

Extension of Some Theorems of W. Schwarz

Michael Coons

Abstract. In this paper, we prove that a non–zero power series $F(z) \in \mathbb{C}[[z]]$ satisfying

$$F(z^d) = F(z) + \frac{A(z)}{B(z)},$$

where $d \ge 2$, $A(z), B(z) \in \mathbb{C}[z]$ with $A(z) \ne 0$ and deg A(z), deg B(z) < d is transcendental over $\mathbb{C}(z)$. Using this result and a theorem of Mahler's, we extend results of Golomb and Schwarz on transcendental values of certain power series. In particular, we prove that for all $k \ge 2$ the series $G_k(z) := \sum_{n=0}^{\infty} z^{k^n} (1 - z^{k^n})^{-1}$ is transcendental for all algebraic numbers z with |z| < 1. We give a similar result for $F_k(z) := \sum_{n=0}^{\infty} z^{k^n} (1 + z^{k^n})^{-1}$. These results were known to Mahler, though our proofs of the function transcendence are new and elementary; no linear algebra or differential calculus is used.

1 Introduction

Golomb proved in [4] that the values of the functions

$$\sum_{n=0}^{\infty} \frac{z^{2^n}}{1+z^{2^n}} \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{z^{2^n}}{1-z^{2^n}}$$

are irrational at $z = \frac{1}{t}$ for t = 2, 3, 4, ..., the interesting special case of which is that the sum of the reciprocals of the Fermat numbers is irrational. Schwarz [11] gave results on series of the form

$$G_k(z) := \sum_{n=0}^{\infty} \frac{z^{k^n}}{1-z^{k^n}}.$$

In particular, he proved that if k, t and b are integers satisfying $k \ge 2, t \ge 2$, and $1 \le b < t^{1-1/k}$, then the number

$$G_k(bt^{-1}) = \sum_{n=0}^{\infty} \frac{b^{k^n}}{t^{k^n} - b^{k^n}}$$

is irrational. Schwarz also showed that for $k, t, b \in \mathbb{N}$ with $k > 2, t \ge 2$, and $1 \le b < t^{1-5/2k}$ the number $G_k(bt^{-1})$ is transcendental. The case k = 2 proved to

Received by the editors October 21, 2008; revised November 14, 2008.

Published electronically March 10, 2011.

AMS subject classification: 11B37, 11J81.

Keywords: functional equations, transcendence, power series.

be more difficult, though he was able to show that for an integer $t \ge 2$, the number $G_2(t^{-1})$ is not algebraic of the second degree.

Schwarz also remarked [11] that, "the irrationality of

$$F_k(bt^{-1}) := \sum_{n=0}^{\infty} b^{k^n} (t^{k^n} + b^{k^n})^{-1}$$

for k > 2 is unsettled" (here the notation $F_k(bt^{-1})$ has been added).

Recently, Duverney [1] proved the transcendence of $G_2(t^{-1})$ for integers $t \ge 2$ and extended Schwarz's transcendence results for the case k = 2. He proved the following theorem.

Theorem 1.1 Let $a \ge 2$ be an integer and let b_n be a sequence of integers satisfying $|b_n| = O(\eta^{-2^n})$ for every $\eta \in (0, 1)$. Suppose that $a^{2^n} + b_n \ne 0$ for every $n \in \mathbb{N}$. Then the number

$$S = \sum_{n=0}^{\infty} \frac{1}{a^{2^n} + b_n}$$

is transcendental.

We extend Schwarz's results further (to the best possible); in particular, we prove that for all $k \ge 2$ the series $G_k(z) = \sum_{n=0}^{\infty} z^{k^n} (1 - z^{k^n})^{-1}$ is transcendental for all algebraic numbers z with |z| < 1. We also prove the same result for $F_k(z) = \sum_{n=0}^{\infty} z^{k^n} (1 + z^{k^n})^{-1}$ which settles the irrationality question of Schwarz's remark. These results were known to Mahler (see [5–8]), though our proofs of the function transcendence are new and elementary, coming from the proof of our main result; no linear algebra or differential calculus is used.

