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1. Introduction. In an important recent paper [4], G. A. Elliott has given a
necessary and sufficient condition for every derivation on a separable C*-algebra with
identity to be inner. Indeed, Elliott's condition has since been shown, by Akemann and
Pedersen, to be equivalent to the C*-algebra being a finite direct sum of C*-algebras
which are either homogeneous of finite degree or simple [8, Corollary 3.10].

It is well known [6,3] that every derivation on an n -homogeneous C*-algebra with
identity is inner, whether or not the algebra is separable. In [6, §5] examples were given to
show that derivations can already be outer in the case of (non-homogeneous) C*-algebras
with identity all of whose irreducible *-representations are of dimension 1 or 2.

In the present paper we investigate derivations on general C*-algebras of this latter
kind, using an operator field characterization of such algebras based on the work of N. B.
Vasil'ev [7]. There are three main results, all to be found in §3. No assumption of
separability is made. (We may perhaps mention that [6, §5, Example (3)] provides a
non-separable C*-algebra with identity, all of whose irreducible *-representations are of
dimension 1 or 2, which has only inner derivations but does not satisfy the condition of
Elliott or Akemann-Pedersen.) '

This work is a revision of part of the author's Ph.D thesis (University of Newcastle
upon Tyne, 1971). The delay in publication is due largely to the desire for more definitive
results; despite their continuing absence, the present material is, it is hoped, not without
interest. My thanks are due, even after this lapse of time, to Professor J. R. Ringrose for
his encouragement and guidance.

2. Operator fields. It is well known [5] that an n-homogeneous C*-algebra with iden-
tity is isometrically *-isomorphic to a maximal full algebra of operator fields, the base
space being the spectrum of the algebra and the component algebras all being *-
isomorphic to the C*-algebra Mn of all complex nxn matrices.

Throughout this paper A will denote a C*-algebra with identity all of whose
irreducible *-representations are of dimension 1 or 2. For such a C*-algebra, a more
complicated characterization—as a full but not maximal algebra of operator fields on a
slightly different base space—is available from the work of Vasil'ev in [7]. In the following
summary we omit detailed proofs where these can be found in, or derived without too
much difficulty from, [7].

The spectrum of A is now not in general Hausdorff, and so is unsuitable as a base
space. Following [7], let T^(A) denote the space of all equivalence classes of nonzero
n-dimensional *-representations of A, and Pn(A) the space of all equivalence classes of
nonzero irreducible n-dimensional *-representations of A. It is shown in [7, Theorem 1]
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how to topologize J^jA) as a compact Hausdorff space in which P"{A) is an open subset.
Then the closure Pn(A) of Pn{A) in T"(A) is itself a compact Hausdorff space. Of course
P\A) = P1(A) = T\A), but in general P2(A)gP2(A)gT2(A).

There is a natural bijection of T2(A) \ P2(A) onto the space of unordered pairs of
points of Tl(A), for each element of T2(A) \ P2(A) decomposes as a direct sum of
(irreducible) 1-dimensional representations, unique up to order.

Again following [7], we write X for P2(A) (and so X for P2(A)) and Y for
but we prefer to write 3X for X \ X (where [7] uses X). Then a point of 3X may be
written as an unordered pair—which we shall write with square brackets, as [y1; y2]—of
points yl5 y2 of Y. Again following [7], we write Z for the (open) subset of dX consisting
of all [y1; y2] with yx ± y2.

Let T denote the space X U Y, topologized so that a subset S is open in T if and only
if S Pi X is open in X and S n Y is open in Y. Then T is compact Hausdorff, and we take
T as the base space for our operator fields.

For t in T, we define the component algebra A, to be the quotient of A by the
common kernel of the representations in the class t. Thus for t in X, A, is isomorphic to
M2; and for t in Y, A, is (isomorphic to) Mx = C. For t in dX \ Z, A, is isomorphic to the
C*-algebra of all scalar multiples of the 2x2 identity matrix (and hence in fact to C); for t
in Z, A, is isomorphic to the algebra of all 2 x 2 diagonal matrices (which we shall denote
by M^MJ.

Each element a in A yields an operator field on T with values in the {A,}, by defining
a(t) to be the canonical image of a in A,. (We remark, however, that we write I for the
identity of A and then Jt for the identity 1(0 of A,). In this way, we identify A with a full
algebra of operator fields on T. In contrast to the homogeneous case, however, A is not in
general a maximal full algebra of operator fields, since, as we now show, it fails to
separate the points of T.

