ON STRONG AND ABSOLUTE SUMMABILITY
 by D. BORWEIN

(Received 13 July, 1959 ; and in revised form 2 October, 1959)

1. Introduction. Suppose throughout that $\lambda>0, \kappa>-1, \gamma$ is real and that

$$
\epsilon_{n}^{\gamma}=\binom{n+\gamma}{n}, \quad s_{n}=\sum_{r=0}^{n} a_{r}, \quad s_{n}^{\kappa}=\frac{1}{\epsilon_{n}^{\kappa}} \sum_{r=0}^{n} \epsilon_{n-r}^{\kappa-1} s_{r} \quad(n=0,1, \ldots) .
$$

The series $\sum_{0}^{\infty} a_{n}$ is said to be
(i) summable (C, κ) to s if $s_{n}^{\kappa} \rightarrow s$,
(ii) strongly summable $(C, \kappa+1)$ with index λ, or summable $|C, \kappa+1|_{\lambda}$, to s if

$$
\frac{1}{n+1} \sum_{r=0}^{n}\left|s_{r}^{\kappa}-s\right|^{\lambda}=o(1)
$$

(iii) absolutely summable (C, κ) with indices γ, λ, or summable $|C, \kappa, \gamma|_{\lambda}$, if

$$
\sum_{n=1}^{\infty} n^{\gamma \lambda+\lambda-1}\left|s_{n}^{\kappa}-s_{n-1}^{\kappa}\right|^{\lambda}<\infty
$$

Definitions (ii) and (iii), for general κ, λ, γ, are due respectively to Hyslop [11] and Flett [4]. Their papers contain references to special cases considered earlier.

Let $Q=\left(q_{n, r}\right) \quad(n, r=0,1, \ldots)$ be a (summability) matrix, and let

$$
\sigma_{n}=Q\left(s_{n}\right)=\sum_{r=0}^{\infty} q_{n, r} s_{r} .
$$

It is to be supposed that all matrices referred to in this paper are of the above type. The symbol P will be reserved for matrices $\left(p_{n, r}\right)$ with $p_{n, r} \geqslant 0(n, r=0,1, \ldots)$. The series $\sum_{0}^{\infty} a_{n}$ is said to be
(iv) summable Q to s, and we write $s_{n} \rightarrow s(Q)$, if σ_{n} is defined for all n and tends to s as $n \rightarrow \infty$.

We now generalise the above definitions of strong and absolute summability in a natural way as follows. We say that $\sum_{0}^{\infty} a_{n}$ is
(v) summable $[P, Q]_{\lambda}$ to s, and we write $s_{n} \rightarrow s[P, Q]_{\lambda}$, if

$$
P\left(\left|\sigma_{n}-s\right|^{\lambda}\right)=\sum_{r=0}^{\infty} p_{n, r}\left|\sigma_{r}-s\right|^{\lambda}
$$

is defined for each n and tends to 0 as $n \rightarrow \infty$,
(vi) summable $|Q, \gamma|_{\lambda}$ if

$$
\sum_{n=1}^{\infty} n^{\nu \lambda+\lambda-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{\lambda}<\infty .
$$

We also define " product" processes of the form $Q R,[P, Q R]_{\lambda},|Q R, \gamma|_{\lambda}$, where R is any matrix, by replacing Q in (iv), (v), (vi) by $Q R$ and taking σ_{n} to be $Q\left\{R\left(s_{n}\right)\right\}$; i.e. $\sigma_{n}=Q\left(\tau_{n}\right)$ where $\tau_{n}=R\left(s_{n}\right)$.

Denoting by C_{κ} the matrix of the transformation which changes $\left\{s_{n}\right\}$ into $\left\{s_{n}^{\kappa}\right\}$, we observe that the summability processes $[C, \kappa+1]_{\lambda}$ and $|C, \kappa, \gamma|_{\lambda}$ are respectively the same as $\left[C_{1}, C_{\kappa}\right]_{\lambda}$ and $\left|C_{\kappa}, \gamma\right|_{\lambda}$.

The unit matrix will be denoted by I, so that $I\left(s_{n}\right)=s_{n}$.
Let V and W be summability processes (or matrices). We shall use the notation

$$
V \Rightarrow W
$$

to mean that any series summable V to s is necessarily summable W to s provided that neither V nor W is an absolute summability process; otherwise we shall understand the notation to mean simply that every series summable V is also summable W. In either case we say that V is included in W. We say that V and W are equivalent and write

$$
V \simeq W
$$

if each is included in the other, and we write $V=W$ if V and W denote the same process (or matrix).

If $I \Rightarrow V$ and V is not an absolute summability process, then V is said to be regular.
In this paper some of the properties of the strong and absolute summability processes defined above are investigated.

2. Simple inclusions.

Theorem 1. If Q is any matrix and $P=\left(p_{n, r}\right)$, where

$$
\begin{equation*}
\sum_{r=0}^{\infty} p_{n, r}<M \quad(n=0,1, \ldots) \tag{1}
\end{equation*}
$$

and if $\lambda>\mu>0$, then $[P, Q]_{\lambda} \Rightarrow[P, Q]_{\mu}$.
In particular, the conclusion holds if $\lambda>\mu>0$ and P is regular.
This generalises a result proved by Hyslop [11, Theorem 1].
Proof. By Hölder's inequality,

$$
\sum_{r=0}^{\infty} p_{n, r}\left|w_{r}\right|^{\mu} \leqslant\left(\sum_{r=0}^{\infty} p_{n, r}\left|w_{r}\right|^{\lambda}\right)^{\mu / \lambda} M^{1-\mu / \lambda}
$$

for any sequence $\left\{w_{n}\right\}$. The required inclusion follows.
To complete the proof we have only to note that (1) is a necessary condition for the regularity of P [7, Theorem 2].

Note. Here and elsewhere an inclusion involving an arbitrary matrix Q is essentially no more general than the same inclusion with I in place of Q, the former being an immediate consequence of the latter.

Theorem 2. If Q is any matrix and $\lambda>\mu>0, \beta \lambda>\alpha \mu>0$, then $\left[C_{\alpha}, Q\right]_{\lambda} \Rightarrow\left[C_{\beta}, Q\right]_{\mu}$.
Proof. Let $p=\lambda / \mu, q=p /(p-1)$ and let $\left\{w_{n}\right\}$ be any sequence. Then, by Hölder's inequality (cf. Hyslop [11, Theorem 2]).

$$
C_{\beta}\left(\left|w_{n}\right|^{\mu}\right)=\frac{1}{\epsilon_{n}^{\beta}} \sum_{r=0}^{n} \epsilon_{r}^{\beta-1}\left|w_{n-r}\right|^{\mu}
$$

$$
\begin{align*}
& \leqslant\left\{\frac{1}{\epsilon_{n}^{\alpha}} \sum_{r=0}^{n} \epsilon_{r}^{\alpha-1}\left|w_{n-r}\right|^{\lambda}\right\}^{1 / p}\left\{\frac{\left(\epsilon_{n}^{\alpha}\right)^{\alpha / p}}{\left(\epsilon_{n}^{\beta}\right)^{\alpha}} \sum_{r=0}^{n} \frac{\left(\epsilon_{r}^{\beta-1}\right)^{q}}{\left(\epsilon_{r}^{\alpha-1}\right)^{\alpha / p}}\right\}^{1 / q} \\
& \leqslant M_{1}\left\{C_{\alpha}\left(\left|w_{n}\right|^{\lambda}\right)\right\}^{1 / p}\left\{(n+1)^{\alpha q / p-\beta q} \sum_{r=0}^{n}(r+1)^{\beta q-\alpha q / p-1}\right\}^{1 / q} \\
& \leqslant M\left\{C_{\alpha}\left(\left|w_{n}\right|^{\lambda}\right)\right\}^{1 / p}, \ldots \tag{2}
\end{align*}
$$

since $\alpha>0, \beta>0, \beta q-\alpha q / p=(\beta \lambda-\alpha \mu) q / \lambda>0$. The numbers M_{1} and M are independent of n and the sequence $\left\{w_{n}\right\}$.

