stability points, and mode A (conformal
growth of the recirculation region) is also observed to stabilize the flow at further higher
Ur. At low or moderate reduced velocities (Ur ≤ 5), stability decreases with a. Above
Ur = 10, stability increases with a (0.25, 0.50, 0.75) except at a = 1.00, which is reported
to have lower stability than a = 0.75. This may be attributed to the presence of a zero
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Figure 12. (a) Critical Reynolds number Rec, annotated with flow modes, (b) mode map, for Ur (0.5–160)
and a (0.25–1.00) for ER = 2.

inflow phase. The mode map is depicted separately in figure 12(b), which shows that a
higher time period (or Ur) yields mode A at low or moderate amplitudes. However, mode
B is observed at high values of a. As Ur reduces, mode A is only observed in lower a, and
moderately higher a yields mode B. As Ur further decreases, mode C is also seen at high
a. At much lower Ur, we see only mode C across all values of a. As Ur is lower than 5,
only mode D is seen. We have not investigated beyond a = 1.00 to avoid backflow.

4.4. Effect of amplitude, a, on the flow features

4.4.1. Low Ur (0.5, 1, 1.25, 2.5)

At low Ur, as a increases, the disappearance of the recirculation region speeds up in mode
D. Figure 13(a) shows an increase in the opposite response of X∗

r with sectional averaged
inflow, um(t), at increased a. The dashed lines represent the growth of the recirculation
regions until it spans over the entire domain length at higher values of a, while filled
circles represent the reoccurrence of the recirculation at later times. This particular flow
field is visualized in figure 14 for a = 0.75 at Ur = 1 and Re = 108. The critical Reynolds
number decreases from 162.5 to 86.5 when a is increased from 0.25 to 1.00. Here, Rec for
the steady case is 169.5.

4.4.2. High Ur
When Ur is high (Ur = 160), higher values of a augment the stability of the flow. This
happens due to a change of modes from A to B as a is increased (see figure 13b).
For a = 0.25, 0.50, and 0.75, mode A with conformal growth and shrinkage of the
recirculation region is prevalent. On the other hand, at a = 1.00, the mode is necking and
diffusion of the recirculation region (mode B), with a sharp reduction in the size of the
recirculation region. This is associated with improved stability at a = 1.00 at Ur = 160.
Here Rec increases from 175.5 to 245.5 as a increases at this Ur.

4.4.3. Moderate Ur
At moderate values of Ur (5–20), mode C is prevalent. Interestingly, at Ur = 10, there is a
change of trend, whereby, for lower values of Ur, the Rec decreases with a, but at higher
Ur, the same feature is no longer maintained.
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Figure 13. (a) Plot of X∗
r at different phases for Ur = 1, for various a and Re just below respective Rec. The

magnitude of the inverse response increases with a. Sharp changes of curvature of X∗
r at the deceleration part

for a (0.50, 0.75 and 1.00) are indicative of back feeding of the recirculation zone from the outlet section.
(b) Plot of X∗

r at different phases for Ur = 160, for a = 0.25, 0.50, 0.75, 1.00 and Re is just below respective
Rec (Re = 170 for a = 0.25; Re = 185 for a = 0.50; Re = 228 for a = 0.75; Re = 269 for a = 1.00). The
coloured lines show the flow mode changes from A to B with increasing a.
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Figure 14. Streamlines for Ur = 1 at a = 0.75 and Re = 108 at different phases: (a–c) phases in steps of T/8,
(a) representing recirculation regions spanning over the entire domain length, (b) representing the shrinkage of
the recirculation region in the wall normal direction and (c) representing reoccurrence of the same at a later
time.

4.5. Critical Reynolds number and mode map at a higher ER
Now, we report the mode map and critical Reynolds number for varying Ur and a at
ER = 3. Figure 15(a,b) shows the critical Reynolds numbers and associated mode map,
respectively. A similar trend is seen in both the ER (2, 3). The Rec are lower than those of
ER = 2, and the associated mode map shows a slight change in some positions, especially
in moderate Ur. Mode A is delayed to high Ur here. The reduction in the values of the
critical Reynolds number at a higher expansion ratio is reported for steady inflow cases
(Battaglia et al. 1997; Drikakis 1997). The same effect may persist in the pulsatile cases,
lowering the Rec.
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Figure 15. (a) Critical Reynolds number Rec, annotated with flow modes, and (b) mode map, for
Ur (0.5–160) and a (0.25–1.00) for ER = 3.