Firstly, let te dX \ Z, so that t= [y1; y j for some y± in Y. If b is any operator field on
T with values in the {A,}, then b(t) = f3(t)It, b(yl) = /3(y!)/yi, for some complex numbers
|3(f), £()?!). (Throughout the paper we shall use a Roman letter to denote an operator field,
and the corresponding Greek letter will then be used to indicate the various associated
coefficients.) The common kernel of the representations in the class t is the same as that
for the class yx; so if b is in A then j3(t) = PCyO-

Secondly, let teZ, so that t = [y1,y2] with y^ y2 distinct elements of Y. Then by
[7, p. 149] there exist self-adjoint elements en, e22 (depending on t) in A such that
en(yi) = e22(y2) = l> e11(y2) = e22(y1) = 0; e n (0 and e22(t) are nonzero orthogonal projec-
tions in A,, and the general element of A, can be written as a complex linear combination
of them. In the terminology of [7], en(t) and e22(t) form a 'basis for Mx-\-Mi in A,; it will
be convenient for us to call them matrix units for M^®MX in A,. These matrix units are
unique up to order, but with e n , c22 defined so that elx{yx) = e22(y2) = 1, en(y2) = e22(yi) =
0, we may refer unambiguously to eu(t) (resp. e22(0) as the matrix unit corresponding to yx

(resp. y2) in At. If then b is any operator field on T with values in the {A,}, we may write
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for some complex numbers j3n(f), |322(0- We call /3n(f) (resp. /322(t)) the coefficient of b
at t corresponding to yt (resp. y2), to indicate which we sometimes write /3(y1; y2) (resp.
<3(yi. y2)) for /3n(r) (resp. /322(f)). If b is in A, with &(yi) = P(yi)J,, and b(y2) = /3(y2)/V2,
then

in other words, (3(y1; y2) = /3(yi) and p(yu y2) = /3(y2).
Recall that if s, f e T then A separates s and ( if, given u in As and u in A,, there

exists a in A such that a(s) = u, a(t) = v. The above discussion shows that if be A then

(i) if s = [si, s2] and t = [tlt t2] both belong to Z, with sl5 s2, t], t2 distinct elements of
Y except that sx = (1; then j3(s1; s2) = /3(f 1? t2);

(ii) if s = [s1; s2]eZ, t = [f1; tJedX\ Z, with 5l = h, then p(slf s2) = /3(t,);
(Hi) if s = [s1; s 2 ] e ^ t = s, e Y, then j3(s1; s2) = 0(0;
(iv) if s = [su s1]e3X \ Z, (= S! e Y, then /3(s) = j3(f).

It is then clear that if s, t fall into any of these four categories (or equivalent categories
obtained by permuting suffices), then A fails to separate s and t. If, on the other hand, s, t
fall into none of these categories, then any representation in the class s is disjoint [2, 5.2.1
(ii)] from any representation in the class t, and it follows from [2,4.2.5] that A separates s
and t.

LEMMA 1. With the above notation, let b be an operator field on T with values in the
{A,}. Then b belongs to A if and only if

(a) b is continuous with respect to A at every point of T;
(b) b satisfies the 'separation conditions' (i)—(iv) given above.

Proof. Let C be the collection of all operator fields on T satisfying (a) and (b).
If be A, (a) holds automatically and (b) follows from the above discussion. So A c C

(and C is itself a full algebra of operator fields on T). Defining A(s;t) =
{{a(s),a(t)):a€A} and C(s; () = {(c(s), c(f)): ceC} we have A(s; t)^C{s;t) for all
s, 16 T.

If s, t belong to any of the four categories of the separation conditions, it is easy to
see that C(s; t) c A(s; t). If s, t belong to none of these categories, then A separates s and
t, so that A(s; r) is already all of AsxAt. It follows that A(s; t) = C(s; t) for all s, re T,
and so, by [7, VF3, Theorem, p. 142], A = C. This proves the lemma.

We conclude this section by discussing coordinate neighbourhoods in T, and the
associated local conditions for continuity with respect to A of an operator field.