The required result follows from (2).
Note. Since $C_{\alpha} \Rightarrow C_{\beta}(\beta>\alpha>-1)$, it is evident that

$$
\left[C_{\alpha}, Q\right]_{\lambda} \Rightarrow\left[C_{\beta}, Q\right]_{\lambda} \quad(\beta>\alpha>0, \lambda>0),
$$

and it follows from this and a well known Tauberian theorem [7, Theorem 93] that

$$
\left[C_{\alpha}, Q\right]_{\lambda} \simeq\left[C_{1}, Q\right]_{\lambda} \quad(\alpha>1, \lambda>0)
$$

Consequently the condition $\beta \lambda>\alpha \mu>0$ in Theorem 2 is only significant if $0<\alpha \leqslant 1$. When $\alpha>1$ the condition can be replaced by $\beta \lambda>\mu$.

Theorem 3. If P, Q are matrices and P is regular, then
(i) $Q \Rightarrow[P, Q]_{\lambda}$ for $\lambda>0$,
(ii) $[P, Q]_{\lambda} \Rightarrow P Q$ for $\lambda \geqslant 1$.

Proof. (i) If $s_{n} \rightarrow s$, then, since P is regular, $P\left(\left|s_{n}-s\right|^{\lambda}\right) \rightarrow 0$, i.e. $I \Rightarrow[P, I]_{\lambda}$ and inclusion (i) follows.
(ii) Suppose that $s_{n} \rightarrow s[P, I]_{\lambda}$. Then, by Theorem $1, s_{n} \rightarrow s[P, I]_{1}$ and so

$$
\left|P\left(s_{n}-s\right)\right| \leqslant P\left(\left|s_{n}-s\right|\right)=0(1) .
$$

Since P is regular, it follows that $P\left(s_{n}\right) \rightarrow s$. Hence $[P, I]_{\lambda} \Rightarrow P$ and inclusion (ii) is an immediate consequence.

As a corollary of part (i) of Theorem 3 we have
(I). If P, Q are regular matrices and $\lambda>0$, then $[P, Q]_{\lambda}$ is regular.

Theorem 4. If $\lambda \geqslant \mu>0, \gamma>\delta$, then

$$
\text { (i) }\left(\sum_{n=1}^{\infty} n^{\delta \mu+\mu-1}\left|w_{n}\right|^{\mu}\right)^{1 / \mu} \leqslant M\left(\sum_{n=1}^{\infty} n^{\gamma \lambda+\lambda-1}\left|w_{n}\right|^{\lambda}\right)^{1 / \lambda}
$$

where M is independent of the sequence $\left\{w_{n}\right\}$,
(ii) $|Q, \gamma|_{\lambda} \Rightarrow|Q, \delta|_{\mu}$ for any matrix Q.

Proof of (i). The case $\lambda=\mu$ is evident. Suppose therefore that $\lambda>\mu$. Then, by Hölder's inequality,

$$
\sum_{n=1}^{\infty} n^{\delta \mu+\mu-1}\left|w_{n}\right|^{\mu} \leqslant\left(\sum_{n=1}^{\infty} n^{\nu \lambda+\lambda-1}\left|w_{n}\right|^{\lambda}\right)^{\mu / \lambda}\left(\sum_{n=1}^{\infty} n^{\alpha}\right)^{1-\mu / \lambda},
$$

where $\alpha(1-\mu / \lambda)=\delta \mu+\mu-1-(\gamma \lambda+\lambda-1) \mu / \lambda=-\mu(\gamma-\delta)-(1-\mu / \lambda)$, so that $\alpha<-1$. The required inequality follows.

Result (ii) is an immediate consequence of (i).

Note. The case $\lambda \geqslant \mu \geqslant 1, \gamma \geqslant 0$ of Theorem $4(\mathrm{i})$ is contained in a result proved by Flett ([4, Theorem 4]; take $\alpha=\beta, \tau_{n}^{\alpha}=n w_{n}$).

The following three results, which concern the relation of $|Q, \gamma|_{\lambda}$ to $|Q, \delta|_{\mu}$ when $\gamma=\delta$, were kindly communicated to me by Dr B. Kuttner. The first of these shows that it is not valid to replace the condition $\gamma>\delta$ by $\gamma \geqslant \delta$ in either part of Theorem 4.
A. There are regular (and non-regular) matrices Q such that, for positive λ, μ and every $\gamma,|Q, \gamma|_{\lambda}$ is not included in $|Q, \gamma|_{\mu}$ unless $\lambda=\mu$.
B. I'here are regular (and non-regular) matrices Q such that, for every $\gamma,|Q, \gamma|_{\lambda} \Rightarrow|Q, \gamma|_{\mu}$ whenever $\lambda>\mu>0$.
C. If $\lambda>\mu>\nu>0$ and Q is any matrix, then every series summable $|Q, \gamma|_{\lambda}$ and $|Q, \gamma|_{\nu}$ is also summable $|Q, \gamma|_{\mu}$.

Proofs. A. Suppose that $Q=\left(q_{n, r}\right)$ is a matrix having the property that given any sequence $\left\{\sigma_{n}\right\}$ there is a sequence $\left\{s_{n}\right\}$ (not necessarily unique) satisfying the equations

$$
\sigma_{n}=Q\left(s_{n}\right)=\sum_{r=0}^{\infty} q_{n, r} s_{r} \quad(n=0,1, \ldots)
$$

In particular, Q could be any matrix with $q_{n, r}=0$ for $r>n, q_{n, n} \neq 0(n=0,1, \ldots)$.
Let $\alpha>0$; and let $x_{1}=x_{2}=0$,

$$
\begin{aligned}
& x_{n}=n^{-1}(\log n)^{-1 / \lambda}(\log \log n)^{-1 / \lambda-\alpha} \quad \text { for } n \geqslant 3, \\
& y_{n}=\left\{\begin{array}{cl}
m^{-1 / \lambda-\alpha} 2^{-m(1-1 / \lambda)} & \text { for } n=2^{m} \quad(m=0,1, \ldots), \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then $\sum_{n=1}^{\infty}\left(x_{n}\right)^{\mu} n^{\mu-1}$ is convergent if and only if $\mu \geqslant \lambda$ and $\sum_{n=1}^{\infty}\left(y_{n}\right)^{\mu} n^{\mu-1}$ is convergent if and only if $\mu \leqslant \lambda$. Hence $\sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)^{\mu} n^{\mu-1}$ is convergent if and only if $\mu=\lambda$.

