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Extension of Some Theorems of
W. Schwarz

Michael Coons

Abstract. In this paper, we prove that a non–zero power series F(z) ∈ C[[z]] satisfying

F(zd) = F(z) +
A(z)

B(z)
,

where d ≥ 2, A(z), B(z) ∈ C[z] with A(z) 6= 0 and deg A(z), deg B(z) < d is transcendental over

C(z). Using this result and a theorem of Mahler’s, we extend results of Golomb and Schwarz on

transcendental values of certain power series. In particular, we prove that for all k ≥ 2 the series

Gk(z) :=
P

∞

n=0 zkn
(1 − zkn

)−1 is transcendental for all algebraic numbers z with |z| < 1. We give

a similar result for Fk(z) :=
P

∞

n=0 zkn
(1 + zkn

)−1. These results were known to Mahler, though our

proofs of the function transcendence are new and elementary; no linear algebra or differential calculus

is used.

1 Introduction

Golomb proved in [4] that the values of the functions

∞
∑

n=0

z2n

1 + z2n and

∞
∑

n=0

z2n

1 − z2n

are irrational at z =
1
t

for t = 2, 3, 4, . . . , the interesting special case of which is that

the sum of the reciprocals of the Fermat numbers is irrational. Schwarz [11] gave

results on series of the form

Gk(z) :=

∞
∑

n=0

zkn

1 − zkn .

In particular, he proved that if k, t and b are integers satisfying k ≥ 2, t ≥ 2, and

1 ≤ b < t1−1/k, then the number

Gk(bt−1) =

∞
∑

n=0

bkn

tkn − bkn

is irrational. Schwarz also showed that for k, t, b ∈ N with k > 2, t ≥ 2, and

1 ≤ b < t1−5/2k the number Gk(bt−1) is transcendental. The case k = 2 proved to
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2 M. Coons

be more difficult, though he was able to show that for an integer t ≥ 2, the number

G2(t−1) is not algebraic of the second degree.

Schwarz also remarked [11] that, “the irrationality of

Fk(bt−1) :=

∞
∑

n=0

bkn

(tkn

+ bkn

)−1

for k > 2 is unsettled” (here the notation Fk(bt−1) has been added).

Recently, Duverney [1] proved the transcendence of G2(t−1) for integers t ≥ 2

and extended Schwarz’s transcendence results for the case k = 2. He proved the

following theorem.

Theorem 1.1 Let a ≥ 2 be an integer and let bn be a sequence of integers satisfying

|bn| = O(η−2n

) for every η ∈ (0, 1). Suppose that a2n

+ bn 6= 0 for every n ∈ N. Then

the number

S =

∞
∑

n=0

1

a2n
+ bn

is transcendental.

We extend Schwarz’s results further (to the best possible); in particular, we prove

that for all k ≥ 2 the series Gk(z) =
∑

∞

n=0 zkn

(1 − zkn

)−1 is transcendental for

all algebraic numbers z with |z| < 1. We also prove the same result for Fk(z) =
∑

∞

n=0 zkn

(1 + zkn

)−1 which settles the irrationality question of Schwarz’s remark.

These results were known to Mahler (see [5–8]), though our proofs of the function

transcendence are new and elementary, coming from the proof of our main result;

no linear algebra or differential calculus is used.

Our main result is that a non–zero power series F(z) ∈ C[[z]] satisfying

F(zd) = F(z) +
A(z)

B(z)
,

where A(z), B(z) ∈ C[z] with A(z) 6= 0 and deg A(z), deg B(z) < d is transcendental

over C(X). This extends a theorem of Nishioka [9] that states that F(z) is either

transcendental or rational.

2 A General Theorem

Nishioka [9] has shown the following.

Theorem 2.1 Suppose that F(z) ∈ C[[z]] satisfies one of the following for an integer

d > 1.

(i) F(zd) = ϕ(z, F(z)),

(ii) F(z) = ϕ(z, F(zd)),

where ϕ(z, u) is a rational function in z, u over C. If F(z) is algebraic over C(z), then

F(z) ∈ C(z).

https://doi.org/10.4153/CMB-2011-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-037-9


Extension of Some Theorems of W. Schwarz 3

Nishioka’s proof of Theorem 2.1 relies heavily on deep ideas from algebraic num-

ber theory. In this section we provide an elementary proof of a special case of Theo-

rem 2.1. In this special case, we are able to refine the conclusion by eliminating the

possibility of F(z) being a rational function.

Theorem 2.2 If F(z) is a power series in C[[z]] satisfying

F(zd) = F(z) +
A(z)

B(z)
,

where d ≥ 2, A(z), B(z) ∈ C[z] with A(z) 6= 0 and deg A(z), deg B(z) < d, then F(z)

is transcendental over C(z).