Points ofX. It follows from [5, Theorem 3.1] (cf. [7, VF7, p. 144]) that, just as in the
homogeneous case, we can cover X by open coordinate neighbourhoods {V} with each of
which is associated a set {e?} (i, ;' = 1,2) of elements of A such that, for each t in U",
{e£(t)} forms a system of matrix units for M2 in A,. If b is any operator field on T, then for
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t in U" we may write
Ht)= I p&t)eftt),

where the |3g(t) are complex numbers determined by b.
If t0 £ t/P> then fc is continuous with respect to A at t0 if and only if the map

| |
II 1.1 = 1 . 2 H

is continuous at t0. (To see this, note [5, Lemma 1.1] and the fact that £ |3?-(to)ege A.)
i.J = 1.2

This condition is in turn equivalent to saying that the four complex-valued maps t>-»|3j}(0
(i,j = 1,2) are all continuous at f0- We can also derive this as in [6, p. 524] (where the
maximality of A was, incidentally, unnecessarily adduced in proving sufficiency).

Points of Y. Points of Y give rise only to a trivial system of matrix units (the identity)
which extends trivially in any neighbourhood. If toe Y and b is any operator field on T, so
that b(t) = (3(t)I, for any fe Y with /3(f) a complex number, then b is continuous with
respect to A at t0 if and only if the map f-+\\b(t) — fi(to)It\\ is continuous at t0, which in
turn holds if and only if the map t>-*(5(t) is continuous at ta.

Points of Z. If t = [yuy2]€Z, it follows from our earlier discussion and [7, VF7,
p. 144] that there is a neighbourhood O, (in X) of t and self-adjoint elements exl, e22

(depending on t) in A such that e,,(s) and e22(s) are matrix units for Mj^BM, in As for all
seO, (see [7, p. 149]). (In particular, O,n(dX\Z) = 0 , so that Z is open in dX). If
s = [u1( u2] is any point in O, n Z, then uu u2 are distinct elements of Y, but it is important
to remember that the matrix units en(s) and e22(s) may correspond (in the sense defined
earlier) possibly to uu u2 respectively, possibly to u2, u^^ respectively.

Further, for each x in O,DX there is a neighbourhood V, x of x (contained in
O,flX) and elements c12, e21 (depending on t and x) in A such that {ef,(s)} (i,/ = 1,2)
form a system of matrix units for M2 in As for all s e V, x (for we can find two elements of
Ax which, together with en(x), e22(x), form a system of matrix units for M2 in Ax, and
then apply [5, Lemma 3.2] or [7, VF6, p. 144]).

To avoid specifying t and x, we follow [7] in indexing the O, and V(>x as O* and V*y,
and the corresponding elements of A inducing matrix units as e^, e22, efj, e27 (or
collectively as {e|)"y}, it being then understood that e^ = e*x and e22 = e22 are both
independent of 7).

If b is any operator field on T, then for t in O " n Z w e may write

where j3i1(0, /322(() are complex numbers determined by b. If t = [yu y2] then ^^(f),
/322(0 are equal to ^(ylt y2), /3(yx, y2) (in the notation introduced above) bur not necessar-
ily in that order. It is also important to note that if t e O*1 n O" Pi Z, then either
en(0 = Cu(0 and e^2(t) = e22(t) or e^(t) = e\\(t) and e\\{t) = e^(t), but that it cannot be
assumed that one of these possibilities holds exclusively throughout O^PlOTlZ (al-
though one will hold exclusively throughout any connected component of O1* n O" Pi Z).
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For t in O*1 D X, t e V 7 for some y, and we may write

b(t)= I PiTWeiTM,

where the jSĵ O) are complex numbers determined by b. In fact /3i7(t) and P-gW are
independent of 7, just as eff(0 = Cn(O and e^(f) = e22(0 are, and so we may write
0ii(O, j3S2(0 respectively—to see this note that eii(t)6(0«n(0 and e&jWMOe^W, which
are independent of y, are just j3fi'(Oer1(O and ^ ( O e ^ O ) respectively. Consideration of
e5t

1(f)b(t)e2
l
2(0 and of e^WKOeuM shows similarly that |/3^(0| and ||3 57(01 are indepen-

dent of y.
The neighbourhoods V11"' are of the same type as the U" constructed earlier, and as

before b is continuous with respect to A at a point t0 of V*y if and only if the maps
r»—>|3ŷ (t) (i, / = 1,2) are all continuous at (0- For a point t0 of O T l Z , b is continuous
with respect to A at f0 if and only if the map

is continuous at t0, which in turn holds if and only if the following two conditions are
satisfied:

(ia) the complex-valued maps t<->0ii(O, t ^ P ^ O ) (denned on all of O"0 are
continuous at t0;

(iia) the real numbers \&&(t)\, 1027(01 (denned on O T l X and independent of y as
noted above) —> 0 as t -*• t0.