Now let $\left\{\sigma_{n}\right\},\left\{s_{n}\right\}$ be sequences such that

$$
n^{\nu}\left(\sigma_{n}-\sigma_{n-1}\right)=x_{n}+y_{n} \quad(n \geqslant 1)
$$

and $Q\left(s_{n}\right)=\sigma_{n}$. The series of which $\left\{s_{n}\right\}$ is the sequence of partial sums is then summable $|Q, \gamma|_{\lambda}$ but not $|Q, \gamma|_{\mu}$ for any $\mu \neq \lambda$. Result A follows.
B. Given an arbitrary matrix $Q=\left(q_{n, r}\right)$, form the matrix $Q^{*}=\left(q_{n, r}^{*}\right)$ by repeating certain rows in Q as follows: let

$$
q_{0, r}^{*}=q_{0, r}, \quad q_{n, r}^{*}=q_{m, r} \quad \text { for } 2^{m-1} \leqslant n<2^{m}(m=1,2, \ldots) .
$$

Note that Q^{*} is regular if and only if Q is regular.
Let $s_{n}=\sum_{r=0}^{n} a_{r}, \sigma_{n}^{*}=Q^{*}\left(s_{n}\right)$ and let

$$
\delta_{m}=\sigma_{2^{m}}^{*}-\sigma_{2^{m}-1}^{*} \quad(m=0,1, \ldots)
$$

Then $\sigma_{n}^{*}-\sigma_{n-1}^{*}=0$ when $n \neq 2^{m}$ and so summability $\left|Q^{*}, \gamma\right|_{\lambda}$ of $\sum_{0}^{\infty} a_{n}$ is equivalent to the convergence of

$$
\sum_{m=0}^{\infty} 2^{m(\gamma \lambda+\lambda-1)}\left|\delta_{m}\right|^{\lambda}
$$

Consequently, if $\sum_{0}^{\infty} a_{n}$ is summable $\left|Q^{*}, \gamma\right|_{\lambda}$, then
and so

$$
2^{m(\gamma \mu+\mu-1)}\left|\delta_{m}\right|^{\mu}=o\left(2^{-m(1-\mu \mid \lambda)}\right)
$$

from which it follows that the series is summable $\left|Q^{*}, \gamma\right|_{\mu}$ provided $\lambda>\mu>0$. i.e. $\left|Q^{*}, \gamma\right|_{\lambda} \Rightarrow\left|Q^{*}, \gamma\right|_{\mu}$ for $\lambda>\mu>0$.
C. If $\lambda>\mu>\nu>0$ and $\left\{w_{n}\right\}$ is any sequence, then, by Hölder's inequality,

$$
\left(\sum_{n=1}^{\infty} n^{\nu \mu+\mu-1}\left|w_{n}\right|^{\mu}\right)^{\lambda-\nu} \leqslant\left(\sum_{n=1}^{\infty} n^{\nu \lambda+\lambda-1}\left|w_{n}\right|^{\lambda}\right)^{\mu-\nu}\left(\sum_{n=1}^{\infty} n^{\nu v+\nu-1}\left|w_{n}\right|^{\nu}\right)^{\lambda-\mu} ;
$$

and the required "convexity " result is a direct consequence.
3. Hausdorff matrices. Given a real sequence $\left\{\xi_{n}\right\}$, let

$$
x_{n, r}=\left\{\begin{array}{cl}
\binom{n}{r} \sum_{\nu=0}^{n-r}(-1)^{\nu}\binom{n-r}{\nu} \xi_{r+\nu} & \text { for } 0 \leqslant r \leqslant n \\
0 & \text { otherwise }
\end{array}\right.
$$

and denote the matrix $\left(x_{n, r}\right)$ by $\left(h, \xi_{n}\right)$. Matrices of this type are said to be real Hausdorff matrices. We shall assume hereafter that all Hausdorff matrices considered are real.

Let $X=\left(h, \xi_{n}\right), Y=\left(h, \eta_{n}\right)$. Then it is known that $X Y=Y X=\left(h, \xi_{n} \eta_{n}\right)$. Consequently $X^{-1}=\left(h, 1 / \xi_{n}\right)$ provided $\xi_{n} \neq 0$, and it is familiar and easily verified that in this case $X \Rightarrow Y$ if and only if $Y X^{-1}$ is regular.

Further, it is known that X is regular if and only if

$$
\xi_{n}=\int_{0}^{1} t^{n} d \chi(t)
$$

where χ is a real function of bounded variation in $[0,1]$ such that

$$
\begin{equation*}
\chi(0+)=\chi(0)=\chi(1)-1 \tag{3}
\end{equation*}
$$

it being assumed in the case of ξ_{0} that $0^{\circ}=1$.
The above results are proved in [7, Ch. XI].
Suppose as before that $s_{n}=\sum_{r=0}^{n} a_{r}$ and let $\sigma_{n}=X\left(s_{n}\right), \sigma_{-1}=0$. Since both X and C_{1}^{-1} are Hausdorff matrices [7, § 11.2],

$$
\begin{equation*}
X C_{1}^{-1}\left(s_{n}\right)=C_{1}^{-1} X\left(s_{n}\right) \tag{4}
\end{equation*}
$$

Also, it is easily verified that

$$
C_{1}^{-1}\left(s_{n}\right)=s_{n}+n a_{n}
$$

Consequently

$$
\sigma_{n}+X\left(n a_{n}\right)=X\left(s_{n}+n a_{n}\right)=X C_{1}^{-1}\left(s_{n}\right)=C_{1}^{-1} X\left(s_{n}\right)=C_{1}^{-1}\left(\sigma_{n}\right)=\sigma_{n}+n\left(\sigma_{n}-\sigma_{n-1}\right)
$$

and so

$$
\begin{equation*}
X\left(n a_{n}\right)=n\left(\sigma_{n}-\sigma_{n-1}\right) \quad(n=1,2, \ldots) \tag{5}
\end{equation*}
$$

Conversely, reversing the above argument, we see that (4) holds for any matrix X satisfying (5), and it is known [7, Theorem 198] that (4) implies that X must be a Hausdorff matrix.

It follows from (5) that, for a Hausdorff matrix $X, \sum_{0}^{\infty} a_{n}$ is summable $|X, \gamma|_{\lambda}$ if and only if

$$
\sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|X\left(n a_{n}\right)\right|^{\lambda}<\infty .
$$

We proceed to prove two general theorems about strong and absolute summability processes associated with Hausdorff matrices. We shall use

Lemma 1. If $X=\left(h, \xi_{n}\right), \hat{X}=\left(h, \xi_{n}\right)$, where

$$
\xi_{n}=\int_{0}^{1} t^{n} d \chi(t), \quad \xi_{n}=\int_{0}^{1} t^{n}\left|d_{\chi}(t)\right|<\infty \quad(n=0,1, \ldots)
$$

and if $\lambda \geqslant 1$, then, for any sequence $\left\{w_{n}\right\}$,

$$
\left|X\left(w_{n}\right)\right|^{\lambda} \leqslant\left(\xi_{0}\right)^{\lambda-1} \widetilde{X}\left(\left|w_{n}\right|^{\lambda}\right) .
$$

