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Weakly nonlinear theory for oscillating wave
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We present a weakly nonlinear theory on the natural modes’ resonance of an array
of oscillating wave surge converters (OWSCs) in a channel. We first derive the
evolution equation of the Stuart–Landau type for the gate oscillations in uniform
and modulated incident waves and then evaluate the nonlinear effects on the energy
conversion performance of the array. We show that the gates are unstable to side-band
perturbations so that a Benjamin–Feir instability similar to the case of Stokes’
waves is possible. The non-autonomous dynamical system presents period doubling
bifurcations and strange attractors. We also analyse the competition of two natural
modes excited by one incident wave. For weak damping and power take-off coefficient,
the dynamical effects on the generated power of the OWSCs are investigated. We
show that the occurrence of subharmonic resonance significantly increases energy
production.
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1. Introduction
The surface-piercing flap-type oscillating wave surge converters (OWSCs) are

among the most efficient devices to extract energy from water waves (Babarit et al.
2012). These devices consist of buoyant flaps hinged on a bottom foundation and
move back and forth as an inverted pendulum under the action of the waves. A
power take-off (PTO) mechanism converts the gate motion into electricity. Because
of their ability to capture energy with large efficiency, these converters have received
significant attention in recent years, leading to analytical theories (Linton & McIver
2001; Mei, Stiassnie & Yue 2005) and experimental campaigns (Folley, Whittaker &
van’t Hoff 2007; Henry et al. 2010). Renzi & Dias (2012, 2013, 2014) have developed
a semi-analytical theory based on a hypersingular integral equation approach to
investigate the hydrodynamic behaviour of a ‘thin gate’ in a channel and in open
sea. Michele et al. (2015) and Michele, Sammarco & d’Errico (2016a) have extended
the theory of Renzi & Dias (2013) to the case of a single and multiple arrays of
neighbouring OWSCs with finite thickness in open sea and in front of a vertical
breakwater. Recently, Michele, Sammarco & d’Errico (2016b) devised an analytical
theory which describes the wave field and gate motion in terms of elliptic coordinates
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and Mathieu functions, while Sarkar, Doherty & Dias (2016) solved the case of a
finite array of cylindrical OWSCs.

The vast majority of existing analytical theories have been developed within the
framework of linear theories for small amplitude oscillations. However, neglecting
nonlinear effects is unjustified in some practical cases and might cause us to overlook
constructive resonance phenomena. In this paper we describe a nonlinear theory for
the hydrodynamic behaviour of a single array of several floating flap-gate OWSCs
hinged on a fixed, rigid and fully reflecting wall. The gates oscillate under the
action of the incident waves and an appropriate PTO located at the hinge converts
the mechanical energy into electricity and returns a resistant torque. We consider the
gates spanning the full width of an infinitely long channel. Due to the mirroring effect
of the channel walls we thus model the behaviour of an infinite array of converters.
In this case, the natural modes can be completely trapped with no radiation damping.
Trapped modes are of considerable interest in several contexts such as acoustic waves
(Hein & Koch 2008), quantum waveguides (Linton & Ratcliffe 2004), elastic waves
(Porter 2007) and electromagnetic waves (Porter & Evans 1999). For water waves,
Evans & Linton (1991) derived the wave field of trapped modes around a fixed
vertical cylinder, while in coastal oceanography the wave trapping of edge waves
on a sloping beach is well known (Blondeaux & Vittori 1995; Mei et al. 2005; Li
2007). In the case of neighbouring articulated gates Li & Mei (2003) developed a
mathematical theory to determine all the out-of-phase trapped modes of an array of
gates in an infinitely long channel; Sammarco, Michele & d’Errico (2013) solved the
case of multiple arrays of gates hydrodynamically coupled.

Trapped modes cannot be synchronously resonated in a linearized framework.
This is because the modal matrix and the forcing terms are orthogonal (Adamo &
Mei 2005). For this reason, resonance of trapped modes is possible only through
a nonlinear mechanism. Guza & Bowen (1976) and Rockliff (1978) have shown
that trapped edge waves can be resonated subharmonically by incident waves with
frequency twice the natural frequency of the edge wave. Li & Mei (2006) have
developed a nonlinear theory to analyse the subharmonic resonance of trapped surface
waves around a fixed cylinder while Lichter & Chen (1987) analysed the resonance of
nonlinear cross-waves in a long channel. A similar subharmonic mechanism has been
analysed for the so-called ‘Faraday resonance’: for the main contributions we refer to
Miles (1984a), Holmes (1986), Gu & Sethna (1987) and Miles & Henderson (1990).
Of considerable engineering interest is the case of mobile neighbouring gates to
protect Venice from flooding. Laboratory experiments have revealed that, for certain
frequencies, the incident waves resonate subharmonically the trapped modes of the
barrier (Mei et al. 1994). The weakly nonlinear theory which explains this resonance
mechanism has been developed by Sammarco, Tran & Mei (1997a), Sammarco et al.
(1997b) for uniform and modulated waves. A simplified model for the subharmonic
resonance of sliding gates in shallow waters has been developed by Vittori, Blondeaux
& Seminara (1996).

In the present paper we extend the theory of Sammarco et al. (1997a,b) to
investigate the hydrodynamics of the array of OWSCs. By considering small height
of the gates with respect to the water depth, a simplified version of the governing
equations and then for the coefficient of the evolution equation is found, with
a new term that accounts for energy extraction. First, we consider subharmonic
excitation of a single mode. We derive the complex nonlinear evolution equation of the
Stuart–Landau form (Aranson & Kramer 2002) which describes the dynamical growth
of the resonated trapped mode. A parametric analysis of the coupling coefficients
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Weakly nonlinear theory for OWSCs 57

in terms of the array characteristics is carried out. The case of uniform incident
waves points out the dependence of the bandwidth of instability, the resonated
amplitude and the thresholds of resonance on the PTO coefficient. The generated
power due to the subharmonic resonance of the natural modes is then evaluated. We
find the optimal value of the PTO coefficient which maximizes power extraction and
show that subharmonic excitation yields constructive interactions in terms of power
extraction. We obtain that the capture factor is larger than the theoretical maximum
of a two-dimensional absorber in a infinite long channel within the linear theory (Mei
et al. 2005).

For modulated waves, we find period doubling sequences, chaotic states and
frequency downshift (Trulsen & Mei 1995; Trulsen & Dysthe 1997; Sammarco
et al. 1997b) by increasing the modulated wave amplitude. We detect the occurrence
of homoclinic tangles and global chaos through usage of the Melnikov function
(Guckenheimer & Holmes 1983; Jordan & Smith 2011). Extensive parametric analysis
is then performed to study the effects of the chaotic behaviour on the generated power
and efficiency. We show that chaotic motion of the gates decreases the efficiency in
terms of energy production; a deterministic confirmation of the previous findings of
Michele et al. (2016a,b) for gate energy production under stochastic incident wave
spectra.

Next, we examine the competition of two modes assuming the incident wave
frequency equal to the summation of the respective eigenfrequencies (Nayfeh &
Mook 1995). Quadratic interactions at higher orders generate several harmonics. This
nonlinear coupling leads to triad interactions and energy transfer between trapped
modes. Interesting phenomena involving triad interactions have been studied in the
context of acoustic–gravity waves (Kadri & Stiassnie 2013; Kadri & Akylas 2016),
edge waves (Li 2007), Bragg scattering by bottom ripples (Mei et al. 2005) and
interfacial waves (Alam 2012), while contributions to the analysis of mode–mode
interactions can be found in Mei & Zhou (1991) and Zardi & Seminara (1995) for
pulsating bubbles and Ciliberto & Gollub (1985), Simonelli & Gollub (1989), Kambe
& Umeki (1990), Umeki (1991) for Faraday waves. The coupled evolution equations
of both modal amplitudes are obtained and now involve coupling terms. Similarly
to the case of single subharmonic resonance we derive the bifurcation diagrams to
analyse the effects of the incident wave phase shift on the equilibrium and unstable
states. The contribution due to mode–mode coupling on the OWSCs efficiency is
finally given. We show that mode–mode coupling yields constructive interactions in
terms of generated power but less pronounced than the pure subharmonic resonance
of a single mode.

2. Governing equations

A sketch representing the array of floating OWSCs hinged upon a fixed, rigid and
fully reflecting wall is depicted in figure 1. We indicate the physical variables by
primes. The figure shows identical gates of width a′ and thickness 2d′ in an infinite
straight long channel of width b′. Let h′ and c′ denote respectively the channel depth
and the wall height; also h′p= h′− c′ is the distance from the free surface to the hinge
with h′p� h′ (or c′ ∼ h′). Define a Cartesian reference system with the x′ and y′-axes
lying on the mean free surface and the z′-axis pointing vertically upward. The y′-axis
bisects the array, while the x′-axis coincides with the left bank of the channel. The
gates oscillate about a common axis located at z′=−h′+ c′=−h′p, x′= 0. Assume that
the incoming waves come from x→+∞ and are normally incident to the gates. Let
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Channel
bank

Channel
bank

Hinge

Fixed wall

FIGURE 1. Plan geometry of the array and side view of the gate in physical variables.
The OWSCs do not span the entire water depth but are placed upon a vertical fixed wall
on a rigid bottom.