Points of dX \ Z. Points of dX \ Z, like those of Y, give rise only to a trivial system of
matrix units (the identity) which extends trivially in any neighbourhood. If t o edX\ Z and
N is a neighbourhood (in X) of fo> then JV will in general contain points of X, points of Z,
and other points of dX \ Z. There is no single form of matrix units for all the component
algebras At(teN): for example Nf~\X will in general be contained in no single coordinate
neighbourhood of any of the types so far constructed. If t0 e dX \ Z and b is any operator
field on T, then b(t0) = 0(ro)/to f°r some complex number j3('o), and b is continuous with
respect to A at t0 if and only if the map t>-»||b(r)- /3(to)I,|| is continuous at t0. This
conditionis in turn equivalent to saying that, given e > 0, there exists a neighbourhood NE

of t0 in X such that the following three conditions are satisfied:

(ib) if teNen(dX\Z), then \fi(t)-P(ti\<e;
(iib) if teNB DZ, then \Pu(t)-p(t0)\ and |/322(f)-|3(fo)l are both less than e, where

0n(f). feCO are the coefficients for b(t) in any matrix-unit system for A,;
(iiib) if t eNe nX, then \filt(t)-fi(jQ\, l^22(0-/3(ro)|, |/312(f)|, |fei(0l are all less than

e, where the j3y(0 (i, j = 1, 2) are the coefficients for b(t) in any matrix-unit system for A,.

3. Derivations. Throughout this section, A will denote a C*-algebra with identity,
all of whose irreducible *-representations are of dimension 1 or 2, identified as in §2 with
a full algebra of operator fields on T = XU Y; we adopt all the associated notation from
§2.
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Let D be a derivation on A. For each t in T, A, is the quotient A/J, of A by the
closed two-sided ideal J, ={xe A :x(t) = 0}. Since D(Jt)cJt [2, 1.9.11(d)], D induces a
well-defined map D,:At—> A, given by

Dt(a(t)) = (Da)(t) (aeA).

It is easy to check that D, is a derivation on A,. Moreover, ||D,||<||D||: to see this, note
that for aeA we have

for all beJt, by definition of the quotient norm. Again since D(/,)sJ,, it follows that

||A(a + J,)|| <||Da + Db|M|D|| ||a + fc||

for all b e /„ so that

|| D, (a + Jt)|| < ||D|| inf{||a + b\\: b e J,} = \\D\\ \\a + J,\\.

It follows that ||D,I|:£||.D|| as asserted.
Since, for any t in T, A, is isomorphic to either M,, M2, or Mx®Mu each D, is inner,

and so there exists an operator field b on T such that b(t) implements D, for all t in T; we
may assume, by [1, Corollaire, p. 312], that ||b(0||:s||Dt||<||D|| as above. Hence

(Da)(t) = Dt(a(t)) = Ht)a{t) - a(t)b{t) = (ba - ab)(t) {aeA,te T),

so that b is a bounded operator field (||6(f)||^||D||, for all t) implementing D. D will be
inner if, and only if, for each ( in T, an element of the centre of A, can be found which,
when subtracted from b(t), modifies b into an operator field satisfying the continuity and
separation conditions of Lemma 1 (§2). We investigate continuity first, and separation
later.

The centre of A, consists of all scalar multiples of the identity I, in A,, except for t in
Z, where the centre is all of A, (^M^M^. For t in Y, we can subtract b{t) itself,
making the operator field zero on Y and so continuous with respect to A on Y. The
new operator field still implements D, for D, = 0 (because A, is commutative) for all ( in
Y. We can view this as an application to Y of the arguments of [6, Theorem 1] with n = 1;
and the same arguments with n = 2 applied to coordinate neighbourhoods of the form U"
and Vtl'y deal with X: if, for t in X, we subtract from b(t) the trace of b(t), that is,

or

we get an operator field, consistently defined on 'overlaps', which still implements D and
is now continuous With respect to A on X. These modifications do not affect the
boundedness of the operator field implementing D. Continuity cannot however always be
achieved for b at points of dX. Our first result, which generalizes the situation of [6, §5,
Example (1)], shows that continuity cannot in general be achieved for b at any point of
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dX \ Z with a countable base of neighbourhoods; it is possible that the same holds at any
point whatever of dX \ Z.