Our main result is that a non–zero power series $F(z) \in \mathbb{C}[[z]]$ satisfying

$$F(z^d) = F(z) + \frac{A(z)}{B(z)},$$

where $A(z), B(z) \in \mathbb{C}[z]$ with $A(z) \neq 0$ and deg A(z), deg B(z) < d is transcendental over $\mathbb{C}(X)$. This extends a theorem of Nishioka [9] that states that F(z) is either transcendental or rational.

2 A General Theorem

Nishioka [9] has shown the following.

Theorem 2.1 Suppose that $F(z) \in \mathbb{C}[[z]]$ satisfies one of the following for an integer d > 1.

- (i) $F(z^d) = \varphi(z, F(z)),$
- (ii) $F(z) = \varphi(z, F(z^d)),$

where $\varphi(z, u)$ is a rational function in z, u over \mathbb{C} . If F(z) is algebraic over $\mathbb{C}(z)$, then $F(z) \in \mathbb{C}(z)$.

Nishioka's proof of Theorem 2.1 relies heavily on deep ideas from algebraic number theory. In this section we provide an elementary proof of a special case of Theorem 2.1. In this special case, we are able to refine the conclusion by eliminating the possibility of F(z) being a rational function.

Theorem 2.2 If F(z) is a power series in $\mathbb{C}[[z]]$ satisfying

$$F(z^d) = F(z) + \frac{A(z)}{B(z)},$$

where $d \ge 2$, $A(z), B(z) \in \mathbb{C}[z]$ with $A(z) \ne 0$ and $\deg A(z), \deg B(z) < d$, then F(z) is transcendental over $\mathbb{C}(z)$.

Proof Suppose that the power series F(z) is algebraic and satisfies

(2.1)
$$\sum_{r=0}^{n} q_r(z)F(z)^r \equiv 0,$$

where the $q_r(z)$ are rational functions with $q_n(z) = 1$ and $n \ge 1$ is chosen minimally. Substituting z^d into (2.1) and using the functional relation gives

$$0 \equiv \sum_{r=0}^{n} q_r(z^d) F(z^d)^r = \sum_{r=0}^{n} q_r(z^d) \left(F(z) + \frac{A(z)}{B(z)} \right)^r.$$

Without loss of generality, suppose B(z) is monic. Multiplying by $B(z)^n$ to clear fractions as well as an application of the binomial theorem yields

(2.2)
$$0 \equiv \sum_{r=0}^{n} q_r(z^d) B(z)^{n-r} \left(B(z) F(z) + A(z) \right)^r = \sum_{r=0}^{n} q_r(z^d) B(z)^{n-r} \sum_{j=0}^{r} {r \choose j} B(z)^j F(z)^j A(z)^{r-j}.$$

Taking the difference between (2.2) and $B(z)^n$ times (2.1) gives

(2.3)
$$Q(z) := \sum_{r=0}^{n} q_r(z^d) B(z)^{n-r} \sum_{j=0}^{r} \binom{r}{j} B(z)^j F(z)^j A(z)^{r-j} - B(z)^n \sum_{r=0}^{n} q_r(z) F(z)^r \equiv 0.$$

Note that we may also write $Q(z) = \sum_{m=0}^{n} h_m(z)F(z)^m \equiv 0$.

We determine $h_n(z)$. The only term in Q(z) that can contribute to the coefficient of $F(z)^n$ is the r = n term of the sum (2.3), which, recalling that $q_n(z) = 1$, is

$$\sum_{j=0}^n \binom{n}{j} B(z)^j F(z)^j A(z)^{n-j} - B(z)^n F(z)^n,$$

M. Coons

and only the j = n term here contributes. Hence

$$h_n(z) = \binom{n}{n} B(z)^n A(z)^{n-n} - B(z)^n = 0,$$

so that $Q(z) = \sum_{m=0}^{n-1} h_m(z)F(z)^m \equiv 0$. Since *n* was chosen minimally, $h_m(z) \equiv 0$ for all m = 0, 1, ..., n-1.