Gq, q= 1, . . . ,Q, denote the qth gate and Θ ′q be the angular displacement of Gq, then
we can define Θ ′(y, t) = {Θ ′1(t), . . . , Θ

′

q(t), . . . , Θ
′

Q(t)} as the angular displacement
function of the array. The fluid is assumed to be inviscid and incompressible and the
flow irrotational, hence the velocity field satisfies the Laplace equation in the fluid
domain Ω:

∇
′2Φ ′(x′, y′, z′)= 0 (x′, y′, z′) ∈Ω. (2.1)

Let A′T be the amplitude of the free-surface oscillations, λ′ the wavelength, ω′ the
eigenfrequency of the natural mode and g′ the acceleration due to gravity. Then
introduce the following non-dimensional quantities:

(x, y, z)= (x′, y′, z′)/λ′, Φ =Φ ′/A′Tω
′λ′, ζ = ζ ′/A′T, t= t′ω′,

(b, c)= (b′, c′)/λ′, d= d′/h′p, h= h′/λ′, Θ ′ =ΘA′T/h
′

p, G= g′/ω′2λ′,

}
(2.2)

where ζ ′ is the free-surface elevation and G the non-dimensional eigenfrequency. We
introduce the following two length ratios to be smaller than unity:

ε = A′T/h
′

p� 1, µ= h′p/λ
′
� 1. (2.3a,b)

With the introduction of these two small parameters the formulation of the problem
becomes algebraically simpler to Sammarco et al. (1997a). Indeed, let Ω+ (Ω−)
denote the fluid regions to the right (left) of the gates and distinguish physical
quantities in Ω± through ±. Laplace and Bernoulli equations read

∇
2Φ± = 0, (2.4)

−
p′±

ρω′
2λ′2
=Gz+ εµΦ±t + ε

2µ2 1
2
|∇Φ±|2, (2.5)

the dynamic and mixed boundary condition on the free surface are respectively

−Gζ =Φ±t + εµ
1
2 |∇Φ

±
|
2, z= εµζ , (2.6)

Φ±tt +GΦ±z + εµ|∇Φ
±
|
2
t + ε

2µ2 1
2∇ ·∇|∇Φ

±
|
2
= 0, z= εµζ , (2.7)
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Weakly nonlinear theory for OWSCs 59

while the no-flux conditions at the bottom and channel walls require

Φ±z = 0, z=−h, (2.8a,b)

Φ±y = 0, y= 0 and y= b. (2.9a−c)

The kinematic condition on the surface of the array

x= ξ± =
[
−(z+µ) tan εΘ ±µ

d
cos2 Θ

]
H(z+ h− c)±µ dH(−z− h+ c), (2.10)

can be written as

Φ±x =

{
Θt

[
−

(z+µ)
µ cos2 εΘ

±
d sin εΘ
cos2 εΘ

]
−Φ±z tan εΘ

}
H(z+ h− c), (2.11)

where H denotes the Heaviside step function.
Let us introduce a new pair of coordinates (y1, z1) = (y′, z′)/h′p = (y, z)/µ. The

equation of motion of the qth gate coupled with an energy generator at the hinge
is given by

IεΘq,tt −GS sin εΘq + νptoεΘq,t

=−

∫ (qa)/µ

((q−1)a)/µ
dy1

{∫ εζ+

−1
dz1

(
Gz1 + εΦ

+

t + ε
2µ

1
2
|∇Φ+|2

)
z1 + 1− d sin εΘq

cos2 εΘq

−

∫ εζ−

−1
dz1

(
Gz1 + εΦ

−

t + ε
2µ

1
2
|∇Φ−|2

)
z1 + 1+ d sin εΘq

cos2 εΘq

}
+O(ε4),

(2.12)

where I = I′/ρh′4p λ
′ is the non-dimensional inertia of the gate about the hinge, S =

S′/ρh′4p the non-dimensional first moment of the gate, νpto = ν
′

pto/A
2
Tωρh2

pλ the non-
dimensional power take-off coefficient. Typical values of ν ′pto are 102–103 kg m2 s−1,
so that for typical conditions A2

T = O(0.1) m, ω = O(1) rad s−1, h2
p = O(10) m, λ =

O(10)–O(102) m, we obtain νpto=O(10−2). Hence we assume νpto= ε
2νpto. Note that

usage of the coordinates (y1, z1) renders O(1) the interval of the integrals in (2.12)
and allows us to evaluate appropriately the order of magnitude of each term inside the
integrand. Therefore, in the above expression (2.12) the contribution due to the PTO
torque on the gate motion results small; indeed the term is O(ε3). Hence, damping
at O(ε) is purely hydrodynamical and depends on radiating waves towards infinity.
Larger values of ν ′pto comparable with leading-order terms, i.e. νpto =O(1), yield the
equation of motion at O(1) damped and unforced. Indeed, there are no forcing terms
at this order because the incident wave is assumed to be at O(ε). Hence, we would
obtain only synchronous motion at O(ε) and no subharmonic resonance.

Since the free-surface boundary conditions are given at z=µεζ , we perform Taylor
expansion of (2.6) and (2.7) about z= 0:

−Gζ = [Φ±t ]z=0 + εµ[Φ
±

tz ]z=0ζ
±
+ εµ[ 12 |∇Φ

±
|
2
]z=0 +O(ε3), (2.13)

[Φ±tt +GΦ±z ]z=0 + εµ[Φ
±

ttz +GΦ±zz ]z=0 + εµ[|∇Φ
±
|
2
t ]z=0 +O(ε3)= 0. (2.14)
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Similarly, Taylor expansion about x=±µd of (2.10) and (2.11) yields

x= ξ± =−(z+µ)εΘH(z+ h− c)+O(ε3), (2.15)

[Φx]x=x± = −Θt
z+µ
µ
+ εΘ(z+µ)[Φxx]x=x± − ε

2Θ2(z+µ)2
[
Φxxx

2

]
x=x±

− ε2Θ2Θt
z+µ
µ
− εΘ[Φ±z ]x=x± + ε

2Θ2(z+µ)[Φ±zx]x=x±

± ε dΘΘt +O(ε3), (2.16)

where x± =±µd is a new variable. The equation of motion (2.12) becomes

IΘq,tt +GCΘq + ε
2νptoΘq,t + ε

2GS
Θ3

q

6

=−

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz11Φt(z1 + 1)− ε

∫ (qa)/µ

((q−1)a)/µ
dy1

{
G1ζ 2

2
+1Φtζ

}
− ε2

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz11ΦtΘ

2(z1 + 1)− ε2
∫ (qa)/µ

((q−1)a)/µ
dy1

{
G1ζ 3

3
+
1Φtζ

2

2

}
− εµ

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz1

{
−1Φtx +

1
2
∆|∇Φ|2(z1 + 1)

}
+ ε

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz12 dΘΦt + ε

2
∫ (qa)/µ

((q−1)a)/µ
dy1 dGΘζ 2 +O(ε3), (2.17)

where C= ad/µ− S is the non-dimensional buoyancy restoring torque, while ∆(·)=
(·)+x=x+ − (·)

−

x=x− and (·) = [(·)+x=x+ + (·)
−

x=x−]/2 denote respectively the difference and
the average of (·) on two sides of the array. A summary of the physical quantities as
well as the dimensionless quantities is provided in tables 1 and 2.

3. Multiple-scale analysis
Let us introduce the following expansions of the non-dimensional velocity potential,

free-surface elevation and gate oscillations:

Φ± =Φ±1 (x, y, z, t, t2)+ εΦ
±

2 (x, y, z, t, t2)+ ε
2Φ±3 (x, y, z, t, t2)+O(ε3), (3.1)

ζ± = ζ±1 (x, y, t, t2)+ εζ
±

2 (x, y, t, t2)+ ε
2ζ±3 (x, y, t, t2)+O(ε3), (3.2)

Θ± =Θ±1 (y, t, t2)+ εΘ
±

2 (y, t, t2)+ ε
2Θ±3 (y, t, t2)+O(ε3), (3.3)

where t2= ε
2t denotes the slow time scale of the modal amplitude growth. Governing

equation and boundary conditions yield for n= 1, 2, 3, the following equations.
Laplace equation:

∇
2Φ±n = 0, in Ω±. (3.4)

Free-surface dynamic condition:

−Gζ±n =Bn, z= 0, (3.5a,b)

where

B1 =Φ
±

1t
, (3.6)
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Parameters Symbol Dimensions

Time t′ [T]
Physical coordinates (x′, y′, z′) [L]
Acceleration due to gravity g′ [L][T]−2

Frequency ω′ [rad][T]−1

Pressure p′ [M][T]−2
[L]−1

Wavelength λ′ [L]
Water density ρ ′ [M][L]−3

Velocity potential Φ ′(x′, y′, z′, t′) [L]2[T]−1

Angular displacement Θ ′(y′, t′) [rad]
Free-surface elevation ζ ′(x′, y′, t′) [L]
Channel depth h′ [L]
Channel width b′ [L]
Gate height h′p [L]
Gate width a′ [L]
Gate thickness 2d′ [L]
Wall height c′ [L]
Gate inertia I′ [M][L]2

Gate first moment S′ [M][L]2[T]−2

PTO coefficient ν ′pto [M][L]2[T]−1

TABLE 1. Physical parameters and their dimensions.

Dimensionless quantity Symbol Definition

Length ratio ε A′T/h
′

p
Length ratio µ h′p/λ

′

Time t t′ω′

Physical coordinates (x, y, z) (x′, y′, z′)/λ′

Strained physical coordinates (y1, z1) (y′, z′)/h′p
Velocity potential Φ Φ ′/A′Tω

′λ′

Angular displacement Θ Θ ′/ε

Free-surface elevation ζ ζ ′/A′T
Channel depth h h′/λ′

Channel width b b′/λ′

Gate thickness d d′/h′p
Gate width a a′/λ
Gate inertia I I′/ρh′4p λ

′

Gate first moment S S′/ρh′4p
Gate buoyancy C ad/µ− S
PTO coefficient νpto ν ′pto/A

′4
Tω
′ρλ′

Non-dimensional eigenfrequency G g′/ω′λ′

TABLE 2. Dimensionless quantities.