THEOREM 1. Suppose that dX \ Z contains a point with a countable base of neighbour-
hoods. Then there exists a derivation D on A which cannot be implemented by an operator
field continuous with respect to A on T (so that D is outer).

Proof. Let {N,} (/ = 1,2,...) be a countable base of open neighbourhoods at foe
dX \ Z. Replacing N, by Nt Pi N2 H . . . n N,- if necessary (/ = 1, 2 , . . . ) , we may assume
that N\ 2 N2 2

Pick x1eNlC\X. Then JV,nX is an open neighbourhood of xx, and since X is
compact Hausdorff there is an open neighbourhood Bj of Xj with B^N^DX. Then
to£Bx, and there exists an open set Ca containing f0 with C1(~\B1 = 0. For some n2 (>1),
Nn2 £ Cj; pick x2 e Nn2 n X. Again there is an open neighbourhood B2 of x2 with
B 2 ^ J ^ n X . Then B 2 s Q , so that B2 is disjoint from B\.

Suppose integers nu n2,...,nm (with l = nx<n2< ... < nm), points xu x2,..., xm,
and open sets Bj, B 2 , . . . , Bm, have been found such that

with B,, B 2 , . . . , Bm mutually disjoint. Then to£ \JJLX B,, and there exists an open set
Cm+1 containing t0 with Cm+ir)({J™=1Bi) = 0. For some nm+1 (>nm), JV^+icCm+1;
pick xm+ieNnm^iDX. As before there is an open neighbourhood Bm+1 of xm+1 with
Bm+1 c N ^ n X . Then Bm+1 £ Cm+1, and so B l 9 . . . , Bm+1 are mutually disjoint.

It follows by induction that there exists a sequence {xr} (r = 1, 2 , . . . ) of points of X
and open sets Br such that, for some nr with 1 = n x <n 2 < • ••,

and Bt, B 2 , . . . are mutually disjoint. Clearly xr —» t0 as r —> <»: any neighbourhood of f0
contains N^, and hence xr, for all sufficiently large r.

Each ^ lies in some coordinate neighbourhood U°r; shrinking each Br if necessary,
we may assume that Br £ W- (r= 1, 2, . . . ). For each /• there is a continuous function fr

defined on X, taking values in the interval [0,1], such that /r(xr) = 1 and fr(t) = 0 for
teX\Br. Define an operator field b on T by putting

[
0 (teTMJBr).

This operator field is continuous with respect to A at all points of T except t0. (Note that
any point s in T other than t0 has a neighbourhood intersecting at most one Br: there exist
disjoint open sets Pi, P2 containing s, t0 respectively, and, for some r0, P2 contains Nv

and hence Br, for all r>r0. But s belongs to at most one of the disjoint sets
B~i, B 2 , . . . , Bro_i, and so Px can be shrunk to give a neighbourhood of s intersecting at
most one Br; working within such a neighbourhood, it is clear from the continuity of fT on
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X and its vanishing outside Br that b is continuous with respect to A at s.) At t0, however,
b fails to be continuous with respect to A, since although xr -» t0 as r —» °°, yet

We show that ba - ab belongs to A whenever a does. Let aeA, with

a(0= I <(t)e?;(t) (teU"-).

Then

f/,(0afe(0e&(0 -/,(O«Si(t)cgi(O (t e Br, r = 1, 2 , . . . )

(reT\UBr).•fc
Clearly the operator field ba-ab satisfies the separation conditions of Lemma 1, since
b{t)a(t)-a{t)b(t) = O for all t in YUdX; and it is continuous with respect to A at all
points of T other than (0, since b is. Unlike b, it is also continuous with respect to A at t0:
of the relevant conditions in §2, (ib) and (iib) are trivially satisfied, while to satisfy (iiib) it
is enough to find, given e > 0 , a neighbourhood Ne of t0 such that |/r(t)a:?^(t)| and
l/r(0«2'i(0l are less than e whenever teNt,C\Up' (r = l, 2 , . . . ) . Since |/ r(() |^l for all
teX, we need only have |a?2(f)| and |a2'i(0l less t n a n e f°r teNEC)Up-, and now the
existence of NB is assured by applying the same condition (iiib) to the element a of A.