4.6. Transport of vorticity in different modes
In earlier subsections we have described in detail the various flow modes in sudden
expansion channels with inlet pulsatility depending on the amplitude and frequency of
the inflow waveform. In this section we explain the vorticity dynamics associated with the
respective modes. Consider the vorticity transport equation

∂ω

∂t
+ (u · ∇)ω = 1

Re
�ω, (4.1)

where ω denotes the vorticity in the z direction, the second term on the left-hand side
of (4.1) denotes convection of vorticity, and the right-hand side term denotes diffusion
of vorticity. We have also considered the production of vorticity at the channel walls for
all the modes. For that purpose, vorticity flux at the channel wall is estimated from the
pressure gradient along the channel wall as

∂p
∂x

= −μ
∂ω

∂y
. (4.2)

It may be inferred from (4.2) that the positive value of the pressure gradient along the
lower channel wall (∂p/∂x > 0) indicates the growth of a negative shear layer over that
wall, and its negative value indicates weakening of this shear layer. For the top wall, the
wall normal being in the negative y direction, the effects are similar for the positive shear
layer formed over that wall. We have discussed the variation of the wall pressure gradients
during different phases of pulsation and its effects on the respective modes in the following
subsections.

4.6.1. Mode A
Figures 16(a), 16(b) and 16(c) show the contours of instantaneous vorticity, instantaneous
convection and diffusion of vorticity for mode A, respectively, at t/T = 0, t/T = 0.125
and t/T = 0.71875 for a = 0.75, Ur = 160 and Re = 228. We observe an enhanced
absolute convection of vorticity relative to the diffusion term (see figure 16b) during the
high inlet velocity accelerating phase. Therefore, (4.1) provides an increase in the rate
of change of vorticity (positive in the upper shear layer and negative in the lower shear
layer), which elongates and strengthens the shear layers and, consequently, results in an
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Figure 16. Contours for vorticity, convection and diffusion of vorticity for mode A for Ur = 160, a = 0.75
and Re = 228 at (a) t/T = 0, (b) t/T = 0.125 and (c) t/T = 0.71875 phase.

increase in the size of the recirculation region. Later, as the inlet velocity reduces, the
convection term shows a diminished magnitude, but diffusion increases due to higher
gradients of vorticity, which was established by the shear layers. We also observe enhanced
diffusion of vorticity into walls in the later phases (see figure 16c). Finally, the diffusion
of vorticity becomes greater than convection, which results in a net reduction rate of
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change of vorticity, and the shear layer weakens along with shrinkage in the size of the
recirculation region (see figure 16c). In this mode the vorticity convection term shows a
smooth spatial distribution, indicating no break-up of the recirculation region. We observe
synchronized growth and decay of the recirculation region.

Figure 20(a) shows the pressure gradient along the channel walls from which vorticity
flux through the wall may also be estimated (refer to (4.2)). As the recirculation zone stays
over the wall during the entire pulsation cycle without showing necking or disappearance, a
positive value of wall pressure gradient is observed in this region over all phases. However,
we can observe that for mode A, ∂p/∂x increases from t/T = 0 to t/T = 0.25 and then it
decreases till t/T = 0.75 and then it again increases to t/T = 1 (figure 20a), giving rise to
a similar nature of rate of change of vorticity influx from the wall and, consequently, the
conformal nature of growth and decay of the recirculation regions (growth during the first
quarter, then decay and again showing growth at the last quarter) is observed in mode A.

4.6.2. Mode B
Mode B (see figure 17a–c) is typically interesting as it encompasses the phenomena
of eddy splitting. Here, at a later part of the pulsatile cycle (t/T = 0.8325), there is a
discontinuity in the contours of convection of vorticity with its peaks at two locations
(one at the vortex tip, another at the lip of expansion, see figure 17b,c). Due to this patchy
convection term, the shear layer does not grow smoothly. Furthermore, higher vorticity
diffusion is observed between the peaks of the convection term that leads to the necking
and eventual splitting of the recirculation region in this mode. Figure 17(c) shows the
necking in the recirculation bubble.

For mode B, the pressure gradient along the wall remains positive for a longer span in the
axial direction at t/T = 0.50, indicating an increased span of the recirculation region till
t/T = 0.50 (figure 20b). At t/T = 0.75, however, the pressure gradient falls to zero value
after a short span and again rises to the second peak, which is higher than the first. This
behaviour indicates a local reduction in vorticity influx within the recirculation region,
representing the necking phenomena in this mode.