B2 =Φ
±

2t
, (3.7)

B3 =Φ
±

3t
+Φ±1tz

ζ±1 +
1
2 |∇Φ

±

1 |
2
+Φ±1t2

. (3.8)

Free-surface mixed condition:

Φ±ntt
+GΦnz =Fn, z= 0, (3.9)
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where

F1 = 0, (3.10)
F2 = 0, (3.11)

F3 =−(Φ
±

1ttz
+GΦ±1zz

)ζ±1 − |∇Φ
±

1t
|
2
− 2Φ±1tt2

. (3.12)

No-flux boundary condition at the bottom:

Φnz = 0, z=−h. (3.13)

No-flux boundary condition on the channel walls:

Φny = 0, y= 0 and y= b. (3.14a−c)

Kinematic condition on the array surface:

Φnx =

(
−Θnt

z+µ
µ
+ Gn

)
H(z+ h− c), x= x±, (3.15)

where

G1 = 0, (3.16)
G2 =−Φ

±

1z
Θ1 ± dΘ1Θ1t , (3.17)

G3 = Φ±1xx
Θ1(z+µ)−Θ1tΘ

2
1

z+µ
µ
−Φ±2z

Θ1 −Φ
±

1z
Θ2

−Θ1t2

z+µ
µ
± d(Θ1Θ2)t. (3.18)

Equation of motion of the qth gate:

IΘq,ntt +GCΘq,n =−

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz11Φ

±

nt
(z1 + 1)+Dn, (3.19)

where

D1 = 0, (3.20)

D2 =−

∫ (qa)/µ

((q−1)a)/µ
dy1

{
G
1ζ 2

1

2
+1Φ1tζ1

}
+

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz12dΘ1Φ1t , (3.21)

D3 = −

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz1

{[
1Φ1tΘ

2
1 −

µ

ε
1Φ1txΘ2(z1 + 1)+

µ

ε

1
2
∆|∇Φ1|

2

+ 1Φ1t2

]
(z1 + 1)

}
−

∫ (qa)/µ

((q−1)a)/µ
dy1

{
G
1ζ 3

3
+
1Φ1tζ

2
1

2
+G1ζ1ζ2 +1Φ1tζ2

+ 1Φ2tζ1

}
− νptoΘq,1t − 2IΘq,1tt2

+

∫ (qa)/µ

((q−1)a)/µ
dy1

∫ 0

−1
dz12 d{Θ1Φ2t +Θ2Φ1t}

×

∫ (qa)/µ

((q−1)a)/µ
dy1 dGΘ1ζ

2
1 −

GS
6
Θ3

q,1. (3.22)
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The latter forcing terms are algebraically simpler than those of Sammarco et al.
(1997a). Indeed, the second-order boundary problem of Sammarco et al. (1997a) is
forced on the free surface by the first-order solution. In the present case instead,
the forcing term for the second-order free-surface mixed boundary condition F2 is
null, as well as F1. This simplifies considerably the required algebra to seek the
second-order solution because now the boundary conditions at z= 0 and z=−h are
homogeneous and similar to those for the leading-order problem O(1). Nevertheless,
the dominant nonlinear effects are given by G2 (3.17) and D2 (3.21).

4. Subharmonic excitation of a single mode
It is known that an incident wave of frequency 2ω and amplitude O(ε) excites

subharmonically a trapped mode of frequency ω of an array of floating gates (Mei
et al. 1994; Sammarco et al. 1997a,b). A similar resonance mechanism is known in
the context of edge waves. In this section we analyse the subharmonic resonance of
a single trapped natural mode of an array of Q gates. Performing harmonic expansion
of the governing equations, we obtain that the zeroth harmonic problem at the first
and second order is unforced while the boundary value problem governing the first
harmonic at the second order is identical to that governing the first harmonic at the
first order (Sammarco et al. 1997a). For these reasons, we return in physical variables,
omit the primes for brevity and assume the following solution:

Φ± = φ±1 (x, y, z, t2)e−iωt
+ εφ±2 (x, y, z, t2)e−2iωt

+ ε2φ±3 (x, y, z, t2)e−iωt
+∗+O(ε3), (4.1)

ζ± = η±1 (x, y, t2)e−iωt
+ εη±2 (x, y, t2)e−2iωt

+ ε2η±3 (x, y, t2)e−iωt
+∗+O(ε3), (4.2)

Θ = θ1(y, t2)e−iωt
+ εθ2(y, t2)e−2iωt

+ ε2θ3(y, t2)e−iωt
+∗+O(ε3), (4.3)

where ∗ denotes the complex conjugate and the second-order problem includes the
harmonic 2ω only.

4.1. Leading-order problem O(1)
The O(1) problem is homogeneous and unforced. Solution of the governing equations
yields the well-known trapped natural modes of an array of Q gates in an infinitely
long channel (Mei et al. 1994; Li & Mei 2003; Sammarco et al. 2013). The boundary
value problem at the leading order is governed by the following equations:

∇
2φ±1 = 0, in Ω± (4.4)

φ±1z
= φ±1

ω2

g
, z= 0, (4.5)

η±1 =
iω
g
φ±1 , z= 0, (4.6)

φ±1x
= iωθ1(z+ hp)H(z+ h− c), x= x±. (4.7)

By defining θ1= {r1q}θ(t2), with {r1q} = {r11, . . . , r1Q} the modal shape, we obtain the
solution of the velocity potential,

φ±1 =∓iθω
Q∑

q=1

∞∑
m=1

∞∑
n=0

bmqDn

Cnαmn
e∓αmnx cos

mπy
b

cosh kn(h+ z)≡∓iθ f±1 , (4.8)
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and of the free-surface elevation,

η±1 =±
ω

g
f±1 θ, (4.9)

with kn being the roots of the dispersion relation

ω2
= gk0 tanh k0h,

ω2
=−gkn tan knh, kn = ikn, n= 1, . . . ,∞.

}
(4.10)

The real coefficients bmq, αmn, Cn and Dn are defined by

bmq = r1q
2

mπ

[
sin

qmπ

Q
− sin

(q− 1)mπ

Q

]
, (4.11)

αmn =

√(mπ

b

)2
− k2

n, (4.12)

Cn =
1
2

(
h+

g
ω2

sinh2 knh
)
, (4.13)

Dn =
1
k2

n

[cosh knc− cosh knh+ kn(h− c) sinh knh]. (4.14)

Note that the real function f±1 defined in (4.8) has the properties

f+1 (x)= f−1 (−x), f+1x
(x)=−f−1x

(−x), (4.15a,b)

and that the wavenumber k0 must satisfy the condition k0 < π/b in order that the
absence/existence of propagating waves/trapped modes is satisfied.

Conservation of angular momentum for each gate Gj requires that

r1j(−ω
2I +C)−ω2Ij = 0, (4.16)

where Ij is the added inertia defined as

Ij =

Q∑
q=1

∞∑
m=1

∞∑
n=0

2bmqbmjD2
n

Cnαmn
, (4.17)

with

bmj =
b

mπ

[
sin

jmπ

Q
− sin

( j− 1)mπ

Q

]
. (4.18)

As in Sammarco et al. (2013), solution of (4.16) yields (Q− 1) out-of-phase natural
modes and related eigenfrequencies. The reader should refer to the work of Li & Mei
(2003) for a complete list of modal shapes in which 2 6 Q 6 20.

4.2. The second-order problem O(ε)
Since the incident wave field is assumed to be at O(ε), the incident wave amplitude
A′ must be an order smaller than A′T , thus A′/A′T =O(ε). Hence, at O(ε) we assume
the coexistence of the second harmonic 2ω with two components:

φ±2 = φ
θ±

2 + φ
A±, (4.19)

where φθ±2 is the second-order potential forced by the quadratic products (3.17) on the
gate surface, while φA± is the second-order potential forced by the incident wave field.
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4.2.1. Radiated second harmonic – φθ
±

2
The kinematic condition on the moving gates includes a forcing term,

φθ
±

2x
=

[
2iωθ θ2 (z+ hp)−

φ±1z
θ1

ε
∓ iω d

θ 2
1

ε

]
H(z+ h− c), x= x±, (4.20)

while the governing equation and the remaining boundary conditions on the free
surface remain homogeneous like the O(1) problem:

∇
2φθ

±

2 = 0, (4.21)

φθ
±

2z
=

4ω2

g
φθ
±

2 , z= 0, (4.22)

ηθ
±

2 =
2iω
g
φθ
±

2 , z= 0. (4.23)

As the forcing term in (4.20) contains only the second harmonic, we assume the
solution of the potential φθ±2 and of the angular motion θ2 in the form

φθ
±

2 = iθ 2f±2 , θ θ2 = iθ 2θ2. (4.24a,b)

We get the following boundary value problem for the complex function f±2 :

∇
2f±2 = 0, (4.25)

f±2z
=

4ω2

g
f±2 , z= 0, (4.26)

f±2x
= 2iωθ2(z+ hp)H(z+ h− c)±

1
ε

∞∑
p=0

∆±p cos
pπy

b
, x= x±, (4.27)

where

∆±p =
δp

b

∫ b

0
dy( f±1z

r1q − dωr2
1q) cos

pπy
b

=
1

2δp

Q∑
q=1

{
∞∑

m=1

b(m+p)q

[
−dωbmq +

∞∑
n=0

ωbmqDn

Cnαmn
kn sinh kn(h+ z)

]

+

∞∑
m=1

bmq

[
−dωb(m+p)q +

∞∑
n=0

ωb(m+p)qDn

Cnα(m+p)n
kn sinh kn(h+ z)

]}
. (4.28)

Here δp denotes the Jacobi symbol, i.e. δ0 = 1 and δp = 2, p = 1, . . . . Note that the
latter term is the same in both fluid regions: ∆+p ≡∆

−

p .
Solution of the problem can be found by separation of variables:

f±2 =−i
∞∑

p=0

∞∑
l=0

1
αpl

(
∆pl

ε
±

Q∑
q=1

2ibpqωDl

Cl

)
e±iαplx cos

pπy
b

cosh κl(h+ z), (4.29)

where

bmp = r2q
2

pπ

[
sin

qpπ

Q
− sin

(q− 1)pπ

Q

]
, (4.30)
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κl are the real roots of the dispersion relation

4ω2
= gκ0 tanh κ0h,

κl = iκ l, l= 1, . . . ,∞,
4ω2
=−gκ l tan κ lh,

 (4.31)

while the coefficient ∆pl is given by

∆pl =
1
Cl

∫ 0

−h
dz∆p cosh κl(h+ z)