Using (2.3), we have that

$$h_m(z) = \sum_{r=m}^n \binom{r}{m} q_r(z^d) B(z)^{n-r+m} A(z)^{r-m} - B(z)^n q_m(z).$$

Since $h_{n-1}(z) \equiv 0$, we have

$$\sum_{r=n-1}^{n} \binom{r}{n-1} q_r(z^d) B(z)^{n-r+(n-1)} A(z)^{r-(n-1)} = B(z)^n q_{n-1}(z),$$

so that removal of shared factors and again recalling $q_n(z) = 1$, we have the identity

(2.4)
$$q_{n-1}(z^d)B(z) + nA(z) = B(z)q_{n-1}(z).$$

Write $q_{n-1}(z) = \frac{\alpha(z)}{\beta(z)}$ where $\alpha(z), \beta(z) \in \mathbb{C}[z]$ with $gcd(\alpha(z), \beta(z)) = 1$ and $\beta(z)$ monic. Then (2.4) becomes

(2.5)
$$\beta(z)\alpha(z^d)B(z) + n\beta(z)\beta(z^d)A(z) = \beta(z^d)B(z)\alpha(z).$$

Equation (2.5) yields $\beta(z^d)|\beta(z)\alpha(z^d)B(z)$. As $gcd(\alpha(z^d),\beta(z^d)) = 1$, this implies that $\beta(z^d)|\beta(z)B(z)$. Therefore, $d \cdot \deg \beta(z) \leq \deg \beta(z) + \deg B(z) < \deg \beta(z) + d$. Hence

$$0 \le \deg \beta(z) < 1 + \frac{1}{d-1}$$

so that since $d \ge 2$, either deg $\beta(z) = 0$ or deg $\beta(z) = 1$.

Suppose deg $\beta(z) = 0$ so that $\beta(z) \in \mathbb{C}$. Hence $\beta(z) = \beta(z^d) \in \mathbb{C}$; write $\beta := \beta(z)$. Now (2.5) becomes

(2.6)
$$\alpha(z^d)B(z) + n\beta A(z) = B(z)\alpha(z).$$

Thus $B(z)|n\beta$, so that deg B(z) = 0; write B := B(z). So (2.6) becomes

(2.7)
$$\alpha(z^d)B + n\beta A(z) = B\alpha(z),$$

which implies that $d \cdot \deg \alpha(z) = \deg A(z) < d$, so that $\deg \alpha(z) = 0$. Equation (2.7) and $\deg \alpha(z) = 0$ imply that A(z) = 0, which is impossible.

Now suppose deg $\beta(z) = 1$ and write $\beta(z) = z - \beta$. Comparing degrees in (2.5) implies that deg $\alpha(z) \leq 1$.

Extension of Some Theorems of W. Schwarz

Recall that $\beta(z^d)|\beta(z)B(z)$ by (2.5). As deg B < d, this implies that deg B = d - 1. Since β and B are both monic, we conclude that $\beta(z^d) = \beta(z)B(z)$, whence

$$\frac{\beta(z^d)}{\beta(z)} = B(z).$$

Suppose that deg $\alpha(z) = 1$. Write $\alpha(z) = \delta(z - \alpha)$ and note that $\beta \neq \alpha$. In this case, replacing B(z) in (2.5) and solving for A(z) gives

$$A(z) = \frac{\delta(\beta - \alpha)z(z^{d-1} - 1)}{n(z - \beta)^2} \in \mathbb{C}[z].$$

Since $A(z) \in \mathbb{C}[z]$ we have that $(z - \beta)^2 | (z^{d-1} - 1)$, which is impossible because $z(z^{d-1} - 1)$ has only simple roots; hence deg $\alpha(z) = 0$.