Proof. Let $X=\left(x_{n, r}\right), \tilde{X}=\left(\tilde{x}_{n, r}\right)$. Then it is known and easily verified that, for $0 \leqslant r \leqslant n$,

$$
x_{n, r}=\binom{n}{r} \int_{0}^{1} t^{r}(\mathbf{l}-t)^{n-r} d X(t), \quad \tilde{x}_{n, r}=\binom{n}{r} \int_{0}^{1} t^{r}(\mathbf{l}-t)^{n-r}|d \chi(t)| .
$$

Hence, by Hölder's inequality,

$$
\left|X\left(w_{n}\right)\right|^{\lambda}=\left|\sum_{r=0}^{n} x_{n, r} w_{r}\right|^{\lambda} \leqslant\left(\sum_{r=0}^{n} \tilde{x}_{n, r}\right)^{\lambda-1} \sum_{r=0}^{n} \tilde{x}_{n, r}\left|w_{r}\right|^{\lambda}=\left(\xi_{0}\right)^{\lambda-1} \tilde{X}\left(\left|w_{n}\right|^{\lambda}\right) .
$$

Theorem 5. If P, X are regular Hausdorff matrices, Q is any matrix and $\lambda \geqslant 1$, then $[P, Q]_{\lambda} \Rightarrow[P, X Q]_{\lambda}$.

Proof. Let $X=\left(h, \xi_{n}\right)$ and let $\sigma_{n}=X\left(s_{n}\right)$. Since X is regular,

$$
\sigma_{n}-s=X\left(s_{n}-s\right),
$$

and

$$
\xi_{n}=\int_{0}^{1} t^{n} d \chi(t)
$$

where χ is a real function of bounded variation in [0, 1] satisfying (3). Hence, using Lemma 1 and its notation, we get

$$
\left|\sigma_{n}-s\right|^{\lambda} \leqslant\left(\xi_{0}\right)^{\lambda-1} \tilde{X}\left(\left|s_{n}-s\right|^{\lambda}\right) .
$$

Since P is a Hausdorff matrix with non-negative elements and \bar{X} is a Hausdorff matrix, it follows that

$$
\begin{equation*}
P\left(\left|\sigma_{n}-s\right|^{\lambda}\right) \leqslant\left(\xi_{0}\right)^{\lambda-1} P \hat{X}\left(\left|s_{n}-s\right|^{\lambda}\right)=\left(\xi_{0}\right)^{\lambda-1} \widetilde{X} P\left(\left|s_{n}-s\right|^{\lambda}\right) . \tag{6}
\end{equation*}
$$

Now it is easily verified by means of a variant of Toeplitz's theorem [7, Theorem 4] that \tilde{X}, though not necessarily regular, is such that $\tilde{X}\left(u_{n}\right) \rightarrow 0$ whenever $u_{n} \rightarrow 0$. Hence if $P\left(\left|s_{n}-s\right|^{\lambda}\right) \rightarrow 0$ then, by (6), $P\left(\left|\sigma_{n}-s\right|^{\lambda}\right) \rightarrow 0$, i.e. $[P, I]_{\lambda} \Rightarrow[P, X]_{\lambda}$. The required inclusion follows.

As an immediate consequence of the above theorem we have
(II). If $\lambda \geqslant 1$ and P, Y, Z are Hausdorff matrices such that P is regular, $Y=\left(h, \eta_{n}\right)$ with $\eta_{\mathrm{n}} \neq 0$, and $Y \Rightarrow Z$, then $[P, Y]_{\lambda} \Rightarrow[P, Z]_{\lambda}$.

Theorem 6. If $X=\left(h, \xi_{n}\right)$, where

$$
\xi_{n}=\int_{0}^{1} t^{n} d \chi(t) \quad(n=0,1, \ldots)
$$

χ being a real function of bounded variation in $[0,1]$, and if

$$
\begin{equation*}
\int_{0}^{1} t^{-\gamma}|d \chi(t)|<\infty \tag{7}
\end{equation*}
$$

and $\lambda \geqslant 1$, then

$$
\text { (i) } \sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|X\left(n a_{n}\right)\right|^{\lambda} \leqslant M \sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|n a_{n}\right|^{\lambda} \text {, }
$$

where M is independent of the sequence $\left\{a_{n}\right\}$,
(ii) $|Q, \gamma|_{\lambda} \Rightarrow|X Q, \gamma|_{\lambda}$ for any matrix Q.

When $\gamma>0$ the integral in condition (7) should be interpreted in the Lebesgue-Stieltjes sense; when $\gamma \leqslant 0$ the condition is redundant.

Proof of (i). Suppose first that $\gamma \leqslant 0$. Then, by Lemma 1, since $n^{\gamma \lambda} \leqslant r^{\nu \lambda}$ for $n \geqslant r$,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|X\left(n a_{n}\right)\right|^{\lambda} \leqslant\left(\xi_{0}\right)^{\lambda-1} \sum_{n=1}^{\infty} n^{\nu \lambda-1} \sum_{r=1}^{n}\left|r a_{r}\right|^{\lambda}\binom{n}{r} \int_{0}^{1} t^{r}(1-t)^{n-r}|d \chi(t)| \\
& \quad=\left(\xi_{0}\right)^{\lambda-1} \int_{0}^{1}\left|d_{\chi}(t)\right| \sum_{r=1}^{\infty} r^{-1}\left|r a_{r}\right|^{\lambda} t^{r} \sum_{n=r}^{\infty} n^{\nu \lambda}\binom{n-1}{r-1}(1-t)^{n-r} \\
& \quad \leqslant\left(\xi_{0}\right)^{\lambda} \sum_{r=1}^{\infty} r^{\gamma \lambda-1}\left|r a_{r}\right|^{\lambda}
\end{aligned}
$$

as required.
Suppose now that $\gamma>0$, and let

$$
f_{n}(t)=\sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r} r a_{r}
$$

where $0 \leqslant t \leqslant 1$. Then (cf. Hardy [7, § 11.17]), by Hölder's inequality,

$$
\begin{aligned}
\left|f_{n}(t)\right|^{\lambda} & \leqslant \sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r}\left|r a_{r}\right|^{\lambda}\left\{\sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r}\right\}^{\lambda-1} \\
& =\sum_{r=1}^{n}\binom{n}{r} t^{r}(1-t)^{n-r}\left|r a_{r}\right|^{\lambda},
\end{aligned}
$$

and so

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda} & \leqslant M_{1} \sum_{n=1}^{\infty} \epsilon_{n}^{\gamma \lambda-1} \sum_{r=1}^{n}\binom{n}{r} t^{r}(1-t)^{n-r}\left|r a_{r}\right|^{\lambda} \\
& =M_{1} \sum_{r=1}^{\infty} \epsilon_{r}^{\nu \lambda-1}\left|r a_{r}\right|^{\lambda} t^{r} \sum_{n=r}^{\infty} \epsilon_{n-r}^{\nu \lambda+r-1}(1-t)^{n-r} \\
& \leqslant M_{2} t^{-\gamma \lambda} \sum_{r=1}^{\infty} r^{\gamma \lambda-1}\left|r a_{r}\right|^{\lambda},
\end{aligned}
$$

where M_{1} and M_{2} are independent of $\left\{a_{n}\right\}$.
Now

$$
X\left(n a_{n}\right)=\int_{0}^{1} f_{n}(t) d_{X}(t)
$$

and so, by a form of Minkowski's inequality,

$$
\begin{aligned}
\left(\sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|X\left(n a_{n}\right)\right|^{\lambda}\right)^{1 / \lambda} & \leqslant \int_{0}^{1}\left|d_{\chi}(t)\right|\left(\sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda}\right)^{1 / \lambda} \\
& \leqslant M_{2}^{1 / \lambda} \int_{0}^{1} t^{-\lambda}\left|d_{\chi}(t)\right|\left(\sum_{r=1}^{\infty} r^{\gamma \lambda-1}\left|r a_{r}\right|^{\lambda}\right)^{1 / \lambda}
\end{aligned}
$$

The proof of part (i) is thus complete.
It follows from (i) that $|I, \gamma|_{\lambda} \Rightarrow|X, \gamma|_{\lambda}$, and inclusion (ii) is an immediate consequence. The next theorem generalises a result given by Hyslop [11, Theorem 3].