=
1

2δpCl

Q∑
q=1

∞∑
m=1

∞∑
n=0

{
b(m+p)q

[
−dωbmqEl +

ωbmqDnCln

Cnαmn

]
+ bmq

[
−dωb(m+p)qEl +

ωb(m+p)qDnCln

Cnα(m+p)n

]}
, (4.32)

in which

Cln =
1

κ2
l − k2

n

[
cosh knh cosh κlh

(
4ω2

g2
− k2

n

)
+ k2

n cosh knc cosh κlc− κlkn sinh knh sinh κlh
]
, (4.33)

El =
1
κl
(sinh κlh− sinh κlc). (4.34)

Because of the symmetry properties (4.15), the equation of motion reads

r2j(−4ω2I +C)= 2iρω
∫ ja

( j−1)a
dy
∫ 0

−hp

iθ1f2(z+ hp) dz, (4.35)

however,

1f2 =

∞∑
p=0

∞∑
l=0

4
αpl

Q∑
q=1

bpqωDl

Cl
cos

pπy
b

cosh κl(h+ z), x= x±, (4.36)

so that substitution of the above expression in (4.35) yields a system of homogeneous
equations in r2j, j = 1, 2, with non-zero determinant of the coefficient matrix. As a
result, the only solution is r2q = 0, q = 1, . . . , Q, i.e. the angular motion is zero.
Finally, the complete solution of the second-order velocity potential forced by the
trapped mode is

φθ
±

2 = θ
2
∞∑

p=0

∞∑
l=0

∆pl

αplε
e±iαplx cos

pπy
b

cosh κl(h+ z), (4.37)

while the corresponding free-surface displacement is

ηθ
±

2 =−
2ω
g

f±2 θ
2. (4.38)
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4.2.2. Response to incident waves – φA±

This is a simple diffraction problem where the incident wave field forces the gates
to move at unison in phase. Decompose φA± as follows:

φA±
= φI
+ φS
+ φR±, (4.39)

where
φI
=−

iAg
4ω

cosh κ0(h+ z)
cosh κ0h

e−iκ0x (4.40)

is the velocity potential of the incident waves of amplitude A,

φS
=−

iAg
4ω

cosh κ0(h+ z)
cosh κ0h

eiκ0x (4.41)

is the scattered wave potential, while

φR±
=±

∞∑
l=0

2ωθADl

κlCl
cosh κ0(h+ z)e±iκ0x (4.42)

is the radiation potential. The angular response θA is given by

θA
=

ρaAgD0/ cosh κ0h

−4ω2I +C− 8iω2ρa
∞∑

l=0

D2
l

κlCl

. (4.43)

4.3. The third-order problem O(ε2)

At the order O(ε2), the boundary conditions on the free surface and on the gate array
surface are inhomogeneous. Since ω and φ1 solve the homogeneous problem at the
leading order we invoke the solvability condition applying Green’s theorem to φ1 and
φ3 over the entire fluid domain Ω±:∫∫∫

Ω±
(φ±1 ∇

2φ±3 − φ
±

3 ∇
2φ±1 ) dΩ± =

∫∫
∂Ω±

(
φ1
∂φ3

∂n
− φ3

∂φ1

∂n

)
dS±, (4.44)

where the normal n points outward the volume boundaries ∂Ω and the volume integral
on the left-hand side is null. Performing straightforward algebra we obtain

0 =
ω2

g

∫ b

0
dy
(∫ 0

−∞

f−1 F−3 dx−
∫
∞

0
f+1 F+3 dx

)
+ 2

∫ b

0
dy
∫ 0

−h
f1G3 dz+

Q∑
q=1

1
ρ

(
iD3r1q −

νptor2
1qωθ

ε2

)
, (4.45)

where the forcing terms F3, G3, D3 are given by

F±3 =±
2f±1 θt

ω
, (4.46)

G±3 = [−r1qθ
∗(iθ 2f±2z

+ AφA±
z )∓ iθAf±1z

θ∗ − r1qθt(z+ hp)

± d(θ∗1 θ2)t]H(z+ h− c), (4.47)
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D±3 = −ρ
∫ qa

(q−1)a
dy

{∫ 0

−hp

f1(−6r2
1qθ
∗θ 2ω− 2iθt)(z+ hp) dz

+
ω2f1

g
θ∗
[
−
ωf 2

1

g
θ 2
+ 4hpf2θ

2
− 4ihpφ

D

]}
+ 2ωIr1qiθt −

1
2

gSr3
1qθ

2θ∗

− ρω dθ∗
∫ qa

(q−1)a
r1q dy

{∫ 0

−hp

(−4f2θ
2
+ 2iφD) dz− 3ω

f 2
1

g
θ 2

}
, (4.48)

where φD
= φI
+ φS is the diffraction potential and θ∗ denotes the complex conjugate

of θ . Solution of the integrals in (4.45) gives the evolution equation of the Stuart–
Landau type:

−iθt = θ
2θ∗(cN + icR)+ Aθ∗cF + iθνptocL. (4.49)

If there is a small detuning 21ω such that 1ω/ω∼O(ε2), the above equation modifies
as follows:

−iθt = θ
2θ∗(cN + icR)+ Ae−2i1ωtθ∗cF + iθνptocL. (4.50)

Through the transformation
θ = θe−i1ωt, (4.51)

equation (4.50) becomes

−iθ t =1ωθ + θ
2
θ
∗

(cN + icR)+ Aθ
∗

cF + iθνptocL. (4.52)

The coefficient cN represents the shift of the trapped mode eigenfrequency from the
incident wave frequency, cR is the radiation damping due to wave radiation at O(ε),
cF represents the energy influx by the incident waves while cL represents damping due
to the PTO mechanism.

The coefficients of the evolution equation (4.52) cL, cF, cN + icR, are given
respectively by

cL =
ω

cTρ

Q∑
q=1

r2
1q, (4.53)

cF =
1

icT

(∫ b

0
dy
∫ 0

−hp

(−f1r1qφ
D
z + 2ω dr2

1qφ
D) dz−

∫ b

0
2r1qω

2hpφ
D f1

g
dy

)
, (4.54)

cN + icR =
1
cT

{∫ b

0
dy
∫ 0

−hp

[−2f±1 r1qf±2z
+ 6ωf1r3

1q(z+ hp)− 4idr2
1qf2ω] dz

+

∫ b

0
r1qω

2

(
ω

f 3
1

g2
− 4hp

f1

g
f2 + 3dr1q

f 2
1

g

)
dy−

gSr4
1q

2ρ

}
, (4.55)

with

cT =
4ω
g

∫ b

0
dy
∫
∞

0
f 2
1 dx+ 2

∫ b

0
dy
∫ 0

−hp

f1r1q(z+ hp) dz+
Q∑

q=1

2Iωr2
1q. (4.56)

Computation of cF, cN , cR and cT can be evaluated by numerical calculation of the
integrals with the known expressions of the integrands.
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4.4. Dynamical system analysis for uniform incident waves

By making use of action-angle variables R and ψ expressed by θ = i
√

Reiψ we obtain
the following autonomous dynamical system in R and ψ :

Rt =−2R(−2cRR+ cFA sin 2ψ + cLνpto)

ψt =1ω+ cNR− cFA cos 2ψ.

}
(4.57)

With the requirement Rt = 0, ψt = 0 we find at least three fixed points. The trivial
fixed point is located at

R= 0, ψ = (1/2) cos−1 1ω

cFA
=ψ∗. (4.58a,b)

It is easily shown that this point is an unstable saddle for |1ω|<
√

A2c2
F − ν

2
ptoc2

L, and
a stable fixed point otherwise. The latter condition fixes the threshold of resonance,

A>
cL

cF
νpto, (4.59)

i.e. for large values of the PTO coefficient νpto there is no subharmonic resonance
from the rest position and only in-phase motion occurs. Now we seek the non-trivial
fixed points which correspond to the roots of the quadratic equation:

R2(c2
N + c2

R)+ 2R(cRνptocL +1ωcN)+ ν
2
ptoc2

L +1ω
2
− A2c2

F = 0, (4.60)

i.e.

R± =
−νptocLcR − cN1ω±

√
Ac2

F(c2
N + c2

R)− νptocLcN + cR1ω

c2
N + c2

R
. (4.61)

The latter corresponds to two branches of an ellipse in the plane 1ω, R. Since the
square root of (4.61) must be real and R± > 0, we obtain a single non-trivial fixed
point R+ for

−

√
A2c2

F − ν
2
ptoc2

L <1ω<

√
A2c2

F − ν
2
ptoc2

L, (4.62)

and the coexistence of two non-trivial fixed points R± for

νptocLcN − AcF

√
c2

N + c2
R

cR
<1ω<−

√
A2c2

F − ν
2
ptoc2

L. (4.63)

The latter holds if
νpto <

cNAcF

cL

√
c2

N + c2
R

, (4.64)

this is because νpto alters the threshold of instability and determines the vanishing of
R−. Analysis of the Jacobian matrix at the fixed points reveals that R+ is stable while
R− correspond to an unstable saddle. It is worth evaluating the maximum value of
the equilibrium amplitude which corresponds to the maximum of the stable state R+.
Taking the derivative of R+ with respect to 1ω we obtain

Rmax =
AcF − νptocL

cR
, at 1ωmax =

cN(νptocL − AcF)

cR
, (4.65a,b)
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or in terms of the modal amplitude:

|θ |max =

√
AcF − νptocL

cR
. (4.66)

Once |θ | is evaluated, the average generated power by the array due to subharmonic
resonance of the natural mode is given by

Ps(νpto, R+)=
ω

2π

∫ 2π/ω

0
νpto

Q∑
q=1

(
dΘq

dt

)2

dt= 2νpto(ω+1ω)
2

Q∑
q=1

r2
1qR+. (4.67)

The maximum of Ps depends on 1ω and νpto and cannot be found analytically.
Numerical calculation of (4.67) reveals that a good approximation consists in finding
the optimal value of νpto which maximizes the generated power at 1ω=1ωmax where
the gate oscillation is maximum. So we impose the derivative of (4.67) with respect
to νpto evaluated at 1ωmax to be zero:

dPs

dνpto

∣∣∣∣
1ω=1ωmax

= 0. (4.68)

Solution of the latter equation yields a criterion to find the optimal value of the PTO
coefficient which maximizes the power output:

νpto =
cTρ

8cNω

Q∑
q=1

r2
1q

(
5AcFcN − 2cRω+

√
9A2c2

Fc2
N − 4AcFcNcRω+ 4c2

Rω
2

)
. (4.69)

Finally we assess the maximum efficiency of the system by considering the capture
width ratio CF (Mei et al. 2005) defined as the ratio between Ps and the incident wave
energy flux per array width b (Michele et al. 2016b):

CF
=

Ps

ECgb
, (4.70)

where

ECG =
ρgA2(ω+1ω)

2k

(
1+

2kh
sinh 2kh

)
. (4.71)

In the latter, CG is the group velocity and k the wavenumber related to the frequency
2(ω+1ω).