If deg $\alpha(z) = 0$, write $\alpha := \alpha(z)$. Then writing $\beta(z) = z - \beta$ and solving (2.5) for A(z), we have that

$$A(z) = \frac{\alpha z (z^{d-1} - 1)}{n(z - \beta)^2} \in \mathbb{C}[z],$$

which is, again, impossible. Thus the theorem is proved.

3 The Series $G_k(z)$ and $F_k(z)$

To prove the transcendence results surrounding $G_k(z)$ and $F_k(z)$, we apply Theorem 2.2 as well as the following theorem of Mahler [5], as taken from Nishioka's book [10]. Here **I** is the set of algebraic integers over \mathbb{Q} , *K* is an algebraic number field, $\mathbf{I}_K = K \cap \mathbf{I}$, and $f(z) \in K[[z]]$ with radius of convergence R > 0 satisfying the functional equation for an integer d > 1,

$$f(z^d) = rac{\sum_{i=0}^m a_i(z) f(z)^i}{\sum_{i=0}^m b_i(z) f(z)^i}, \quad m < d, \; a_i(z), b_i(z) \in \mathbf{I}_K[z],$$

and $\Delta(z) := \operatorname{Res}(A, B)$ is the resultant of

$$A(u) = \sum_{i=0}^{m} a_i(z)u^i \quad \text{and} \quad B(u) = \sum_{i=0}^{m} b_i(z)u^i$$

as polynomials in u.

Theorem 3.1 ([5]) Assume that f(z) is not algebraic over K(z). If α is an algebraic number with $0 < |\alpha| < \min\{1, R\}$ and $\Delta(\alpha^{d^n}) \neq 0$ $(n \ge 0)$, then $f(\alpha)$ is transcendental.

Now consider the functional equation $f(z^k) = f(z) - \frac{z}{1-z}$ with $k \ge 2$. Repeated use gives

$$f(z^{k^m}) = f(z^{k^{m-1}}) - \frac{z^{k^{m-1}}}{1 - z^{k^m}} = f(z) - \sum_{n=1}^m \frac{z^{k^{m-n}}}{1 - z^{k^{m-n}}}.$$

M. Coons

Changing the index and setting $W_m(z) := \sum_{n=0}^{m-1} z^{k^n} / (1 - z^{k^n})$ gives

$$f(z) = f(z^{k^m}) + W_m(z).$$

In the region |z| < 1 we have

$$f(z) = \lim_{m \to \infty} [f(z^{k^m}) + W_m(z)] = \sum_{n=0}^{\infty} \frac{z^{k^n}}{1 - z^{k^n}} = G_k(z).$$

This proves the following lemma.

Lemma 3.2 The function $G_k(z)$ satisfies the functional equation

$$G_k(z^k) = G_k(z) + \frac{z}{z-1}.$$

As a corollary of Theorem 2.2, we have the following corollary.

Corollary 3.3 T he function $G_k(z)$ is transcendental over $\mathbb{C}(z)$.

To get the transcendence of the associated numbers, we use Mahler's theorem.

Proposition 3.4 For $k \ge 2$ and $z = \alpha$ algebraic with $0 < |\alpha| < 1$, $G_k(\alpha)$ is transcendental over \mathbb{Q} .

Proof Lemma 3.2 gives the functional equation

$$G_k(z^k) = \frac{(1-z)G_k(z) - z}{1-z},$$

so that, in the language of Theorem 3.1, we have A(u) = (1-z)u-z and B(u) = 1-z, m = 1 < k = d, and $a_i(z), b_i(z) \in \mathbf{I}_K[z]$. Since B(u) is a constant polynomial in $u, \Delta(z) := \operatorname{Res}(A, B) = 1 - z$. Let $|\alpha| < 1$ be algebraic; it is immediate that $\Delta(\alpha^{k^n}) = 1 - \alpha^{k^n} \neq 0$ $(n \ge 0)$. Since $G_k(z)$ is not algebraic over $\mathbb{C}(z)$ (as supplied by Theorem 2.2), applying Theorem 3.1, we have that $G_k(\alpha)$ is transcendental over \mathbb{Q} .