Proof Suppose that the power series F(z) is algebraic and satisfies

(2.1)

n
∑

r=0

qr(z)F(z)r ≡ 0,

where the qr(z) are rational functions with qn(z) = 1 and n ≥ 1 is chosen minimally.

Substituting zd into (2.1) and using the functional relation gives

0 ≡

n
∑

r=0

qr(zd)F(zd)r
=

n
∑

r=0

qr(zd)
(

F(z) +
A(z)

B(z)

) r

.

Without loss of generality, suppose B(z) is monic. Multiplying by B(z)n to clear frac-

tions as well as an application of the binomial theorem yields

(2.2) 0 ≡

n
∑

r=0

qr(zd)B(z)n−r
(

B(z)F(z) + A(z)
) r

=

n
∑

r=0

qr(zd)B(z)n−r

r
∑

j=0

(

r

j

)

B(z) jF(z) jA(z)r− j .

Taking the difference between (2.2) and B(z)n times (2.1) gives

(2.3) Q(z) :=

n
∑

r=0

qr(zd)B(z)n−r

r
∑

j=0

(

r

j

)

B(z) jF(z) jA(z)r− j

− B(z)n

n
∑

r=0

qr(z)F(z)r ≡ 0.

Note that we may also write Q(z) =
∑n

m=0 hm(z)F(z)m ≡ 0.

We determine hn(z). The only term in Q(z) that can contribute to the coefficient

of F(z)n is the r = n term of the sum (2.3), which, recalling that qn(z) = 1, is

n
∑

j=0

(

n

j

)

B(z) jF(z) jA(z)n− j − B(z)nF(z)n,
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and only the j = n term here contributes. Hence

hn(z) =

(

n

n

)

B(z)nA(z)n−n − B(z)n
= 0,

so that Q(z) =
∑n−1

m=0 hm(z)F(z)m ≡ 0. Since n was chosen minimally, hm(z) ≡ 0 for

all m = 0, 1, . . . , n − 1.

Using (2.3), we have that

hm(z) =

n
∑

r=m

(

r

m

)

qr(zd)B(z)n−r+mA(z)r−m − B(z)nqm(z).

Since hn−1(z) ≡ 0, we have

n
∑

r=n−1

(

r

n − 1

)

qr(zd)B(z)n−r+(n−1)A(z)r−(n−1)
= B(z)nqn−1(z),

so that removal of shared factors and again recalling qn(z) = 1, we have the identity

(2.4) qn−1(zd)B(z) + nA(z) = B(z)qn−1(z).

Write qn−1(z) =
α(z)
β(z)

where α(z), β(z) ∈ C[z] with gcd(α(z), β(z)) = 1 and β(z)

monic. Then (2.4) becomes

(2.5) β(z)α(zd)B(z) + nβ(z)β(zd)A(z) = β(zd)B(z)α(z).

Equation (2.5) yields β(zd)|β(z)α(zd)B(z). As gcd(α(zd), β(zd)) = 1, this implies

that β(zd)|β(z)B(z). Therefore, d · deg β(z) ≤ deg β(z) + deg B(z) < deg β(z) + d.

Hence

0 ≤ deg β(z) < 1 +
1

d − 1
,

so that since d ≥ 2, either deg β(z) = 0 or deg β(z) = 1.

Suppose deg β(z) = 0 so that β(z) ∈ C. Hence β(z) = β(zd) ∈ C; write β :=

β(z). Now (2.5) becomes

(2.6) α(zd)B(z) + nβA(z) = B(z)α(z).

Thus B(z)|nβ, so that deg B(z) = 0; write B := B(z). So (2.6) becomes

(2.7) α(zd)B + nβA(z) = Bα(z),

which implies that d · deg α(z) = deg A(z) < d, so that deg α(z) = 0. Equation (2.7)

and deg α(z) = 0 imply that A(z) = 0, which is impossible.

Now suppose deg β(z) = 1 and write β(z) = z − β. Comparing degrees in (2.5)

implies that deg α(z) ≤ 1.
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Recall that β(zd)|β(z)B(z) by (2.5). As deg B < d, this implies that deg B = d − 1.

Since β and B are both monic, we conclude that β(zd) = β(z)B(z), whence

β(zd)

β(z)
= B(z).

Suppose that deg α(z) = 1. Write α(z) = δ(z − α) and note that β 6= α. In this

case, replacing B(z) in (2.5) and solving for A(z) gives

A(z) =
δ(β − α)z(zd−1 − 1)

n(z − β)2
∈ C[z].

Since A(z) ∈ C[z] we have that (z − β)2|(zd−1 − 1), which is impossible because

z(zd−1 − 1) has only simple roots; hence deg α(z) = 0.