4.5. The non-autonomous dynamical system for modulated incident waves
In this section we investigate the effects of a modulation of the incident wave envelope
on the dynamics and power generated by the array. Let us assume

A= A+ Ã cosΩt, (4.72)
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where A is the constant amplitude of the short waves, while Ã and Ω are respectively
the amplitude and frequency of the modulation with order O(ε2). The evolution
equation now includes a forcing term in time and becomes

−iθ t =1ωθ + θ
2
θ
∗

(cN + icR)+ (A+ Ã cosΩt)θ
∗

cF + iθcL. (4.73)

In action-angle coordinates the latter equation reads

Rt =−2R[−2RcR + (A+ Ã cosΩt)cF sin 2ψ + cL]

ψt =1ω+ RcN − (A+ Ã cosΩt)cF cos 2ψ.

}
(4.74)

The latter non-autonomous system is similar to that for Venice gates (Sammarco et al.
1997b) and can exhibit chaos for a certain range of the long wave amplitude Ã. There
are different theoretical criteria to determine under what conditions the response of
a dynamical system becomes chaotic. In this paper we make use of the Melnikov
method. This mathematical technique allows us to predict global chaos and is based
on the search of horseshoe maps and homoclinic/heteroclinic orbits of the associated
undamped Hamiltonian system (Guckenheimer & Holmes 1983). Let us assume the
following variables:

α =
cN

cR
, β =

cL

AcF
, W =

1ω

AcF
, ϑ =

√
cN

AcF
θ,

T = AcFt, a=
Ã
A
, σ =

Ω

cFA
,

 (4.75)

and the damping and forcing terms to be O(δ) with δ � 1. By denoting with ϑ =

i
√

R′eiψ ′ , the system (4.74) can be rewritten in the form

R′t =−2R sin 2ψ ′ − 2R′δ(αR′ + a sin 2ψ ′ cos σT + β)
ψ ′t =W + R′ − cos 2ψ ′ − δa cos 2ψ ′ cos σT.

}
(4.76)

The Hamiltonian function of the unforced system is then given by

H =
R′2

2
− R′ cos 2ψ ′ +WR′. (4.77)

At O(1) the system (4.76) admits three fixed points:

O= {0, 1
2 cos−1 W}, s= {1−W, 0}, u= {−1−W, 0}, (4.78a−c)

where O is an unstable saddle for |W| < 1 and a centre if |W| > 1, the fixed point
s is a centre and exist for W < 1 while u is an unstable saddle and exist for W <
−1. Because heteroclinic tangle is difficult to excite experimentally (Sammarco et al.
1997b), we focus our attention to the bifurcation of homoclinic paths assuming W = 0.
In this case the homoclinic orbit has the equation

Rh
=

2
cosh 2(T − T0)

, ψh
= tan−1

{tanh(T − T0)}, (4.79a,b)

and the corresponding Melnikov function is given by

M(T0)=

∫
∞

−∞

2Rh
[a1Rh sin 2ψh cos σT + (Rh

− cos 2ψh)(α1Rh
+ β1)] dT, (4.80)
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Parameters Symbol Value (m)

Water depth h′ 15
Wall height c′ 12.5
Gate width a′ 1
Gate thickness d′ 0.3

TABLE 3. Flap and channel dimensions.

where
(α1, β1, a1)=

(α, β, a)
µ

. (4.81)

Homoclinic tangle occurs when M(T0) has a simple zero. The integral (4.80) can be
evaluated analytically, and gives the lower threshold in terms of the modulated
amplitude Ã to give rise to horseshoe structures in the neighbourhood of the
homoclinic orbit Rh, ψh:

Ã=
4A

3
c2

F

πΩ2

(
πcR

cN
+

2cL

AcF

)
sinh

πΩ

4AcF
. (4.82)

Note that the smaller the damping due to O(ε) radiated waves and PTO coefficient,
the lower is the threshold. Moreover, taking the limit of (4.82) for Ω→ (0,∞) we
obtain that Ã tends to infinity and chaos is not generated.

4.6. Results for uniform incident waves and Q= 2
Here we discuss the theoretical results of the previous section for the case of Q= 2
gates with channel and array dimensions listed in table 3. Let us assume the amplitude
of the incident wave A= 0.1 m. Solution of the O(1) problem yields a trapped mode
with eigenvector r1q = {1,−1}. The values of the coefficients cL, cN , cR and cF with
respect to the eigenfrequency ω are shown in figure 2. All the coefficients show
similar behaviour, i.e. they increase with the eigenfrequency of the mode.

In figure 3 we show the dependence of the maximum value of the capture
factor CF

max (4.70) and of the optimal value of the PTO coefficient (4.69) on the
eigenfrequency ω. The larger the eigenfrequency the larger the efficiency of the
system, hence gates with large buoyancy (large eigenfrequency ω) are more efficient
than heavier gates with large inertia. Moreover, figure 3(a) reveals that the capture
factor can be larger than 0.5. This latter value corresponds to the maximum of a
two-dimensional wave absorber working in synchronous resonance conditions with
PTO coefficient equal to the radiation damping (Mei et al. 2005). Hence, nonlinear
resonance has a significant beneficial effect on power extraction.

We now examine the behaviour of the bandwidth of instability expressed by (4.62)
on the eigenfrequency ω for the optimal values of νpto (see figure 4). For large
values of the inertia, i.e. small eigenfrequencies ω, the frequency band of instability
approaches zero. Hence heavier gates are more difficult to resonate. Conversely, gates
characterized by large values of the buoyancy can be easily resonated because the
bandwidth of instability tends to increase. In summary, from a nonlinear point of
view maximization of the performance of an array of OWCSs can be reached by
choosing gates with large hydrodynamic stiffness.
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FIGURE 2. Behaviour of the coefficients of the evolution equation versus the
eigenfrequency ω.
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FIGURE 3. (a) Maximum of the capture factor CF
max versus the eigenfrequency of the array

ω. The capture factor reaches values larger than 0.5, i.e. the maximum that can be reached
with synchronous motion only. (b) The optimal value of νpto versus eigenfrequency ω. The
power take-off increases with ω.

Let us fix the eigenfrequency ω = 1.5 rad s−1. The corresponding values of the
coefficients of the evolution equation are (see also figure 2):

cL = 1.6× 10−4, cN = 3.81, cR = 0.24, cF = 0.91, (4.83a−d)
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FIGURE 4. Bandwidth of instability versus the eigenfrequency of the array ω. Gates with
small inertia I and large buoyancy C increase the eigenfrequency of the mode and render
the subharmonic resonance more observable and efficient to extract power from water
waves.
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FIGURE 5. Bifurcation diagram of stable/unstable branches for the eigenfrequency of the
natural mode ω= 1.5 rad s−1: – – –, unstable branch; ——, stable branch.

while the value of νpto is chosen following (4.69) (see figure 3b), i.e. νpto =

423 kg m2 s−1. Figure 5 shows the bifurcation diagram describing the dependence of
the unstable and stable equilibria R± on 1ω. The ellipse is inclined to the left hence
the system behaves like a Duffing oscillator with soft spring. Similar behaviour has
been already obtained for the subharmonic resonance of Venice gates analysed by
Sammarco et al. (1997a,b).

Figure 6 shows the behaviour of the capture factor CF given by (4.70) versus the
detuning 1ω. The maximum capture factor that can be reached is CF

∼ 1 (see also
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FIGURE 6. Behaviour of the capture factor CF versus detuning 1ω.

figure 3a for ω∼ 1.5 rad s−1), i.e. twice the size of the maximum possible for linear
synchronous excitation in a channel (Mei et al. 2005).

4.7. Results for modulated incident waves and Q= 2
In this section we show the behaviour of the array in modulated incident waves with
A = 0.1 m. To investigate the effects of the gate stiffness on the minimum of the
Melnikov function, consider the geometrical characteristics listed in table 3 and two
different values of the eigenfrequency, that is, ω1 = 1.5 and ω2 = 1.0 rad s−1. The
respective values of the coefficients are

cL1 = 1.6× 10−4, cN1 = 3.81, cR1 = 0.24, cF1 = 0.91,
cL2 = 1.2× 10−4, cN2 = 1.38, cR2 = 0.02, cF2 = 0.17.

}
(4.84)

For each system we choose the PTO coefficient that satisfies (4.69) and maximizes
power output. We obtain

ν1 = 423, ν2 = 111 kg m2 s−1. (4.85a,b)

Once the coefficients are evaluated, we assume 1ω = 0 and derive the threshold
for global chaos that can lead to homoclinic tangle. Figure 7 shows the dependence
of the amplitude Ã on the long-wave frequency Ω for both systems. The minimum
value shifts to the right with increasing eigenfrequency of the array. Note that the
bandwidth for gates with small buoyancy is narrower than that for gates characterized
by small inertia. These results demonstrate that with respect to the case of heavier
gates, systems with larger eigenfrequencies (more buoyant) can exhibit chaos for a
broader range of long-wave forcing frequencies.