Corollary 3.5 If $k, b, t \in \mathbb{N}$ with $k \ge 2$ and 0 < b < t, then the number $G_k(bt^{-1})$ is transcendental over \mathbb{Q} .

Proof Set $\alpha = b/t$ in Theorem 3.4.

We turn now to the series

$$F_k(z) = \sum_{n=0}^{\infty} \frac{z^{k^n}}{1+z^{k^n}}.$$

Similar to $G_k(z)$, $F_k(z)$ satisfies a functional equation,

$$F_k(z^k) = F_k(z) - \frac{z}{z+1}.$$

Using this functional equation, we have the following corollary of Theorem 2.2.

Extension of Some Theorems of W. Schwarz

Corollary 3.6 T he function $F_k(z)$ is transcendental over $\mathbb{C}(z)$.

As before, Mahler's theorem gives the following proposition.

Proposition 3.7 For $k \ge 2$ and $z = \alpha$ an algebraic number with $0 < |\alpha| < 1$, $F_k(\alpha)$ is transcendental over \mathbb{Q} .

Corollary 3.8 If $k, b, t \in \mathbb{N}$ with $k \ge 2$ and $1 \le b < t$, then the number $F_k(bt^{-1})$ is transcendental over \mathbb{Q} .

Remark 1 For some more recent work concerning results like Nishioka's Theorem 2.1, but for more general algebraic number fields, see [2] (This paper also contains a number of current references to work in this area). Also, concerning functions similar to $G_k(z)$ and $F_k(z)$ above, Duverney, Kanoko, and Tanaka [3] have given a complete classification of those series

$$f(z) := \sum_{k=0}^{\infty} \frac{a^k z^{a^k}}{1 + b z^{a^k} + c z^{2d^k}} \in C[[z]]$$

that are transcendental over C(z) where *C* is a field of characteristic 0, $d \ge 2$, and $a, b, c \in C$ with $a \ne 0$.

Acknowledgments We wish to thank both Stephen Choi and the anonymous referee, whose comments and suggestions have helped clarify this exposition.

References

- D. Duverney, Transcendence of a fast converging series of rational numbers. Math. Proc. Cambridge Philos. Soc. 130(2001), no. 2, 193–207. doi:10.1017/S0305004100004783
- [2] D. Duverney and K. Nishioka, An inductive method for proving the transcendence of certain series. Acta Arith. 110(2003), no. 4, 305–330. doi:10.4064/aa110-4-1
- [3] D. Duverney, T. Kanoko, and T. Tanaka, *Transcendence of certain reciprocal sums of linear recurrences*. Monatsh. Math. **137** (2002), no. 2, 115–128. doi:10.1007/s00605-002-0501-4
- [4] S. W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities. Canad. J. Math. 15(1963), 475–478. doi:10.4153/CJM-1963-051-0
- K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101(1929), no. 1, 342–366. doi:10.1007/BF01454845
- [6] _____, Arithmetische Eigenschaften einer Klasse transzendental- transzendenter Funktionen. Math. Z. 32(1930), 545–585. doi:10.1007/BF01194652
- [7] _____, Über das Verschwinden von Potenzreihen mehrerer Ver änderlicher in speziellen
- Punktfolgen. Math. Ann. 103(1930), no. 1, 573–587.
 doi:10.1007/BF01455711

 [8]
 _______, Remarks on a paper by W. Schwarz. J. Number Theory 1(1969), 512–521.
- doi:10.1016/0022-314X(69)90013-4
- Keiji Nishioka, Algebraic function solutions of a certain class of functional equations. Arch. Math. 44(1985), no. 4, 330–335.
- [10] Kumiko Nishioka, Mahler Functions and Transcendence. Lecture Notes in Mathematics, 1631, Springer-Verlag, Berlin, 1996.
- [11] W. Schwarz, *Remarks on the irrationality and transcendence of certain series*. Math. Scand **20**(1967), 269–274.

Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1 e-mail: mcoons@math.uwaterloo.ca