4.6.3. Mode C
In mode C (see figure 18a) the eddy-splitting phenomenon results in the convection of
distinct recirculation regions. We can see reduced diffusion in the vicinity of the core of the
recirculation region, yielding this distinct vortex feature. To further explore the vorticity
dynamics during the convection of the vortices in this high-frequency pulsatile flow, we
look into the time-averaged vorticity equation following the decomposing of the flow field
in mean and fluctuating components. Considering u = ū + û and ω = ω̄ + ω̂, where the
instantaneous fields (u(x, y, t), ω(x, y, t)) are decomposed into a mean (ū(x, y), ω̄(x, y))
and an oscillating field (û(x, y, t), ω̂(x, y, t)) for pulsatile flow, and averaging (4.1) over a
time period, the averaged vorticity transport equation is

∂ω̄

∂t
+ (ū · ∇)ω̄︸ ︷︷ ︸

term I

+ (û · ∇)ω̂︸ ︷︷ ︸
term II

= 1
Re

�ω̄︸ ︷︷ ︸
term III

. (4.3)

In the above equation, term I represents the convection of averaged vorticity by the mean
flow field, term II represents averaged convection of fluctuating vorticity by the fluctuating
flow field and term III represents the diffusion of averaged vorticity. In the time-averaged
vorticity transport plot (figure 18b), we note that transport term III is stronger than the

980 A43-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
74

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1074


N. Sarkar and S. Roy

1

0

–1

1

0

–1

1

0

–1
0 2 4 6 8 12 14 16 1810

0 2 4 6 8 12 14 16 1810

0 2 4 6 8 12 14 16 1810

2

0.1

–0.1
–0.2

0

0.2

0.1

–0.1
–0.2

0

0.2

1
0
–1
–2

y

y

y

ω

(u · ∇)ω

(1/Re)�ω

2

0.1

–0.1
–0.2

0

0.2

0.1

–0.1
–0.2

0

0.2

1
0
–1
–2

ω

(u · ∇)ω

(1/Re)�ω

2

0.1

–0.1
–0.2

0

0.2

0.1

–0.1
–0.2

0

0.2

1
0
–1
–2

ω

(u · ∇)ω

(1/Re)�ω

(a)

(b)

(c)

1

0

–1

1

0

–1

1

0

–1
0 2 4 6 8 12 14 16 1810

0 2 4 6 8 12 14 16 1810

0 2 4 6 8 12 14 16 1810

y

y

y

1

0

–1

1

0

–1

1

0

–1
0 2 4 6 8 12 14 16 1810

0 2 4 6 8 12 14 16 1810

0 2 4 6 8 12 14 16 1810

y

y

y

x
000 22 44 66 88 1212 1414 166 1188100

ωω

000 22 44 66 88 122 1414 166 1188100

ω

0 2 4 6 8 12 14 16 1810

ω

Figure 17. Contours for vorticity, convection and diffusion of vorticity for mode B for Ur = 20, a = 0.25 and
Re = 180 at (a) t/T = 0, (b) t/T = 0.655, and (c) t/T = 0.8325 phases.
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and Re = 342 at t/T = 0; (b) contours of averaged vorticity transport rates for the t/T = 0 phase.

other two terms and shows distinct peaks at the tips of the time-averaged recirculation
regions. Therefore, the unsteadiness in both vorticity and velocity is responsible for the
departure of the recirculation region through this location.

For mode C, the peaks and valleys in the pressure gradient are responsible for necking
and advection of recirculation zones (figure 20c).

4.6.4. Mode D
Figures 19(a), 19(b) and 19(c) show the contours of instantaneous vorticity, instantaneous
convection and diffusion of vorticity for mode D, respectively, at t/T = 0, t/T = 0.25
and t/T = 0.50, for Ur = 1, a = 0.75 and Re = 108. In this mode we have an inverse
relation of the growth of the recirculation region with the inflow pulsation. As the inflow
flux increases (t/T = 0 to t/T = 0.25), the diffusion of vorticity towards the wall is
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Figure 19. Contours for vorticity, convection and diffusion of vorticity for mode D for Ur = 1, a = 0.75 and
Re = 108 at (a) t/T = 0, (b) t/T = 0.25 and (c) t/T = 0.50 phases.

higher (see figure 19a,b). Owing to this diffusion behaviour, the shear layer grows closer
to the wall, and consequently, we observe attached boundary layers over the wall with
the disappearance of the recirculation bubble during the higher velocity phases of the
pulsation cycle. Convection of vorticity shows a patchy anti-symmetric behaviour, and its