Thus b implements a derivation D on A. Suppose that D can be implemented by an
operator field c which is continuous with respect to A on T. Then b(t) — c(t) belongs to
the centre of A, for all t in T; in particular, b(xr)-c(xr) = 0rL, for some complex number
6r (r = l ,2 , . . . ) , so that c(xr) = (l-er)e^(xr)-flr£&(xr) (r = l ,2 , . . . ) . But c(t0) = 7O0K
for some complex number y(t0). So, since xr —* t0 as r —* °° and c is assumed continuous
with respect to A at t0, condition (iiib) applied to c gives that both l - 0 r and -0r

converge to the same complex number y(t0) as r—»oo; and this is impossible. This
completes the proof of the theorem.

Our next result will be that, with dX \ Z assumed empty, the desired continuity for b
on Z can be achieved if and only if X is the Stone-Cech compactification of X; this
should be compared with [6, §5, Examples (2) and (3)]. (For the record, there should be a
minus sign on the lower left entry in the last matrix appearing on p. 534 of [6], but the
argument there is not affected). Recall that the Stone-Cech compactification V of a
completely regular Hausdorff space U is characterized by the facts that U is dense in V, V
is compact, and any bounded continuous complex-valued function on U can be extended
to a continuous complex-valued function on V.

LEMMA 2. Let U be a completely regular Hausdorff space.
(i) Suppose V is the Stone-Cech compactification of U. Let toeV\U and let W be

any open neighbourhood of t0 in V. Let g be a bounded continuous complex-valued function
defined onWDU. Then g can be extended to a bounded continuous function on all of W.

(ii) Suppose U is dense in a compact Hausdorff space V which is not the Stone-Cech
compactification of U. Then there exists a bounded continuous complex-valued function g
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defined on U and a point t0 in V\U such that g cannot be extended to a bounded
continuous function on any neighbourhood of t0 in V.

Proof, (i) Let t be any point of W \ U. Then W is an open neighbourhood of t in V.
Since V is compact Hausdorff, there exists an open neighbourhood G of I in V with
G zW. Then G and V\W are disjoint closed subsets of V, and there exists a real-valued
continuous function / on V, taking the value 1 on G and 0 on V \ W. Define a function h
on U by putting

w lO (xeI/\W).

Since / and g are bounded and continuous and / vanishes outside W, h itself is bounded
and continuous on U. By the Stone-Cech property, h extends to a continuous function h
on V. Since h and g agree on G D U, h yields a continuous extension of g to (Wfl U) UG
(equal to g on Wfl U and to It on G).

If we carry out this construction for each t in W \ U, the functions h agree on
'overlaps'; for suppose t'eW\U, and form the corresponding G', h', h' as before. Then
if t"e(G_C\G')\U, t" is the limit of a net ( x j of points of (GjDG')nU, and since
h(xj = h'(xa.) (=g(xj) for all a, it follows by continuity that h(t") = h'(t"). Hence g
extends to all of W in the required way.

(ii) If now V is not the Stone-Cech compactification of U, there exists a complex-
valued function g, defined, bounded, and continuous on U, which has no extension to a
continuou? function on V. Suppose that for each point t of V\U there exists some
neighbourhood W, of t such that g extends to a bounded continuous function on Wr.
Arguing as in the last paragraph of (i) above, we can piece together these extensions to
get a continuous extension of g on all of V, which is supposed impossible. This
contradiction shows that there exists (0 in V\U such that g does not extend to a
continuous function on any neighbourhood of t0.

THEOREM 2. Suppose that dX \ Z is empty. Then a necessary and sufficient condition
that every derivation on A. can be implemented by an operator field continuous with respect
to A on T is that X be the Stone-Cech compactification of X.