Theorem 7. If P is a regular matrix, Q is a matrix and $\lambda \geqslant 1$, then necessary and sufficient conditions for a series to be summable $[P, Q]_{\lambda}$ to s are that it be summable $P Q$ to s and summable $[P,(I-P) Q]_{\lambda}$ to 0.

Proof. Let $\sigma_{n}=Q\left(s_{n}\right), \tau_{n}=P\left(\sigma_{n}\right)$. We have to prove that

$$
\begin{equation*}
P\left(\left|\sigma_{n}-s\right|^{\lambda}\right)=0(1) \tag{8}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\tau_{n} \rightarrow s \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\left|\sigma_{n}-\tau_{n}\right|^{\lambda}\right)=o(1) . \tag{10}
\end{equation*}
$$

(i) Suppose that (8) holds. Then, by Theorem 3(ii), (9) holds, and so $P\left(\left|\tau_{n}-s\right|^{\lambda}\right)=o(1)$ since P is regular. Hence, by Minkowski's inequality and (8),

$$
\left\{P\left(\left|\sigma_{n}-\tau_{n}\right|^{\lambda}\right)\right\}^{1 / \lambda} \leqslant\left\{P\left(\left|\sigma_{n}-s\right|^{\lambda}\right)\right\}^{1 / \lambda}+\left\{P\left(\left|\tau_{n}-s\right|^{\lambda}\right)\right\}^{1 / \lambda}=o(1)
$$

and (10) follows.
(ii) Suppose that (9) and (10) hold. Since P is regular, it follows from (9) that

$$
P\left(\left|\tau_{n}-s\right|^{\lambda}\right)=o(1)
$$

Hence, by Minkowski's inequality and (10),

$$
\left\{P\left(\left|\sigma_{n}-s\right|^{\lambda}\right)\right\}^{1 / \lambda} \leqslant\left\{P\left(\left|\sigma_{n}-\tau_{n}\right|^{\lambda}\right)\right\}^{1 / \lambda}+\left\{P\left(\left|\tau_{n}-s\right|^{\lambda}\right)\right\}^{1 / \lambda}=o(1)
$$

so that (8) holds.
The proof is thus complete.
Now it is known [7, Ch. XI] that $C_{\kappa}=\left(h, 1 / \epsilon_{n}^{\kappa}\right)(\kappa>-1)$ and that

$$
\begin{equation*}
C_{\alpha} C_{\beta} \simeq C_{\alpha+\beta} \quad(\alpha>-1, \beta>-1, \alpha+\beta>-1) \tag{11}
\end{equation*}
$$

Further, if $s_{n}=\sum_{r=0}^{n} a_{r}$, then for any Hausdorff matrix X,

$$
\begin{equation*}
\left(I-C_{1}\right) X\left(s_{n}\right)=X\left(I-C_{1}\right)\left(s_{n}\right)=X\left\{s_{n}-C_{1}\left(s_{n}\right)\right\}=X C_{1}\left(n a_{n}\right) . \tag{12}
\end{equation*}
$$

In virtue of (12) we have the following corollary of Theorem 7.
(III). If X is a Hausdorff matrix and $\lambda \geqslant 1$, then necessary and sufficient conditions for a series $\sum_{0}^{\infty} a_{n}$ to be summable $\left[C_{1}, X\right]_{\lambda}$ to s are that it be summable $C_{1} X$ to s and that

$$
n a_{n} \rightarrow 0\left[C_{1}, C_{1} X\right]_{\lambda}
$$

Now by (11), $C_{1} C_{\alpha-1} \simeq C_{\alpha}(\alpha>0)$, and so, by result (II), $\left[C_{1}, C_{1} C_{\alpha-1}\right]_{\lambda} \simeq\left[C_{1}, C_{\alpha}\right]_{\lambda}$ ($\alpha>0, \lambda \geqslant 1$). Consequently, by (III), we have
(IV). If $\lambda \geqslant 1, \alpha>0$, then necessary and sufficient conditions for a series $\sum_{0}^{\infty} a_{n}$ to be summable $[C, \alpha]_{\lambda}$ to s are that it be summable (C, α) to s and that $\sum_{n=0}^{m}\left|C_{\alpha}\left(n a_{n}\right)\right|^{\lambda}=o(m)$.

This result has been proved directly by Hyslop [11] and it suggested the following definition of summability $[C, 0]_{\lambda}$ to him : $\sum_{0}^{\infty} a_{n}$ is summable $[C, 0]_{\lambda}$ to s if it is convergent with sum s and

$$
\sum_{n=0}^{m}\left|n a_{n}\right|^{\lambda}=o(m)
$$

4. Equivalence of Cesàro and Hölder summability processes. For any real $\alpha \operatorname{let} H_{\alpha}$ be the Hausdorff matrix $\left(h,(n+1)^{-\alpha}\right)$. Then $C_{1}=H_{1}, H_{\alpha} H_{\beta}=H_{\alpha+\beta}$, and it is known [7, Theorem 211] that

$$
\begin{equation*}
C_{\kappa} \simeq H_{\kappa} \quad(\kappa>-1) . \tag{13}
\end{equation*}
$$

In conformity with the notation described in § l, we denote the Hölder type summability processes $H_{\alpha}, \quad\left[H_{1}, H_{\alpha-1}\right]_{\lambda}$ and $\left|H_{\alpha}, \gamma\right|_{\lambda}$ by $(H, \alpha),[H, \alpha]_{\lambda}$ and $|H, \alpha, \gamma|_{\lambda}$ respectively.

We now prove two theorems.
Theorem 8. If $\alpha \geqslant 0, \lambda \geqslant 1$, then $[C, \alpha]_{\lambda} \simeq[H, \alpha]_{\lambda}$.
For $\alpha>0$ this follows from (13) by result (II), and for $\alpha=0$ it is a consequence of (III) with $X=H_{-1}=C_{1}^{-1}$.