If deg α(z) = 0, write α := α(z). Then writing β(z) = z − β and solving (2.5) for

A(z), we have that

A(z) =
αz(zd−1 − 1)

n(z − β)2
∈ C[z],

which is, again, impossible. Thus the theorem is proved.

3 The Series Gk(z) and Fk(z)

To prove the transcendence results surrounding Gk(z) and Fk(z), we apply Theo-

rem 2.2 as well as the following theorem of Mahler [5], as taken from Nishioka’s

book [10]. Here I is the set of algebraic integers over Q , K is an algebraic number

field, IK = K ∩ I, and f (z) ∈ K[[z]] with radius of convergence R > 0 satisfying the

functional equation for an integer d > 1,

f (zd) =

∑m
i=0 ai(z) f (z)i

∑m
i=0 bi(z) f (z)i

, m < d, ai(z), bi(z) ∈ IK [z],

and ∆(z) := Res(A, B) is the resultant of

A(u) =

m
∑

i=0

ai(z)ui and B(u) =

m
∑

i=0

bi(z)ui

as polynomials in u.

Theorem 3.1 ([5]) Assume that f (z) is not algebraic over K(z). If α is an algebraic

number with 0 < |α| < min{1, R} and ∆(αdn

) 6= 0 (n ≥ 0), then f (α) is transcen-

dental.

Now consider the functional equation f (zk) = f (z) − z
1−z

with k ≥ 2. Repeated

use gives

f (zkm

) = f (zkm−1

) −
zkm−1

1 − zkm = f (z) −

m
∑

n=1

zkm−n

1 − zkm−n .
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Changing the index and setting Wm(z) :=
∑m−1

n=0 zkn

/(1 − zkn

) gives

f (z) = f (zkm

) + Wm(z).

In the region |z| < 1 we have

f (z) = lim
m→∞

[ f (zkm

) + Wm(z)] =

∞
∑

n=0

zkn

1 − zkn = Gk(z).

This proves the following lemma.

Lemma 3.2 The function Gk(z) satisfies the functional equation

Gk(zk) = Gk(z) +
z

z − 1
.

As a corollary of Theorem 2.2, we have the following corollary.

Corollary 3.3 T he function Gk(z) is transcendental over C(z).

To get the transcendence of the associated numbers, we use Mahler’s theorem.

Proposition 3.4 For k ≥ 2 and z = α algebraic with 0 < |α| < 1, Gk(α) is

transcendental over Q .

Proof Lemma 3.2 gives the functional equation

Gk(zk) =
(1 − z)Gk(z) − z

1 − z
,

so that, in the language of Theorem 3.1, we have A(u) = (1−z)u−z and B(u) = 1−z,

m = 1 < k = d, and ai(z), bi(z) ∈ IK [z]. Since B(u) is a constant polynomial

in u, ∆(z) := Res(A, B) = 1 − z. Let |α| < 1 be algebraic; it is immediate that

∆(αkn

) = 1 − αkn

6= 0 (n ≥ 0). Since Gk(z) is not algebraic over C(z) (as supplied

by Theorem 2.2), applying Theorem 3.1, we have that Gk(α) is transcendental over

Q .

Corollary 3.5 If k, b, t ∈ N with k ≥ 2 and 0 < b < t, then the number Gk(bt−1) is

transcendental over Q .

Proof Set α = b/t in Theorem 3.4.

We turn now to the series

Fk(z) =

∞
∑

n=0

zkn

1 + zkn .

Similar to Gk(z), Fk(z) satisfies a functional equation,

Fk(zk) = Fk(z) −
z

z + 1
.

Using this functional equation, we have the following corollary of Theorem 2.2.
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Corollary 3.6 T he function Fk(z) is transcendental over C(z).

As before, Mahler’s theorem gives the following proposition.

Proposition 3.7 For k ≥ 2 and z = α an algebraic number with 0 < |α| < 1, Fk(α)

is transcendental over Q .

Corollary 3.8 If k, b, t ∈ N with k ≥ 2 and 1 ≤ b < t, then the number Fk(bt−1) is

transcendental over Q .

Remark 1 For some more recent work concerning results like Nishioka’s Theo-

rem 2.1, but for more general algebraic number fields, see [2] (This paper also con-

tains a number of current references to work in this area). Also, concerning functions

similar to Gk(z) and Fk(z) above, Duverney, Kanoko, and Tanaka [3] have given a

complete classification of those series

f (z) :=

∞
∑

k=0

akzdk

1 + bzdk
+ cz2dk

∈ C[[z]]

that are transcendental over C(z) where C is a field of characteristic 0, d ≥ 2, and

a, b, c ∈ C with a 6= 0.
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