Now integrate system (4.74) numerically and investigate the occurrence of
bifurcation scenarios with increasing amplitude Ã. Let us assume the eigenfrequency
of the array to be ω = 1.5 rad s−1 and fix the frequency of the long wave which
corresponds to the minimum of the threshold shown in figure 7, i.e. Ω=0.225 rad s−1.
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FIGURE 7. Melnikov criterion for determining lower bound of chaos in the plane Ã–Ω .
Location of the minima depends on the eigenfrequency ω and tends to zero with the
gate inertia. Moreover note that Ã→∞ for Ω→ (0,∞) and chaotic response becomes
impracticable.
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FIGURE 8. Gate array response at Ã = 0.05 m. Synchronous response. (a) Phase plane
X–Y and Poincaré map for the evolution of θ ; (b) power spectrum of the gate oscillation.

In order to follow bifurcation patterns we use the Poincaré map sampling time series
of the gate envelope response θ at times t = 2πn/Ω , n = 1, 2, 3 . . . , once transient
motion disappears. To better analyse θ we use the definition θ = X + iY separating
real and imaginary parts. Moreover, the output of (4.74) includes several harmonics,
hence we further investigate the time series of the gate response Θ(t) looking at its
power spectrum (Jordan & Smith 2011). For Ã< 0.118 m the response is synchronous
and a stable 2π/Ω periodic solution exists. Figure 8 shows the case for Ã= 0.05 m.
The phase paths of the modal amplitude envelope together with its Poincaré map are
shown in figure 8(a), while the power spectrum of the gate response is shown in
figure 8(b). At Ã= 0.118 m a period doubling occurs and the response of the system
becomes subharmonic. This case is shown in figure 9. A further increase of Ã to
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FIGURE 9. Subharmonic response at Ã= 0.14 m.
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FIGURE 10. Chaos at Ã= 0.2 m.

values larger than Ã = 0.151 m reveals a stable period-four response, while chaos
is fully developed for 0.158 < Ã < 0.173 m. In the neighbourhood of Ã = 0.173 m
a stable period-three response appears. For Ã = 0.175 m a chaotic regime reappears
with a strange attractor of S shape, as shown in figure 10. This shape follows from
the homoclinic path described by (4.79). The forcing term breaks the homoclinic
connection and intersections between stable and unstable manifolds, causing chaos
to occur. Moreover, the corresponding broad banded power spectrum (figure 10b)
shows that a large number of frequencies is present. Note also the presence of peaks
corresponding to the forcing frequency ω= 1.5 rad s−1 and its subharmonics. Chaotic
motion disappears again when the amplitude of the long wave is further increased
up to values Ã > 0.236 m. Figure 11 shows subharmonic response with frequency
downshift of the peak power spectrum for Ã = 0.25 m (Trulsen & Dysthe 1997).
Indeed there is no peak located at ω = 1.5 rad s−1. Figure 12 shows the bifurcation
diagram for the values of X at each time step. The same figure highlights period
doubling routes to chaos, periodic windows (in this case around Ã= 0.173 m), chaotic
bands and periodic responses with frequency downshift. Note also that values of Ã
corresponding to the bifurcation points almost satisfy the universal law found by
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FIGURE 11. Period-two response and downshift at Ã= 0.25 m.
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FIGURE 12. Period doubling scenarios as Ã increases from 0 to 0.35 m.

Feigenbaum (Jordan & Smith 2011):

lim
n→∞

Ãn−1 − Ãn−2

Ãn − Ãn−1

= δ = 4.669 . . . . (4.86)

Recalling that the first bifurcation points are located at Ã1 = 0.118, Ã2 = 0.151 and
Ã3 = 0.158 (see also figure 12), we obtain

Ã2 − Ã1

Ã3 − Ã2

= 4.7142 . . . (4.87)

i.e. a value near the universal number δ found by Feigenbaum.
Finally we evaluate the effects of the chaotic response on the performance of the

system. The incident wave amplitude is A+ Ã cosΩt, hence the modulated incident
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FIGURE 13. Behaviour of the capture factor of the array in modulated incident waves.
Minima correspond to the range of Ã where chaos occurs while the maximum is located
at Ã= 0 m.

wave potential Φ I
m is

Φ I
m =−

ig(A+ Ã cosΩt)
4ω cosh k0h

cosh k0(h+ z)e−i(k0x+2ωt)
+∗, (4.88)

and the corresponding averaged energy influx

lim
τ→∞
−
ρw
τ

∫ τ

0

∫ 0

−h
Φ I

mt
Φ I

mx
dz dt=

γwω(2A
2
+ Ã)

4k0

(
1+

2k0h
2 sinh 2k0h

)
. (4.89)

The averaged generated power by the array can be evaluated numerically by solving
the following integral:

Pm = lim
τ→∞

1
τ

∫ τ

0
(Θt)

2νpto dt. (4.90)

Figure 13 shows the capture factor of the array in modulated waves, defined as the
ratio between Pm (4.90) and the energy influx (4.89) for the same range of Ã used
before. Note that the minimum of the efficiency of the system is located in the range
of Ã where chaos occurs, while the maximum corresponds to Ã= 0 m. When chaos
disappears and regular motion returns with downshift, CF spikes to ∼0.2 and starts
again to decrease. In other words chaos and period doubling is detrimental in terms
of wave energy extraction efficiency. We thus obtained a deterministic confirmation
of the previous findings of Michele et al. (2016a,b) for gate energy production under
stochastic incident wave spectra. Finally, note that the value of the capture factor for
Ã= 0 m is CF

∼ 0.35 and corresponds to the same value shown in figure 6 for ω=
3 rad s−1 and uniform incident waves.
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5. Resonance of two trapped modes by one incident wave
Let us assume the scales (2.2) and the presence at the leading order O(1) of two

natural modes having different eigenfrequencies ω1 and ω2 with ω2 > ω1. Quadratic
interactions at O(ε) generates four harmonics, i.e.

2ω1, 2ω2, (ω1 +ω2), (ω2 −ω1). (5.1)

Let the incident wave have the frequency (ω1 + ω2), the multiple-scale expansion of
the potentials, free-surface elevation and mode amplitude are assumed as follows:

Φ± = φ±11(x, y, z, t2)e−iω1t
+ φ±12(x, y, z, t2)e−iω2t

+ ε [φ±21(x, y, z, t2)e−2iω1t
+ φ±22(x, y, z, t2)e−2iω2t

+ φ±23(x, y, z, t2)e−i(ω1+ω2)t

+φ±24(x, y, z, t2)e−i(ω2−ω1)t] + ε2
[φ±31(x, y, z, t2)e−iω1t

+ φ±32(x, y, z, t2)e−iω2t
]

+ ∗+O(ε3), (5.2)
ζ± = ζ±11(x, y, t2)e−iω1t

+ ζ±12(x, y, t2)e−iω2t

+ ε [ζ±21(x, y, t2)e−2iω1t
+ ζ±22(x, y, t2)e−2iω2t

+ ζ±23(x, y, t2)e−i(ω1+ω2)t

+ ζ±24(x, y, t2)e−i(ω2−ω1)t] + ε2
[ζ±31(x, y, t2)e−iω1t

+ ζ±32(x, y, t2)e−iω2t
]

+ ∗+O(ε3), (5.3)
Θ± = θ11(y, t2)e−iω1t

+ θ12(y, t2)e−iω2t

+ ε [θ21(y, t2)e−2iω1t
+ θ22(y, t2)e−2iω2t

+ θ23(y, t2)e−i(ω1+ω2)t

+ θ24(y, t2)e−i(ω2−ω1)t] + ε2
[θ31(y, t2)e−iω1t

+ θ32(y, t2)e−iω2t
] + ∗+O(ε3). (5.4)

5.1. Leading-order problem O(1)
This is the same problem already explained in § 4.1. The solution consists of trapped
modes whose related potentials φ11, φ12 have the form

φ±1j =∓iθj

Q∑
q=1

∞∑
m=1

∞∑
n=0

ωjbmqjDnj

Cnαmnj
e∓αmnjx cos

mπy
b

cosh knj(h+ z)≡∓iθjf±1j , (5.5)

where the terms including the subscript j = 1, 2, are relative to the jth mode with
eigenfrequency ωj and modal form θ1j = {r1jq}θj(t2), q= 1, . . . , Q. To investigate the
interactions between two modes it is necessary to consider the number of the gates
Q> 2 because the number of trapped modes is Q− 1.

5.2. The second-order problem O(ε)
As mentioned before, let us assume at O(1) the existence of a couple of trapped
modes N1 and N2 and the incident wave with frequency (ω1 + ω2). At the order
O(ε) we have eight wave components generated by quadratic interactions of the O(1)
solution, i.e. the four harmonics (5.1) plus the respective complex conjugates.