The next theorem is a generalisation of the known result (see Knopp and Lorentz [12] and Morley [14]) that

$$
|C, \alpha, 0|_{1} \simeq|H, \alpha, 0|_{1} \quad(\alpha>-1)
$$

Theorem 9. (i) If $\alpha>-1, \lambda \geqslant 1, \gamma<\min (1,1+\alpha)$, then

$$
|C, \alpha, \gamma|_{\lambda} \Rightarrow|H, \alpha, \gamma|_{\lambda} .
$$

(ii) If either $\alpha>-1, \lambda \geqslant 1, \gamma<1$ or $\alpha=2,3, \ldots, \quad \lambda \geqslant 1, \gamma<2$, then

$$
|H, \alpha, \gamma|_{\lambda} \Rightarrow|C, \alpha, \gamma|_{\lambda}
$$

In connection with the second part of (ii) it should be noted that

$$
|H, 0, \gamma|_{\lambda}=|C, 0, \gamma|_{\lambda} \text { and }|H, 1, \gamma|_{\lambda}=|C, 1, \gamma|_{\lambda}
$$

The cases $\gamma \leqslant 0$ of the propositions contained in Theorem 9 follow directly from (13) by Theorem 6(ii). To deal with the remaining cases we shall use

Lemma 2. If $\sigma_{0}<0$ and $g(s)$ is an analytic function of $s=\sigma+i \tau$ in the region $\sigma>\sigma_{0}$, and if, for $\sigma>\sigma_{0}$ and large $|s|$,

$$
g(s)=K+O\left(|s|^{-\delta}\right)
$$

where K, δ are constants and $\delta>\frac{1}{2}$, then

$$
g(n)=\int_{0}^{1} t^{n} d_{X}(t) \quad(n \geqslant 0)
$$

where χ is a function of bounded variation in $[0,1]$ such that

$$
\int_{0}^{1} t^{c}\left|d_{X}(t)\right|<\infty
$$

for every $c>\sigma_{0}$.
Proof. Let $f(s)=g(s)-K$. Then, for $c>\sigma_{0}+\epsilon>\sigma_{0}$,

$$
\int_{-\infty}^{\infty}|f(c+i t)|^{2} d t<M_{\epsilon},
$$

where M_{ε} is a finite number independent of c. Hence, by a result due to Rogosinski [15, 185-6],

$$
f(n)=\int_{0}^{1} t^{n} \phi(t) d t \quad(n \geqslant 0)
$$

where $t^{c} \phi(t) \in L(0,1)$ for every $c>\sigma_{0}+\epsilon$ and so for every $c>\sigma_{0}$.
Consequently

$$
g(n)=\int_{0}^{1} t^{n} d \chi(t) \quad(n \geqslant 0)
$$

where

$$
\chi(t)=\int_{0}^{t} \phi(u) d u \text { for } 0 \leqslant t<1 \text { and } \chi(1)=K+\int_{0}^{1} \phi(u) d u .
$$

It is evident that $\int_{0}^{1} t c|d \chi(t)|<\infty$ for every $c>\sigma_{0}$.
The lemma is thus proved.
Completion of the proof of Theorem 9. Let

$$
w(s)=(s+1)^{-\alpha} \frac{\Gamma(s+\alpha+1)}{\Gamma(\alpha+1) \Gamma(s+1)}
$$

and let W be the Hausdorff matrix (h, w_{n}), where $w_{n}=w(n)$.
(i) By Stirling's theorem, $w(s)$ satisfies the hypotheses of $g(s)$ in Lemma 2 with $\delta=1$, $\sigma_{0}=\max (-1,-1-\alpha)$. Hence by Theorem 6 (ii), with $X=W$,

$$
\left|C_{\alpha}, \gamma\right|_{\lambda} \Rightarrow\left|W C_{\alpha}, \gamma\right|_{\lambda}
$$

for $-\gamma>\sigma_{0}$, i.e. for $\gamma<\min (1,1+\alpha)$. Since $W C_{\alpha}=H_{\alpha}$, the proof of part (i) is complete.
(ii) The function $1 / w(s)$ satisfies the hypotheses of $g(s)$ in Lemma 2 with $\delta=1, \sigma_{0}=-1$ when $\alpha>-1$ and with $\delta=1, \sigma_{0}=-2$ when $\alpha=2,3, \ldots$. Hence by Theorem 6(ii), with $X=W^{-1}$,

$$
\left|H_{\alpha}, \gamma\right|_{\lambda} \Rightarrow\left|W^{-1} H_{\alpha}, \gamma\right|_{\lambda}
$$

for $-\gamma>-1$ when $\alpha>-1$, and for $-\gamma>-2$ when $\alpha=2,3, \ldots$. Since $W^{-1} H_{\alpha}=C_{\alpha}$, this completes the proof of part (ii).
5. Hausdorff matrices associated with functions of class L^{p}. In this section we deal with Hausdorff matrices $\left(h, \xi_{n}\right)$ such that $\xi_{n}=\int_{0}^{1} t^{n} \phi(t) d t$, where $\phi(t) \in L(0,1)$ and $t^{c} \phi(t) \in L^{p}(0,1)$ for some real c and some $p>1$. It is known [7, Theorem 215] that a Hausdorff matrix ($x_{n, r}$) satisfies these conditions with $c=0$ if and only if

$$
\sum_{r=0}^{n}\left|x_{n, r}\right|^{p}<M(n+1)^{1-p} \quad(n=0,1, \ldots)
$$

where M is independent of n. Note that if $\phi(t)$ is in $L^{p}(0,1)$ then it is necessarily in $L(0,1)$.
We establish two theorems which augment Theorems 5 and 6. In the proof of the first of these we use

Lemma 3. Let $\phi(t)$ be a real function in the class $L^{p}(0,1)$, where $p>1$, and let

$$
\begin{gathered}
\xi_{n}=\int_{0}^{1} t^{n} \phi(t) d t, \quad \xi_{n}^{(p)}=\int_{0}^{1} t^{n}|\phi(t)|^{p} d t \quad(n=0,1, \ldots), \quad X=\left(h, \xi_{n}\right), \quad X^{(p)}=\left(h, \xi_{n}^{(p)}\right) . \\
\text { If } \mu>\lambda \geqslant 1 \text { and } 1+1 / \mu-1 / \lambda=1 / p, \text { then, for any sequence }\left\{w_{n}\right\}, \\
\left|X\left(w_{n}\right)\right|^{\mu} \leqslant\left(\xi_{0}^{(p)}\right)^{\mu(1-1 / \lambda)}\left\{C_{1}\left(\left|w_{n}\right|^{\lambda}\right)\right\}^{\mu(\lambda-1} X^{(p)}\left(\left|w_{n}\right|^{\mu}\right) .
\end{gathered}
$$

Proof. Let

$$
f_{n}(t)=\sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r} w_{r}
$$

where $0 \leqslant t \leqslant 1$. Then, as in the proof of Theorem 6 ,
so that

$$
\begin{gather*}
\left|f_{n}(t)\right|^{\lambda} \leqslant \sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r}\left|w_{r}\right|^{\lambda}, \\
\int_{0}^{1}\left|f_{n}(t)\right|^{\lambda} d t \leqslant \frac{1}{n+1} \sum_{r=0}^{n}\left|w_{r}\right|^{\lambda}=C_{1}\left(\left|w_{n}\right|^{\lambda}\right) \tag{14}\\
\int_{0}^{1}|\phi(t)|^{p}\left|f_{n}(t)\right|^{\lambda} d t \leqslant X^{(p)}\left(\left|w_{n}\right|^{\lambda}\right) . \tag{15}
\end{gather*} \ldots . . .
$$