Proof, (i) Suppose that X is the Stone-Cech compactification of X. Let D be any
derivation on A. We have already shown that D can be implemented by a bounded
operator field b on T which is continuous with respect to A on XU Y. Suppose tQeZ,
with t 0 eO" say. Then for all l e V ^ c ^ n X w e have

(Detl)(t)= I PiP(Oe

Applying the continuity conditions given in §2 for points of Z to the element De^ of A
and the point (0, we deduce that condition (iia) is already satisfied by b. Since the centre of
A,,, is all of A^ (sJV^SM,), condition (ia) will be satisfied if we can redefine /3n(to)»
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&22U0) to make |3ii, £22 continuous at t0. If this can be done for all t0 in O* C\Z, and in a
way consistent on 'overlaps' of the form O* n O" n Z, then b will be modified into an
operator field continuous with respect to A on all of T and still implementing D. Now b is
bounded, so /3i\ and ££2 a r e bounded, and already continuous on O^ DX; so, by Lemma
2(i), (3^ I (O* DX) (and likewise /3&, \ (O* DX), which is just -(3?, | (O* HX) by the zero
trace construction already carried out in X) extends to a bounded continuous function
defined on all of O*\ We use these extensions to redefine /B^ and 022 continuously on
O T l Z ; and all that remains is to check consistency on overlaps.

Suppose then that toeO* C\O" C\Z. As explained in §2, either en((0) = ei,(l0) and
e22('o)= 2̂2(̂ 0). in which case we must prove that 3u(f0)= PuOo) and ^22(^0)= ^22(̂ 0); or
ef,(l0) = e^Oo) a nd e22(fo)= Cii(fo)> in which case we must prove that /3i\(t0)= |322(fo) and
|322(fo) = Pii('o)- We will deal with the former possibility: a similar proof covers the latter.
We need then only show that 3n(ro) = P\i(t0), since j32

l
2(ro) = -/3^1(io) and /322(to) =

— (3ii(f0) by construction.
Let (x,,) be a net i n O ^ n C n X converging to t0. Then xa e V ^ n V* for some y, 8

depending on cr, and we may write

We may also write

Since ef,'(t0) = Ci^to), it follows from continuity conditions (ia) and (iia) of §2, applied to
e"u, that

^ 1 and all other |e|J(^)| -^ 0. (1)

Now e,1(x<T)b(xo.)e5'1(xo.) can be written as

so that, using (1), we find that

\e\x(xa)b(xa)eUxa) - ^(xJe^OOll ^ 0. (2)

But also

so that, by (1),

)|| -^ 0. (3)
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From (2) and (3),

But by construction /3?,(xJ -^ p^(t0) and / ^ ( x j A- (3J,(r0), so that (3^(fo) = /3u(r0) as
required.

(ii) Suppose that X is not the Stone-Cech compactification of X. By Lemma 2 (ii)
there exists a bounded continuous complex-valued function g denned on X and a point f0
in Z such that g cannot be extended to a bounded continuous function on any neighbour-
hood of t0.

Suppose toGO*. Since X is compact Husdorff, arguments like those used at the
beginning of the proof of Lemma 2 (i) show the existence of an open neighbourhood G of
t0 in X with G c O*\ and of a function h, denned, bounded, and continuous on X, which
agrees with g on G n X and vanishes outside O*. Since g does not extend to a bounded
continuous function on GDZ, neither does h.

Define an operator field b on T by putting

fhOKi(t) (tecrnx)
lo (ieT\(Oiinx)).

(This operator field is not continuous with respect to A at points of G Pi Z.) We show that
ba — ab belongs to A whenever a does. Let aeA, with

a{t)= I aJTWeiTW (teV^).

Then

p (reT\(crnx)).

Clearly the operator field ba — ab satisfies the separation conditions of Lemma 1, since
b(t)a(t)-a(t)b(t) = O for all te YUZ; and it is not hard to check the relevant continuity
conditions of §2 for ba — ab: the only problems might occur on the boundary ofO1*, but
these disappear when we observe that la^COl and |a2i(0l become small for t near O* PiZ
(by condition (iia) applied to a) and that h(t) becomes small for t near the other points of
the boundary of O*\

Thus b implements a derivation D on A. Suppose that D can be implemented by an
operator field c which is continuous with respect to A on T, and therefore in particular on
O1*. The continuity conditions of §2, together with the fact that, for each t in T,
b(t)-c(t) belongs to the centre of A,, shows that there must exist a (bounded continuous)
complex-valued function 6 defined on O " n X such that the functions h — 0 and -6 on
O*C\X both extend to bounded continuous functions on O T l Z , and in particular on
GC\Z. But then by subtraction the same would be true of h, a contradiction. This
completes the proof of the theorem.
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COROLLARY. Suppose dX\ Z is empty. Then if X is not the Stone-Cech compactifica-
tion of X, there exists an outer derivation on A.

We show finally how a derivation D can arise which can be implemented by an
operator field continuous with respect to A on T, but not by one which also satisfies the
separation conditions of Lemma 1 (so that D is outer).