We get the governing equation of each problem,

∇
2φ±2j = 0, j= 1, . . . , 4, (5.6)

the relative boundary conditions on the moving gates,

φ±21x
=

[
2iω1θ21(z+ hp)−

φ±1z
θ1

ε
∓ iω1 d

θ 2
1

ε

]
H(z+ h− c), (5.7)
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φ±22x
=

[
2iω2θ22(z+ hp)−

φ±2z
θ2

ε
∓ iω2 d

θ 2
2

ε

]
H(z+ h− c), (5.8)

φ±23x
=

[
i(ω1 +ω2)θ23(z+ hp)−

φ±2z
θ1 + φ

±

1z
θ2

ε

∓ id(ω1 +ω2)
θ1θ2

ε

]
H(z+ h− c), (5.9)

φ±24x
=

[
i(ω2 −ω1)θ24(z+ hp)−

φ±2z
θ∗1 + φ

±
∗

1z
θ2

ε

∓ id(ω2 −ω1)
θ∗1 θ2

ε

]
H(z+ h− c), x= x±, (5.10)

the mixed boundary conditions on the free surface,

φ±21z
= φ±21

4ω2
1

g
, (5.11)

φ±22z
= φ±22

4ω2
2

g
, (5.12)

φ±23z
= φ±23

(ω1 +ω2)
2

g
, (5.13)

φ±24z
= φ±24

(ω2 −ω1)
2

g
, z= 0, (5.14)

and the corresponding free-surface elevations,

η±21 =
2iω1

g
φ±21, (5.15)

η±22 =
2iω2

g
φ±22, (5.16)

η±23 =
i(ω1 +ω2)

g
φ±23, (5.17)

η±24 =
i(ω2 −ω1)

g
φ±24, z= 0. (5.18)

As in § 4.2, we obtain the second-order solution of each jth wave field component,

φ±2j = θ̃j

∞∑
p=0

∞∑
l=0

∆plj

αpljε
e±iαpljx cos

pπy
b

cosh klj(h+ z), j= 1, . . . , 4, (5.19)

where θ̃ (t) = {θ 2
1 , θ

2
2 , θ1θ2, θ1θ

∗

2 } is the vector that contains the combinations of the
resonated mode amplitudes, klj are the roots of the dispersion relations,

4ω2
1 = gk01 tanh k01h, 4ω2

1 =−gkl1 tan kl1h,
4ω2

2 = gk02 tanh k02h, 4ω2
2 =−gkl2 tan kl2h,

(ω1 +ω2)
2
= gk03 tanh k03h, (ω1 +ω2)

2
=−gkl3 tan kl3h,

(ω2 −ω1)
2
= gk04 tanh k04h, (ω2 −ω1)

2
=−gkl4 tan kl4h,

klj = iκ l, j= 1, . . . , 4, l= 1, . . . ,∞,

 (5.20)
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while ∆plj is a complex coefficient evaluated in appendix A. Similarly to the previous
case, the gate motion at this order is null (θ2j = 0, j = 1, . . . , 4), however there are
propagating waves that radiate energy to infinity and damp mode motion through cubic
interactions at the third order.

5.3. The coupled evolution equations
At this order we apply the solvability condition which is found by Green’s formula:

0 =
ω2

j

g

∫ b

0
dy
(∫ 0

−∞

f−1j F−3j dx−
∫
∞

0
f+1j F+3j dx

)
+ 2

∫ b

0
dy
∫ 0

−h
fjG3j dz+

Q∑
q=1

(
iD3jr1jq

ρ
−
νptor2

1jqωjθj

ρε2

)
, j= 1, 2. (5.21)

Details of the forcing terms in the latter equation can be found in appendix B.
Carrying out the integrals of (5.21) and grouping the terms according to θ11, θ12,
θ11 |θ11|

2, θ11 |θ12|
2, θ12 |θ12|

2, θ12 |θ11|
2, θ∗11, θ∗12, we obtain two coupled evolution

equations for both modal oscillations θ11 and θ12:

−iθ11t = θ11|θ11|
2(cN + icR)+ θ11|θ12|

2(cS + icU)+ Aθ∗12cF + iθ11νptocL, (5.22)

−iθ12t = θ12|θ12|
2(dN + idR)+ θ12|θ11|

2(dS + idU)+ Aθ∗11dF + iθ12νptodL, (5.23)

where the coupling coefficients are evaluated in a similar manner as explained in
§ 4.3. Differently to the case of single-mode subharmonic excitation we have two new
pairs of coefficients as in the edge wave theories, cS, dS, cU, dU, that represent the
coupling between the modes. Note also that in (5.22) the incident wave amplitude A is
multiplied by the complex conjugate of θ12, while in (5.23) the same term is multiplied
by θ∗11. This depends on the fact that the incident wave frequency is assumed to be
equal to (ω1 +ω2) and not equal to twice the eigenfrequency of a single mode. Now
consider the detuning of the incident wave frequency 1ω with 1ω/ω∼O(ε2) and let
us assume the following change of variables:

θj = θ je−i1ωjt, j= 1, 2, (5.24)

where 1ω=1ω1 +1ω2. Then the evolution equations modify as follows:

−iθ 11t =1ω1θ 11 + θ 11|θ 11|
2(cN + icR)+ θ 11|θ 12|

2(cS + icU)+ Aθ
∗

12cF + iθ 11νptocL,

(5.25)
−iθ 12t =1ω2θ 12 + θ 12|θ 12|

2(dN + idR)+ θ 12|θ 11|
2(dS + idU)+ Aθ

∗

11dF + iθ 12νptodL.

(5.26)

5.4. Analysis of the coupled equations and theoretical results
Consider an array of Q = 4 gates with characteristics listed in table 3. We obtain
two odd natural modes and a single even mode (see also Sammarco et al. 2013).
Interaction between odd–even modes yields the coefficients cF, dF equal to zero and
the system of (5.25)–(5.26) becomes unforced. As a consequence, we can consider
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FIGURE 14. Behaviour of the coefficients of the evolution equations versus the
eigenfrequency of the mode N2, ω2.

the interaction between the odd modes only, with shape r11q = {1, 0.41, −0.41, −1}
and r12q= {1,−2.41, 2.41,−1}. Sample values of the coefficients of (5.25)–(5.26) are
shown in figure 14. Note that cU and dU (figure 14e) are very small if compared to
the others and tend to increase for large eigenfrequencies while cF is larger than dF

although ω1 < ω2 for fixed gate characteristics. This has an important consequence
because N1 can be forced more easily by the incident waves.

Now define θ 1j in action-angle variables form, i.e. θ 1j = i
√

Rjeiψj , and neglect
cU, dU with respect to the other coefficients to reduce the algebra without simplifying
the physics. Then, from (5.25)–(5.26), we obtain a system of four real differential
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equations:

R1t =−2R1

[
R1cR + AcF

√
R2

R1
sinψ + νptocL

]
R2t =−2R2

[
R2dR + AdF

√
R1

R2
sinψ + νptodL

]
ψ1t =1ω1 − AcF

√
R2

R1
cosψ + R1cN + R2cS

ψ2t =1ω2 − AdF

√
R1

R2
cosψ + R1dS + R2dN,


(5.27)

in which ψ = ψ1 + ψ2 denotes the sum of the modal phases. After a long time the
system reaches equilibrium, hence we now focus our attention on determining the
fixed points of (5.27). The trivial fixed point is at

R1 = R2 = 0, ψ∗ = cos−1 1ω

A(cF + dF)
, (5.28a,b)

while non-trivial fixed points related to unstable and stable equilibria correspond to
the roots of the system

R2 =
1

2dR

[
−νptodL +

√
ν2

ptod2
L +

4dFdRR1(νptocL + cRR1)

cF

]
, (5.29)

[1ω+ R1(cN + dS)+ R2(dN + cS)]
2
+ (R1cR + νptocL + R2dR + νptodL)

2

−A2

(√
R2

R1
cF +

√
R1

R2
dF

)2

= 0, (5.30)

which can be found numerically. Note that if R1 = 0 also R2 = 0 and triad resonance
does not occur. Stability analysis of the linearized system (5.25)–(5.26) at the origin
allows us to find the threshold of resonance triad,

A> νpto

√
cLdL

cFdF
, (5.31)

hence the amplitude of the incident wave must be larger than the latter quantity to
trigger mode–mode interactions. Once the equilibrium states R1 and R2 are evaluated
we determine the sum of the modal phases by manipulating ψ1t and ψ2t :

ψ0
= cos−1

1ω+ R1(cN + dS)+ R2(cS + dN)

A
(

cF

√
R2

R1
+ dF

√
R1

R2

)
 . (5.32)

Substitution of ψ =ψ0 inside (5.27) gives 1ω1 and 1ω2. Physically, the latter terms
are the speed along the limit cycles in the complex plane Re{θ}, Im{θ}. The generated
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FIGURE 15. Equilibrium branches of R1 ad R2 versus detuning of the incident wave 1ω.
The solid lines represent the stable equilibrium branch while the dotted lines represent the
unstable branch.

power due to triad resonance is finally given by

Pt = lim
τ→∞

1
τ

∫ τ

0
[(θ11e−i(ω1+1ω1)t + θ12e−i(ω2+1ω2)t +∗)t]

2νpto

= 2νpto

[
(1ω1 +ω1)

2
Q∑

q=1

r2
11qR0

1 + (1ω2 +ω2)
2

Q∑
q=1

r2
12qR0

2

]
. (5.33)

Now focus the attention on a fixed OWSC configuration and analyse the effects of
triad resonance on the performances of the array. Let us consider the case where the
system has the eigenfrequency ω2 = 1.5 rad s−1. Solution of the eigenvalue condition
at the first order gives the eigenfrequency of the mode N1, i.e. ω1= 0.9 rad s−1. The
corresponding evolution equation coefficients are (see also figure 14):

cN = 1.84, cR = 0.1, cF = 1.34, cS = 5.68,
dN = 12.96, dR = 0.06, dF = 0.11, dS = 7.93.

}
(5.34)

Choose the νpto which maximizes power output for perfect resonance, i.e. 1ω1 =

1ω2 = 0 and A = 0.05 m. Maximization of (5.33) yields νpto = 120 kg m2 s−1. The
corresponding equilibrium branches of R1 and R2 are plotted in figure 15. Simple
numerical evaluation of the eigenvalues reveals results similar to the case of single-
mode resonance. The continuous lines correspond to stable fixed points, while the dot
lines are related to unstable saddles.

At this point, we evaluate the efficiency of the system excited through mode-mode
interactions. Figure 16 shows the behaviour of CF versus the frequency of the incident
waves. The maximum of the capture factor is ∼0.25, hence the effect of triad interac-
tion is not as significant as the subharmonic case (see figure 6) but positive anyway.

6. Conclusions
We have investigated theoretically the nonlinear effects on the performance of an

array of oscillating wave surge converters in a channel. We extended the theory of
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FIGURE 16. Behaviour of the capture factor due to triad resonance. Mode–mode
interaction yields smaller values of CF than the subharmonic resonance of a single mode.