980 A43-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
74

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1074


A planar sudden expansion with pulsatile inflow velocity

0 5 10 15 20

0

0.01∂
p/

∂
x

∂
p/

∂
x

0.02

0.03
t/T = 0
t/T = 0.25
t/T = 0.50
t/T = 0.75

0 5 10 15 20 25

–0.02

0

0.02

0.04

0.06

x
0 5 10 15 20

–0.05

0

0.05

0.10

0.15

x
0 2 4 6 8 10

–0.2

0

0.2

(b)(a)

(d )(c)

Figure 20. Pressure gradient at bottom wall at t/T = 0, t/T = 0.25, t/T = 0.50 and t/T = 0.75 for (a) mode
A, (b) mode B, (c) mode C and (d) mode D, respectively.

magnitude is not substantial away from the inlet. Therefore, the shear layer does not spread
further downstream, unlike the previous modes. Small local fluctuations in the shear layer
are responsible for the patches in the convection term. At the low-velocity phases of the
cycle (t/T = 0.50 and later), the resultant vorticity from the wall diffuses back to the core
shear layer (see figure 19c). This results in the movement of the shear layer away from
the wall and the eventual reappearance of the recirculation regions at the deceleration
phase of the cycle. Overall, this mode shows an inverse nature of decay and growth of the
recirculation region as compared with velocity acceleration and deceleration.

In mode D, at t/T = 0 (figure 20d), the pressure gradient is negative, signifying a
positive vorticity influx to the negative shear layer formed over the bottom wall, and hence,
the recirculation region shrinks in span and size from t/T = 0 to t/T = 0.25. The positive
shear layer of the top surface shrinks similarly due to the influx of negative vorticity there.
From t/T = 0.25 to t/T = 0.5, the pressure gradient is positive and results in an influx
of vorticity from the walls, which strengthens the shear layers and yields an increased
size of the recirculation region. This behaviour also explains the inverse growth of the
recirculation region with respect to the inflow pulsation.

4.7. Floquet analysis
In this subsection we explore the stability of time-periodic symmetric flow in sudden
expansion via Floquet analysis. A similar analysis has been performed by Sherwin &
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Blackburn (2005) and Gopalakrishnan, Pier & Biesheuvel (2014) for pulsatile flow over
a model stenotic artery and model abdominal aortic aneurysms, respectively.

4.7.1. Perturbation equations
In Floquet analysis one examines the stability of spatially developed and time-periodic
base flows over symmetric and antisymmetric perturbations, and one expects the
antisymmetric perturbations to become unstable and lead to potential symmetry breaking
in our configuration. Let the composite velocity field be decomposed as

u = U + u′, (4.4)

where U(x, y, t) is the T-periodic base flow whose stability is to be determined, and
u′(x, y, t) is an infinitesimal two-dimensional perturbation imposed on the base flow.

The T-periodic base flow is obtained by solving the respective variables (U, P) in the
Navier–Stokes equation,

∂U
∂t

+ (U · ∇)U = −∇P + 1
Re

�U, with ∇ · U = 0 in Ω/2 (half of domain),
(4.5)

the boundary conditions for U are obtained as consistent with that of u ((2.1), (3.3), (3.4)).
Substituting (4.5) in (3.1) and linearizing with respect to perturbation terms results in

the following equation for the perturbation quantities:

∂u′

∂t
= −(u′ · ∇)U − (U · ∇)u′ − ∇p′ + 1

Re
�u′, with ∇ · u′ = 0 in Ω. (4.6)

At all boundaries, u′ = 0 is specified.
Defining an operator L(u′) consisting of the right-hand side of the linearized equation

(4.6),
∂u′

∂t
= L(u′), (4.7)

is an evolution equation based on u′ and is of Floquet type. The operator L(u′) is
also T-periodic, and u′(x, y, t) ≡ ũ(x, y, t) exp(σ t), where ũ(x, y, t) are also T-periodic
functions. The Floquet modes are the eigenfunctions of the operator L, and the complex
numbers σ are the Floquet exponents. The velocity and pressure perturbations from cycle
to cycle are related by

u′(x, y, t + T) = exp(σT)u′(x, y, t). (4.8)

Thus, the perturbations may grow or decay exponentially as per the sign of σ , which is also
known as (complex) growth rate. Floquet multipliers are related to Floquet exponents by
μ = exp(σT). For |μ| > 1, the flow is unstable, and for |μ| < 1, the flow is stable. A value
of |μ| = 1 represents neutral stability. In our work, we came across a critical (real) Floquet
multiplier, μ = +1, resulting in a synchronous instability with the same period T . We have
neither seen the occurrence of period-doubling bifurcation μ = −1 nor Neimark–Sacker
bifurcation μ = exp(±ιθ).