LEMMA 3. Let D be a derivation on A, implemented by each of two operator fields b, c
on T. If both b and c are continuous with respect to A on T, then b(t)-c(t) is a scalar
multiple of the identity I, of A, for all t in T.

Proof. Put d = b - c, so that d is continuous with respect to A on T. We already know
that d(t) = 8(t)I, (for some complex number 5(0) for teT\Z.

Let toeZ, with t0eO*. The continuity condition (ia) of §2, applied to d, shows that
the coefficient functions S^ and S£2, and hence also 8^ - 8%2, are continuous at t0. For
t e C r n X , 5^(0-8£2(0 = 8(0-8(f) = 0; and so, by continuity, 8%(to)-8$2(to) = 0. Thus
d(t0) is a scalar multiple of 7fe, as required.

Recall now that we write the elements of dX in the form [y1; y2] as unordered pairs of
points of Y.

DEFINITION. (1) If yx, y2 are (not necessarily distinct) elements of Y, we say that y,
links with y2 if [yi, yJedX.

(2) For any n > 3, a finite sequence {y1; y 2 , . . . , yn} of points of Y is called a circle in
Y if yj links with yJ+1 ( l < ) < n - l ) and yn links with yx; if in addition y l 5 . . . , yn are all
distinct, the circle is called proper.

THEOREM 3. Suppose there exists a proper circle in Y. Then there exists a derivation D
on A which can be implemented by an operator field continuous with respect to A on T, but
not by one which also satisfies the separation conditions of Lemma 1 (so thatD is outer).

Proof. Let {y1; y 2 , . . . , yn} (n>3) be a proper circle in Y, and put zt = [y,, y2],
Z2 = [y2» ysl • • •» zn = lyn, yd- Since y x , . . . , yn are all distinct, each z, belongs to Z and
hence to some O^<; z 1 ; . . . , zn are themselves distinct, and so we may assume that the O"1

are mutually disjoint by shrinking them if necessary. We may also suppose that the
corresponding matrix units are chosen so that e^[(yj) = e^2(yj+1) = 1, e1

x{(yj+1) = e^y,-) = 0
(1 < / < n -1) and eft(yn) = e£(yi) = 1, <r(y t) = e%(yj = 0.

There exist continuous complex-valued functions ft (j' = 1 , . . . , n) on X such that
fi(Zj) = 1 and /j-0) = 0 for t e X \ O"-< .Define an operator field b on T by putting

b(t)= {
0

Since the O*' are mutually disjoint and each fs is continuous and vanishes outside O11', b is
well-defined and continuous with respect to A on T. For each aeA, ba-ab belongs to A,
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for it is continuous with respect to A on T (since b is) and satisfies the separation
conditions of Lemma 1 (because b(t)a{t)-a(t)b(t) = O for all t in dXU Y).

Thus b implements a derivation D on A. Suppose that D can be implemented by an
operator field c which is continuous with respect to A on T and also satisfies the
separation conditions of Lemma 1. For each t in T, c(t) = b(t)-8(t)I, for some complex
number S(f), by Lemma 3. Denoting by -y(st, s2), Y(S1; S2) the coefficients of c at [sl5 s2]
corresponding to su s2 respectively (see §2), the first of the four separation conditions of
Lemma 1, applied to c for the points z 1 ; . . . , zn, gives

y2) = AUx) - 5(Zi) = - S(zn) = y(yn, yx)

7(5*2, y3) = /2U2) - S(z2) = - SUJ) = 7(yt, y2)

7(>in, yi) = Uzn) - s(zn) = - sc^-i) = 7(y»-i, yJ-

But ^(2,) = 1 (7 = 1 , . . . , n), so by addition we get n = 0, a contradiction. This completes
the proof of the theorem.

I can prove that if there are no proper circles in Y and certain other conditions are
also satisfied, then any derivation D o n A which can be implemented by an operator field
continuous with respect to A on T can be implemented by one which also satisfies the
separation conditions of Lemma 1 (so that D is inner). The extra conditions are not very
satisfactory (examples show them not to be necessary conditions). It is hoped to pursue
these matters further on another occasion; there is also the possibility of using Vasil'ev's
structure theory to investigate derivations on C*-algebras with irreducible *-
representations of bounded finite dimension, but with a bound higher .than 2.
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