Sammarco et al. (1997a,b) using scales which simplified considerably the required
algebra for the coefficients of the Stuart–Landau evolution equation. This is because
unlike the Venice gates, the OWSCs considered here do not span the entire water
depth but are placed upon a vertical fixed wall on a rigid bottom. The dependence
of the coefficients on the eigenfrequency of the system has been examined. We have
derived a formula to evaluate the maximum capture factor in uniform incident waves
and found that subharmonic excitation yields very large values of the capture factor.
Moreover we showed that the array with large eigenfrequency induces an increase in
the efficiency, hence heavier gates should be avoided in order to maximize energy
production in nonlinear regimes. The dependence of the evolution equation coefficients
on the eigenfrequency of the system has allowed us to determine thresholds of
instability, equilibrium points of the dynamical system and the optimal values of the
PTO coefficients which maximize power output. We have shown that gates with large
buoyancy yield the array susceptible to subharmonic resonance, conversely, heavier
gates are difficult to resonate. Detailed analysis was performed to see the effects
of modulated incident waves on the dynamics of the array. We found thresholds
above which homoclinic tangles and so chaotic regimes occur. We have shown that
arrays with large eigenfrequency can exhibit chaos for a broader range of long-wave
forcing frequencies. Numerical investigation of the non-autonomous dynamical system
has allowed us to find bifurcation scenarios. By increasing the amplitude of the
incident wave envelope we have reproduced period doubling cascades, chaotic bands
and periodic windows. We have found that chaos disappears for large values of
the periodic modulation. The response of the array is then subharmonic with the
gate envelope and a frequency downshift of the peak power spectrum occurs. The
efficiency of the system decreases significantly when period doubling and chaotic
regimes occur. Finally we analysed the case of mode–mode interactions. We have
found that effects of triad interactions on the generated power are not as significant
than the pure subharmonic case, yet relevant. However this final investigation could
be important for a fuller understanding of OWSCs complicated dynamics and to
facilitate interpretation of experimental data results. We have assumed that the torque
exerted by the ideal PTO increases linearly with the angular velocity of the gate.
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We have obtained that nonlinear resonance is possible for PTO coefficient values
at O(ε2). Several mechanisms not considered here such as friction losses, viscous
damping and nonlinear PTO laws clearly influence the gate dynamics. However, to
analyse these higher-order effects it is necessary also to study in detail the mechanics
of a specific generator. This subject will be investigated soon. A second theoretical
question remains, i.e. the analysis of the subharmonic resonance in open sea where
natural modes of a finite array of OWSCs are nearly trapped and radiate energy.
These questions represent a fairly open and challenging research subject and will be
addressed in the near future to better understand the dynamics of such devices.
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Appendix A. Details of the coefficient ∆pln

Following the same steps for the second-order solution of § 4.2 we obtain

∆pl1 =
1

2δpCl1

Q∑
q=1

∞∑
m=1

∞∑
n=0

{
ω1b(m+p)q1bmq1Dn1Cln11

Cn1

(
1
αmn1
+

1
α(m+p)n1

)
− dω1El1b(m+p)q1bmq1

}
, (A 1)

∆pl2 =
1

2δpCl2

Q∑
q=1

∞∑
m=1

∞∑
n=0

{
ω2b(m+p)q2bmq2Dn2Cln22

Cn2

(
1
αmn2
+

1
α(m+p)n2

)
− dω2El2b(m+p)q1bmq1

}
, (A 2)

∆pl3 =
1

2δpCl3

Q∑
q=1

∞∑
m=1

∞∑
n=0

{
b(m+p)q1

ω2bmq2Dn2Cln32

Cn2αmn2
+ bmq1

ω2b(m+p)q2Dn2Cln32

Cn2α(m+p)n2

+ b(m+p)q2
ω1bmq1Dn1Cln31

Cn1αmn1
+ bmq2

ω1b(m+p)q1Dn1Cln31

Cn1α(m+p)n1

− dω1El3(ω2 +ω1)(b(m+p)q1bmq2 + bmq1b(m+p)q2 + b(m+p)q2bmq1 + bmq2b(m+p)q1)

}
,

(A 3)

∆pl4 =
1

2δpCl4

Q∑
q=1

∞∑
m=1

∞∑
n=0

{
b(m+p)q1

ω2bmq2Dn2Cln42

Cn2αmn2
+ bmq1

ω2b(m+p)q2Dn2Cln42

Cn2α(m+p)n2

− b(m+p)q2
ω1bmq1Dn1Cln41

Cn1αmn1
− bmq2

ω1b(m+p)q1Dn1Cln41

Cn1α(m+p)n1

− dω1El4(ω2 −ω1)(b(m+p)q1bmq2 + bmq1b(m+p)q2 + b(m+p)q2bmq1 + bmq2b(m+p)q1)

}
,

(A 4)
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where the coefficients Cln1 and Cln2 have the same form as (4.33), while

Cln31 =
1

k2
l3 − k2

n1

[
cosh kn1h cosh kl3h

(
(ω1 +ω2)

2

g2
− k2

n1

)
+ k2

n1 cosh kn1c cosh kl3c− kl3kn1 sinh kn1h sinh kl3h
]
, (A 5)

Cln32 =
1

k2
l3 − k2

n2

[
cosh kn2h cosh kl3h

(
(ω1 +ω2)

2

g2
− k2

n2

)
+ k2

n2 cosh kn2c cosh kl3c− kl3kn2 sinh kn2h sinh kl3h
]
, (A 6)

Cln41 =
1

k2
l4 − k2

n1

[
cosh kn1h cosh kl4h

(
(ω2 −ω1)

2

g2
− k2

n1

)
+ k2

n1 cosh kn1c cosh kl3c− kl4kn1 sinh kn1h sinh kl4h
]
, (A 7)

Cln42 =
1

k2
l4 − k2

n2

[
cosh kn2h cosh kl4h

(
(ω2 −ω1)

2

g2
− k2

n2

)
+ k2

n2 cosh kn2c cosh kl4c− kl4kn2 sinh kn2h sinh kl4h
]
, (A 8)

Elj =
1
klj
(sinh kljh− sinh kljc), j= 1, . . . , 4. (A 9)

Appendix B. Details of the forcing terms for the solvability condition (5.21)

Recall the solvability condition for each jth harmonic:

ω2
j

g

∫ b

0
dy
(∫ 0

−∞

f−1j F−3j dx−
∫
∞

0
f+1j F+3j dx

)
+ 2

∫ b

0
dy
∫ 0

−h
fjG3j dz+

Q∑
q=1

(
iD3jr1jq

ρ
−
νptor2

1jqωjθj

ρε2

)
= 0, j= 1, 2. (B 1)

The forcing term for the free-surface mixed condition is defined as

F±3j =±
2f±1j θtj

ωj
, j= 1, 2, (B 2)

the forcing terms for the kinematic condition on the gates are respectively

G±31 = − {[θ11|θ12|
2(ir12q f±23z

− ir12q f±
∗

24z
)+ θ11|θ11|

2i f11zr11q]

−Aθ∗12(φ
±A
z r12q)− r11qθ11t(z+ hp)± 2θ11|θ11|

2 dω1 f21r11p

± θ11|θ12|
2 d(ω1 +ω2)f23r12q

± θ11|θ12|
2 d(ω2 −ω1)f ∗24r12q}H(z+ h− c), (B 3)
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and

G±32 = − {[θ12|θ11|
2(ir11q f±23z

+ ir11q f±24z
)+ θ12|θ12|

2i f12zr12q]

−Aθ∗11(φ
±A
z r11q)− r12qθ12t(z+ hp)± 2θ12|θ12|

2 dω2 f22r12p

± θ12|θ11|
2 d(ω1 +ω2)f23r11p

± θ12|θ11|
2 d(ω2 −ω1)f24r11p}H(z+ h− c), (B 4)

while the remaining forcing terms for the equation of motion of both modal
oscillations are given by

D±31 = −ρ

∫ qa

(q−1)a
dy

{∫ 0

−hp

dz [−6f11r2
11qθ11|θ11|

2ω1 − 6f12r12qr11qθ11|θ12|
2ω2

− 4f11r2
12qθ11|θ12|

2ω1 − 2if11θ11t ](z+ hp)+
f 3
11ω

3
1

g2
θ11|θ11|

2
+

f 2
12 f11ω1ω

2
2

g2
θ11|θ12|

2

+ 2hp∆

[
f12ω2

g
f ∗24(ω2 −ω1)θ11|θ12|

2
+

f12ω2

g
f23(ω2 +ω1)θ11|θ12|

2

+ 2
f11ω1

g
f21ω1θ11|θ11|

2

]
− Ahp(ω1 +ω2)∆

(
±

f12ω2

g
φ±Aθ∗12

)}
+ 2ω1Ir11qiθ11t

+ 2ρ d
∫ qa

(q−1)a
dy
∫ 0

−hp

dz (θ11|θ11|
22ω1f21r11q + θ11|θ12|

2(ω1 +ω2)f23r12q

+ θ11|θ12|
2(ω2 −ω1)f ∗24r12q)+ρ d

∫ qa
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, (B 5)

and

D±32 = −ρ

∫ qa

(q−1)a
dy

{∫ 0

−hp

dz [−6f12r2
12qθ12|θ12|

2ω2 − 6f11r11qθ12qθ12|θ11|
2ω1

− 4f12r2
11qθ12|θ11|

2ω1 − 2if12θ12t ](z+ hp)+
f 3
12ω

3
2

g2
θ12|θ12|

2
+

f 2
11ω

2
1f12ω2

g2
θ12|θ11|

2

+ 2hp∆

[
f11ω1

g
f24(ω2 −ω1)θ12|θ11|

2
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g
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2

+ 2
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g
f22ω2θ12|θ12|

2

]
− Ahp(ω1 +ω2)∆

(
±

f11ω1

g
φ±Aθ∗11

)}
+ 2ω1Ir12qiθ12t

+ 2ρd
∫ qa

(q−1)a
dy
∫ 0

−hp

dz (θ12|θ12|
22ω2f22r12q + θ12|θ11|

2(ω1 +ω2)f23r11q
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∫ qa

(q−1)a
dy
[
θ12|θ12|

23
f 2
12ω

2
2

g
r12q

+ θ12|θ11|
2

(
2

f 2
11ω

2
1

g
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f11ω1f12ω2

g
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)]
. (B 6)
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