The symmetric base flow is obtained by simulating half of the channel with symmetric
boundary conditions (∂u/∂y = 0 and v = 0 at y = 0) imposed at the centreline and then
reflecting the half-domain results in a complete channel.
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Np μ

Present 6 1.04053
7 1.02374
8 1.01044

10 1.00986
Barkley & Henderson (1996) 8 1.01049

Table 5. Validation of Floquet multiplier μ at Re = 190, β = 1.6 with Barkley & Henderson (1996). Here,
Np is the polynomial order.

Np Ntot μ θ

2 15 920 1.00431 0
4 63 680 1.00919 0
6 143 280 1.00921 0
8 254 720 1.00922 0

Table 6. Convergence study of Floquet multiplier μ as a function of polynomial order Np for Ur = 1, a = 0.25
and Re = 180. For each Np, Ntot is the number of independent mesh points for the spectral element mesh.
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ũ

ṽ
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unstable mode A. (b) The x and (c) y components of the most unstable velocity perturbations and (d) vorticity
perturbation. Floquet multiplier, μ = 1.32.

4.7.2. Numerical procedure
The stability analysis is performed by a Krylov-subspace iteration of randomized
perturbations through (4.7). An Arnoldi method is used to extract dominant eigenpairs.
For all cases, 256 time slices are provided from the T-periodic base flow, and intermediate
stages are approximated through Fourier-series reconstruction. The stability analysis is
performed in open-source Nektar++ (Cantwell et al. 2015) software. For more details on
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Figure 22. (a) Streamlines on top of vorticity contours for Ur = 20, a = 0.25 and Re = 200 at t/T = 0 for
unstable mode B. (b) The x and (c) y components of the most unstable velocity perturbations and (d) vorticity
perturbation. Floquet multiplier, μ = 1.12.
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ũ
–2

–1
0
1
2

ω

(b)

(a)

(c)

(d )

Figure 23. (a) Streamlines on top of vorticity contours for Ur = 10, a = 0.25 and Re = 220 at t/T = 0 for
unstable mode C. (b) The x and (c) y components of the most unstable velocity perturbations and (d) vorticity
perturbation. Floquet multiplier, μ = 1.10.

the numerical procedure, readers are referred to the earlier works of Barkley, Blackburn &
Sherwin (2008) and Tuckerman & Barkley (2000).

4.7.3. Validation
We have considered the benchmark case of the onset of three-dimensional instability
in periodic vortex shedding over a circular cylinder for the validation of the Floquet
eigenvalue solver. Table 5 compares the Floquet multiplier value for flow over a cylinder
near the transition from two-dimensional periodic flow (von Kármán street) to the flow
being unstable to three-dimensional perturbations (Rec = 188.5 ± 1) with that of Barkley
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Figure 24. (a) Streamlines on top of vorticity contours for Ur = 1, a = 0.25 and Re = 180 at t/T = 0 for
unstable mode D. (b) The x and (c) y components of the most unstable velocity perturbations and (d) vorticity
perturbation. Floquet multiplier, μ = 1.01.

Mode Floquet multiplier, μ (Re) Rec (Floquet analysis) Rec (Simulation)

A 0.924 (Re = 170) 0.338 (Re = 130) 175.2 178.5
B 1.127 (Re = 200) 0.998 (Re = 180) 180.6 187.5
C 1.002 (Re = 190) 0.885 (Re = 160) 192.5 201.5
D 1.009 (Re = 180) 1.001 (Re = 160) 157 161.5

Table 7. Validation of Rec from Floquet study and simulation.

& Henderson (1996) at Re = 190. An excellent match is obtained for polynomial order 8
and above.

4.7.4. Convergence study for the present problem
A series of convergence tests were performed in order to determine the appropriate
polynomial order, Np, for the base flow and Floquet stability analysis. Table 6 shows
the convergence test for the leading Floquet multiplier with polynomial order for Ur = 1,
a = 0.25 and Re = 180. As shown from Np = 4 to Np = 8, there is a deviation of 0.003 %,
and hence, we perform the remainder of the stability study using Np = 4, keeping in view
the computational costs.