Further, using Hölder's inequality twice, we have

$$
\begin{align*}
\left|X\left(w_{n}\right)\right|^{\lambda} & =\left|\int_{0}^{1} \phi(t) f_{n}(t) d t\right|^{\lambda} \\
& \leqslant\left(\int_{0}^{1}|\phi(t)|^{p(1-1 / \lambda)}|\phi(t)|^{p / \mu}\left|f_{n}(t)\right| d t\right)^{\lambda} \\
& \leqslant\left(\int_{0}^{1}|\phi(t)|^{p} d t\right)^{\lambda-1} \int_{0}^{1}|\phi(t)|^{\lambda \lambda / \mu}\left|f_{n}(t)\right|^{\lambda} d t \\
& \leqslant\left(\xi_{0}^{(p)}\right)^{\lambda-1}\left(\int_{0}^{1}\left|f_{n}(t)\right|^{\lambda} d t\right)^{1-\lambda / \mu}\left(\int_{0}^{1}|\phi(t)|^{p}\left|f_{n}(t)\right|^{\lambda} d t\right)^{\lambda / \mu} \tag{16}
\end{align*}
$$

The required result follows from (14), (15) and (16).
Theorem 10. Let $\mu>\lambda \geqslant 1,1 / p=1+1 / \mu-1 / \lambda$, and let $X=\left(h, \xi_{n}\right)$, where

$$
\xi_{n}=\int_{0}^{1} t^{n} \phi(t) d t \quad \text { with } \phi(t) \in L^{p}(0,1) \text { and } \xi_{0}=1
$$

Then $\left[C_{1}, Q\right]_{\lambda} \Rightarrow\left[C_{1}, X Q\right]_{\mu}$ for any matrix Q.
Proof. Observe that X is a regular Hausdorff matrix and (in the notation of Lemma 3) that $X^{(p)}$ is a Hausdorff matrix such that $X^{(p)}\left(v_{n}\right) \rightarrow 0$ whenever $v_{n} \rightarrow 0$.

Suppose that $s_{n} \rightarrow s\left[C_{1}, Q\right]_{\lambda}$, and let

$$
w_{n}=Q\left(s_{n}\right)-s=\sigma_{n}-s, \quad v_{n}=C_{1}\left(\left|w_{n}\right|^{\lambda}\right), \quad k=\left(\xi_{0}^{(p)}\right)^{\mu(1-1 / \lambda)} \sup _{n \geq 0}\left(v_{n}\right)^{\mu / \lambda-1}
$$

Then $v_{n} \rightarrow 0$ so that k is finite and, by Lemma 3,

$$
C_{1}\left(\left|X\left(\sigma_{n}\right)-s\right|^{\mu}\right)=C_{1}\left(\left|X\left(w_{n}\right)\right|^{\mu}\right) \leqslant k C_{1} X^{(p)}\left(\left|w_{n}\right|^{\lambda}\right)=k X^{(p)}\left(v_{n}\right)=o(1)
$$

Hence $s_{n} \rightarrow s\left[C_{1}, X Q\right]_{\mu}$, and the theorem is established.
Remark. I am indebted to Dr B. Kuttner for pointing out that Theorem 10 continues to hold when $\mu=\infty$ (with $1 / p=1-1 / \lambda$ if $\lambda>1$ and $p=\infty$ if $\lambda=1$) provided the following natural conventions are taken to apply : (i) $\left[C_{1}, X Q\right]_{\infty}$ denotes the same summability process as $X Q$ (cf. Glatfeld [6, Theorem 4]), (ii) $\phi(t) \in L^{\infty}(0,1)$ means that $\phi(t)$ is measurable and essentially bounded in (0,1). To justify this assertion suppose that the hypotheses of Theorem 10 hold with $\mu=\infty$. Then (16) can be replaced by the simpler inequality

$$
\left|X\left(w_{n}\right)\right|^{2} \leqslant m \int_{0}^{1}\left|f_{n}(t)\right|^{\lambda} d t
$$

where $m=\left(\int_{0}^{1}|\phi(t)|^{p} d t\right)^{\lambda-1}$ if $\lambda>1$ and $m=\underset{\substack{\text { ess-sup } \\ 0<t<1}}{ }|\phi(t)|$ if $\lambda=1$. Since (14) applies unchanged, it follows that

$$
\left|X\left(w_{n}\right)\right|^{\lambda} \leqslant m C_{1}\left(\left|w_{n}\right|^{\lambda}\right) ;
$$

and this yields the required inclusion, namely $\left|C_{1}, Q\right|_{\lambda} \Rightarrow X Q$.
Theorem 11. Let $\mu>\lambda \geqslant 1,1 / p=1+1 / \mu-1 / \lambda, \gamma \geqslant 0$, and let $X=\left(h, \xi_{n}\right)$, where $\xi_{n}=\int_{0}^{1} t^{n} \phi(t) d t$ with $\phi(t) \in L(0,1)$ and $t^{1-\gamma-1 / p} \phi(t) \in L^{p}(0,1)$.

Then

$$
\text { (i) }\left(\sum_{n=1}^{\infty} n^{\gamma \mu-1}\left|X\left(n a_{n}\right)\right|^{\mu}\right)^{1 / \mu} \leqslant M\left(\sum_{n=1}^{\infty} n^{\gamma \lambda-1}\left|n a_{n}\right|^{\lambda}\right)^{1 / \lambda}
$$

where M is independent of the sequence $\left\{a_{n}\right\}$,
(ii) $|Q, \gamma|_{\lambda} \Rightarrow|X Q, \gamma|_{\mu}$ for any matrix Q.

Proof of (i). We shall use the symbols $M_{1}, M_{2}, M_{3}, M_{4}$ to denote positive numbers independent of n, t and the sequence $\left\{a_{n}\right\}$.

Let
and let

$$
\begin{aligned}
S & =\sum_{n=1}^{\infty} n^{\gamma \lambda-1}\left|n a_{n}\right|^{\lambda}<\infty, \\
f_{n}(t) & =\sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r} r a_{r}
\end{aligned}
$$

where $0 \leqslant t \leqslant 1$. Then, as before,

$$
\left|f_{n}(t)\right|^{\lambda} \leqslant \sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r}\left|r a_{r}\right|^{\lambda}
$$

and so

$$
\begin{align*}
n^{\gamma \lambda} \int_{0}^{1} t^{\gamma \lambda-1}\left|f_{n}(t)\right|^{\lambda} d t & \leqslant n^{\nu \lambda} \sum_{r=1}^{n}\left|r a_{r}\right|^{\lambda}\binom{n}{r} \int_{0}^{1} t^{\nu \lambda+r-1}(1-t)^{n-r} d t \\
& =\frac{n^{\nu \lambda}}{\epsilon_{n}^{\nu \lambda}} \sum_{r=1}^{n} r^{r-1} \epsilon_{r-1}^{\nu \lambda}\left|r a_{r}\right|^{\lambda} \\
& \leqslant M_{1} \sum_{r=1}^{n} r^{\gamma \lambda-1}\left|r a_{r}\right|^{\lambda}=M_{1} S . \ldots \ldots \ldots \ldots . . \tag{17}
\end{align*}
$$