4.7.5. Perturbation flow features
In this subsection we further explore the asymmetricity in flow behaviour beyond the
critical Reynolds number in each of the flow modes (A, B, C and D). We also show
the velocity perturbations responsible for the asymmetric flow nature via a Floquet
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Rec (Present) Rec (Drikakis 1997)

143.75 ± 1.25 144

Table 8. Critical Reynolds number (Rec) for ER = 2 for a long inlet channel upstream of the expansion
region. Comparison with Drikakis (1997).
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Figure 25. Streamlines for Ur = 160 at a = 0.25 and Re = 170 at different phases: (a–d) in steps of T/4 with
a long channel and modulated Poiseuille imposed at the inlet. The flow is asymmetric and described by mode
A, i.e. conformal growth of the recirculation region.

analysis along with the respective Floquet multipliers. The presented results are above
Rec, representing asymmetric flow in each of the cases. Figure 21 shows the streamline
flow on top of z vorticity contours for Ur = 40, a = 1.25 and Re = 180 at 0th phase,
describing the asymmetric nature of flow for mode A. Throughout the flow pulse, the
flow remains asymmetric, with the upper eddy remaining longer than the lower one. The
figure also accompanies the velocity perturbations ũ and ṽ of the most unstable eigenpairs.
The eigenfunction ũ is antisymmetric with respect to the centreline, while ṽ is symmetric
(figure 21). Consequently, we can see the same sign of perturbation vorticity near both top
and bottom walls, which results in elongation of the upper shear layer and shrinking of
the bottom shear layer, leading to the overall asymmetry. The Floquet multiplier obtained
is 1.32 that is greater than 1, representing an unstable symmetric base flow at this Re and
gives rise to an asymmetric state. The figure represents unstable mode A.

For mode B, as discussed, there is splitting and diffusion of recirculation regions at
a particular axial location. In the asymmetric regime, however (figure 22), the necking
occurs at two axially distinct locations, dissimilar to the stable case. This results in
waviness of the shear layer at the mid-section of the channel. The velocity perturbations
(ũ, ṽ) show regions of prominent action (x = 16 − 24, figure 22) that results in the wavy
nature of the shear layer. Here, we can see a number of perturbation recirculation eddies of
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Figure 26. Streamlines for Ur = 20 at a = 0.25 and Re = 180 at different phases: (a–d) in steps of T/4 with
a long channel and modulated Poiseuille imposed at the inlet. (e, f ) Selected time points showing necking
phenomena. The flow is asymmetric and described by mode B, i.e. necking and diffusion of the recirculation
region.

the same sign near both the walls, resulting in asymmetric undulations in the shear layers.
The Floquet multiplier for this case is 1.12 that is higher than 1, representing an unstable
symmetric flow at this Re.

In the case of mode C, as discussed, the splitting of the recirculation region is present,
but the distal eddy stays and diffuses in subsequent flow cycles. This results in the flow
being more wavy in nature, downstream of the eddies (x = 12 − 26, figure 23). The action
of the prominence of the velocity perturbations (ũ, ṽ) is downstream (x = 12 − 26) rather
than near the expansion (x = 2 − 8). This may signify the occurrence of a convective
instability. The perturbation vorticity field also shows the convective nature.

In mode D we observed an anti-phase response of the eddies, X∗
r , with the incoming

pulse, um(t). The action of prominence is near the expansion (x = 2 − 10, figure 24).
This may signify the existence of absolute instability. We further see counterclockwise
long perturbation eddies over both the bottom and top walls.

In general, we can observe that larger perturbation eddies result in a lower critical
Reynolds number (mode A and D), whereas shorter span multiple perturbation eddies
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Figure 27. Streamlines for Ur = 10 at a = 0.25 and Re = 180 at different phases: (a–d) in steps of T/4 with
a long channel and modulated Poiseuille imposed at the inlet. The flow is asymmetric and described by mode
C, i.e. splitting and advection of the recirculation region.
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Figure 28. Streamlines for Ur = 1.25 at a = 0.25 and Re = 160 at different phases: (a–d) in steps of T/4 with
a long channel and modulated Poiseuille imposed at the inlet. The flow is asymmetric and described by mode
D, i.e. inverse growth of the recirculation region.

result in asymmetric necking or splitting of recirculation regions with an increased critical
Reynolds number.

Table 7 shows the Floquet multipliers obtained in each of the flow modes (A, B, C
and D) along with Rec from the Floquet study corresponding to Rec obtained from our
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Figure 29. Comparison of velocity profiles at inlet (plane of expansion) between exact Womersley and
modulated Poiseuille for Ur = 160, a = 0.25, Re = 170. Results are shown for (a) t/T = 0, (b) t/T = 0.25,
(c) t/T = 0.50, (d) t/T = 0.75, (e) time averaged.

simulations. The overall trend matches well when variations are considered across different
modes.

5. Conclusions

We have performed a detailed analysis of the effect of inflow pulsation on flow
characteristics in a sudden expansion channel with a wide range of a and Ur. In this regard,
we have identified four different modes, namely, synchronized growth of the recirculation
region (mode A), necking and diffusion of the recirculation region (mode B), splitting and
convection of the recirculation region (mode C) and inverse growth of the recirculation
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Figure 30. Streamlines for Ur = 160 at a = 0.25 and Re = 170 at different phases: (a–d) in steps of T/4 with

an exact Womersley profile imposed at the inlet. The flow is described by mode A.

region (mode D) corresponding to a very high to low time period of the pulsation cycle.
For symmetry breaking, we observe the highest stability points for modes B and C and
lower stability points for mode D. Symmetry breaking of mode A is lower than mode B
and is similar to that of steady sudden expansion flows for a = 0.25. We have reported the
mode map and found that at lower Ur, mode D is observed irrespective of the amplitude.
However, at moderate or higher Ur, mode C and mode B are respectively promoted by
increasing a. At lower Ur (or time period), Rec is smaller than the steady case, whereas it
is more at higher Ur. The departure from the steady value increases with a. For a higher
expansion ratio, Rec is usually lower than the smaller ER case, as observed for steady flow.
However, the trend is similar to the lower ER case. The convection and diffusion rates of
vorticity are correlated with the vorticity dynamics of individual modes. Floquet analysis
is carried out to estimate the stability of symmetric base flows and to explore the dynamics
of infinitesimal perturbations in the symmetry breaking of the configuration. The obtained
multipliers in each of the flow modes validate the Rec from our simulation results.
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Figure 31. Comparison of velocity profiles at inlet (plane of expansion) between exact Womersley and
modulated Poiseuille for Ur = 20, a = 0.25, Re = 180. Results are shown for (a) t/T = 0, (b) t/T = 0.25,
(c) t/T = 0.50, (d) t/T = 0.75, (e) time averaged.

Appendix A. Comparison with a long inlet channel upstream of expansion

In this section we compare our results with that of the inflow boundary condition
(modulated Poiseuille, (2.1)) prescribed at the inlet of a long channel well upstream of the
expansion section. We consider a channel of length 20 and unity height upstream of the
expansion plane. The grid size employed is similar to that obtained from the convergence
tests performed in § 4.1. Firstly, we examine the critical Reynolds number for steady
Poiseuille inflow. Table 8 reports the Rec for a long inlet channel upstream of expansion
for ER = 2, and is compared with Drikakis (1997). A good match is obtained. However, it
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Figure 32. Streamlines for Ur = 20 at a = 0.25, and Re = 180 at different phases: (a–d) in steps of T/4 with
an exact Womersley profile imposed at the inlet. The flow is described by mode B.

is lower than the case of directly prescribing inflow boundary conditions at the expansion
section (Rec = 169, table 4). Hence, the long inlet channel offers lower stability when
compared with directly prescribing inflow at the expansion for the same ER. This is also
reflected in the pulsatile flow cases where the flow features are unstable and asymmetric in
nature for the same parameters considered in § 4.2 for individual modes. Please note that
the modes obtained are the same, but we obtain unstable asymmetric flow in the case of a
long inlet channel for the same flow parameters. Similar to that of steady inflow (where a
long inlet channel offers lower Rec than directly specifying inflow at expansion), the Rec in
pulsatile cases might also follow the same trend, offering unstable asymmetric fields for
the same flow parameters. Flow features of the individual modes are shown in figures 25,
26, 27 and 28 for modes A, B, C and D, respectively.

Appendix B. Comparison of results with Womersley profile imposed at plane of
expansion

In order to ensure the generality of our results, we compare the same with the exact
Womersley profile as inlet conditions (at the plane of expansion) instead of the modulated
Poiseuille profile (2.1). Considering a driving pressure gradient

− 1
ρ

∂p
∂x

= p0 + K exp(ιωt), (B1)

980 A43-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
74

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1074


A planar sudden expansion with pulsatile inflow velocity

(a)

–0.50

–0.25

0

0.25

0.50

y

Womersley
Modulated Poiseuille

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

–0.50

–0.25

0

0.25

0.50

(c)

u u

–0.50

–0.25

0

0.25

0.50

–0.50

–0.25

0

0.25

0.50

y

(d )

(e)

0 0.5 1.0 1.5 2.0

u

–0.50

–0.25

0

0.25

0.50

y

Womersley
Poiseuille

(b)

Figure 33. Comparison of velocity profiles at inlet (plane of expansion) between exact Womersley and
modulated Poiseuille for Ur = 10, a = 0.25, Re = 180. Results are shown for (a) t/T = 0, (b) t/T = 0.25,
(c) t/T = 0.50, (d) t/T = 0.75, (e) time averaged.

where ι = √−1, p0 is the steady part of pressure and K is the amplitude of pressure
oscillation. The resulting velocity profile reads

u = 3/2(1 − 4y2) + 3K/k(An(cos(ωt) + sin(ωt)) + Bn(cos(ωt)

− sin(ωt)) + sin(ωt) − cos(ωt)), (B2)
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Figure 34. Streamlines for Ur = 10 at a = 0.25 and Re = 180 at different phases: (a–d) in steps of T/4 with

an exact Womersley profile imposed at the inlet. The flow is described by mode C.

where ω = 2π/T , k = ω/(4Re), An and Bn are given by

An = (cos(2yβ) sin(β) cosh(2yβ) sinh(β) − sin(2yβ) cos(β) sinh(2yβ) cosh(β))/Δ,

(B3)

Bn = (cos(2yβ) cos(β) cosh(2yβ) cosh(β) + sin(2yβ) sin(β) sinh(2yβ) sinh(β))/Δ,

(B4)

Δ = cos(β)2 cosh(β)2 + sin(β)2 sinh(β)2, (B5)

where β = √
k/2.

Figure 29 shows the comparison of velocity profiles at the inlet between modulated
Poiseuille (2.1) and exact Womersley (B2) at four different instants of time and at temporal
mean for Ur = 160, a = 0.25, Re = 170, mode A. Both profiles closely match except for
at t/T = 0 (figure 29a) and t/T = 0.5 (figure 29c). However, the mean flow profiles
closely match (figure 29e). The flow features are also similar (figure 30 as compared with
figure 3).

For mode B, we observe a slight deviation in the phase-wise distribution of velocity
profiles (Womersley and modulated Poiseuille, figure 31a–d), but the mean profiles are
similar (figure 31e). The flow field shows an overall delayed response due to the phase lag
of the sectional mean Womersley as compared with that of modulated Poiseuille (compare
the time chart of the flow present at the right-hand side of figures 32 and 6). A similar
necking phenomenon is seen with prescribing the inlet profile as Womersley instead of
modulated Poiseuille.

Similar deviations in phase-wise profiles are seen in the case of mode C (figure 33a–d),
with the overall mean profile being similar (figure 33e). The features of splitting and
advection of the recirculation region (mode C) is prevalent with the Womersley inlet, albeit
by a phase lag (figure 34 as compared with figure 8).

For mode D also, we obtain changes in the phase-wise velocity profiles (figure 35a–d),
while the flow features are similar, albeit by a phase lag (figure 36 as compared with
figure 10).
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Figure 35. Comparison of velocity profiles at inlet (plane of expansion) between exact Womersley and
modulated Poiseuille for Ur = 1.25, a = 0.25, Re = 160. Results are shown for (a) t/T = 0, (b) t/T = 0.25,
(c) t/T = 0.50, (d) t/T = 0.75, (e) time averaged.

Appendix C. Grid convergence study parameters

The order of convergence, P, is given by

P =
ln

F3 − F2

F2 − F1
ln r

, (C1)
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Figure 36. Streamlines for Ur = 1.25 at a = 0.25 and Re = 160 at different phases: (a–d) in steps of T/4

with an exact Womersley profile imposed at the inlet. The flow is described by mode D.

where, F3, F2, F1 are the length of the recirculation region at fine, medium and coarse
grids and r is the ratio of grid spacing between two successive grids. The predicted value
of the recirculation length via Richardson’s extrapolation, REV , is given by

REV = F3 + F1 − F2

rP − 1
. (C2)

The grid convergence index (rmGCI) is given as

GCI = |e|
rP − 1

, (C3)

where |e| is the relative error between two successive grids. Lastly, the asymptotic range
of convergence (C) is obtained as

C = GCI2,3

rPGCI1,2
, (C4)

where (GCI2,3) and (GCI1,2) are based on the medium-to-coarse and fine-to-medium
grids, respectively.
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