Also

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda} \leqslant M_{2} t^{-\gamma \lambda} \sum_{r=1}^{\infty} r^{\gamma \lambda-1}\left|r a_{r}\right|^{\lambda}=M_{2} S t^{-\gamma \lambda} ; \tag{18}
\end{equation*}
$$

for $\gamma>0$ this has been established in the proof of Theorem 6 (i), and an argument similar to that used in the proof of the case $\gamma=0$ of Theorem 6 (i), involving the identity

$$
\frac{1}{n}\binom{n}{r}=\frac{1}{r}\binom{n-1}{r-1},
$$

shows that the inequality is valid when $\gamma=0$.
Now let $c=1-\gamma-1 / p, \psi(t)=t^{c} \phi(t)$, and let

$$
k=\int_{0}^{1}|\psi(t)|^{p} d t
$$

Then k is finite, and, as in the proof of Lemma 3,

$$
\begin{aligned}
\left|X\left(n a_{n}\right)\right|^{\lambda} & =\left|\int_{0}^{1} \psi(t) t^{-c} f_{n}(t) d t\right|^{\lambda} \\
& \leqslant k^{\lambda-1} \int_{0}^{1}|\psi(t)|^{p \lambda / \mu} t^{1-\lambda c-\lambda \gamma} t^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda} d t \\
& \leqslant k^{\lambda-1}\left(\int_{0}^{1} t^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda} d t\right)^{1-\lambda / \mu}\left(\int_{0}^{1}|\psi(t)|^{\nu} t^{\mu / \lambda-\mu c-\mu \gamma} t^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda} d t\right)^{\lambda / \mu} \\
& =k^{\lambda-1}\left(\int_{0}^{1} t^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda} d t\right)^{1-\lambda / \mu}\left(\int_{0}^{1}|\psi(t)|^{p} t^{\gamma \lambda}\left|f_{n}(t)\right|^{\lambda} d t\right)^{\lambda / \mu}
\end{aligned}
$$

since $\mu / \lambda-\mu c-\mu \gamma=\mu / \lambda-\mu(1-1 / p)=1$. Hence

$$
n^{\gamma \mu-1}\left|X\left(n a_{n}\right)\right|^{\mu} \leqslant k^{(\lambda-1) \mu / \lambda}\left(n^{\nu \lambda} \int_{0}^{1} t^{\gamma \lambda-1}\left|f_{n}(t)\right|^{\lambda} d t\right)^{\mu / \lambda-1} \int_{0}^{1}|\psi(t)|^{p} t^{\gamma \lambda} n^{\gamma \lambda-1}\left|f_{n}(t)\right|^{\lambda} d t
$$

and so, by (17) and (18),

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{\gamma \mu-1}\left|X\left(n a_{n}\right)\right|^{\mu} & \leqslant M_{3} S^{\mu / \lambda-1} \int_{0}^{1}|\psi(t)|^{p} t^{\gamma \lambda} d t \sum_{n=1}^{\infty} n^{\nu \lambda-1}\left|f_{n}(t)\right|^{\lambda} \\
& \leqslant M_{3} S^{\mu / \lambda-1} k M_{2} S=M_{4} S^{\mu / \lambda}
\end{aligned}
$$

Result (i) follows. Hence $|I, \gamma|_{\lambda} \Rightarrow|X, \gamma|_{\mu}$, and result (ii) is an immediate consequence. We state next two propositions.
(V). If Q is any matrix and either (i) $\mu \geqslant \lambda \geqslant 1, \rho>1 / \lambda-1 / \mu$ or (ii) $\mu>\lambda>1$, $\rho=1 / \lambda-1 / \mu$, then

$$
\left[C_{1}, Q\right]_{\lambda} \Rightarrow\left[C_{1}, C_{\rho} Q\right]_{\mu} .
$$

(VI). If Q is any matrix and either (i) $\mu \geqslant \lambda \geqslant 1, \quad \rho>1 / \lambda-1 / \mu, \quad \alpha+1>\gamma \geqslant 0$ or (ii) $\mu>\lambda>1, \quad \rho=1 / \lambda-1 / \mu, \quad \alpha+1>\gamma \geqslant 0$, then

$$
\left|C_{\alpha} Q, \gamma\right|_{\lambda} \Rightarrow\left|C_{\alpha+\rho} Q, \gamma\right|_{\mu}
$$

Proposition (V) follows directly from the case $\alpha=0$ of a theorem on strong Cesàro summability given by Flett (Theorem 2 in [5], where the notation $\{C, \alpha\}_{k}$ is used with the same meaning as $[C, \alpha+1]_{k}$ in the present paper). The case $\alpha>-1 / k$ of this theorem is a corollary of an earlier result on strong Rieszian summability due to Glatfeld ($[6$, Theorem 8$]$; see also line 7 on $p .130$ and the references there given). Proposition (VI) can be immediately derived from a result due to Flett [4, Theorem 1].

To indicate the scope of Theorems 10 and 11 we shall employ them, together with (II) and Theorem 6 (ii), to give alternative proofs of (V) (i) and (VI) (i). Parts (ii) of propositions (V) and (VI) cannot be deduced from the general theorems of the present paper ; the proofs of Flett and Glatfeld, pertaining to these parts of the propositions, depend ultimately on a deep but special inequality of Hardy, Littlewood and Polya [9] (see also [3, 120]).

Proof of (V) (i). The case $\lambda=\mu$ is a direct consequence of result (II). Suppose therefore that $\mu>\lambda$ and let $1 / p=1+1 / \mu-1 / \lambda$. Now $C_{\rho}=\left(h, 1 / \epsilon_{n}^{\rho}\right)$ and

$$
1 / \epsilon_{n}^{\rho}=\int_{0}^{1} t^{n} \phi(t) d t
$$

where $\phi(t)=\rho(1-t)^{\rho-1}$. Further, $\rho-1>-1-1 / \mu+1 / \lambda=-1 / p$ so that $p(\rho-1)>-1$. Hence $\phi(t) \in L^{p}(0,1)$, and the required inclusion follows by Theorem 10 .

Proof of (VI) (i). Note that $C_{\alpha+\rho}=C_{\alpha+\rho} C_{\alpha}^{-1} C_{\alpha}=X C_{\alpha}$ where $X=\left(h, \epsilon_{n}^{\alpha} / \epsilon_{n}^{\alpha+\rho}\right)$, and that $\epsilon_{n}^{\alpha} / \epsilon_{n}^{\alpha+\rho}=\int_{0}^{1} t^{n} \phi(t) d t$, where

$$
\phi(t)=\frac{\Gamma(\alpha+\rho+1)}{\Gamma(\rho) \Gamma(\alpha+1)} t^{\alpha}(1-t)^{\rho-1} .
$$

Suppose first that $\lambda=\mu$. Then, since $\alpha-\gamma>-1, \rho>0$, we see that $t^{-\gamma} \phi(t) \in L(0,1)$, and so, by Theorem 6(ii), $\left|C_{\alpha}, \gamma\right|_{\lambda} \Rightarrow\left|C_{\alpha+\rho}, \gamma\right|_{\lambda}$. The required inclusion is an immediate consequence.

Suppose now that $\mu>\lambda$ and let $1 / p=1+1 / \mu-1 / \lambda$. Then, as above, $p(\rho-1)>-1$, and, since $\alpha+1-\gamma>0, p(\alpha+1-\gamma-1 / p)>-1$. Hence $\phi(t) \in L(0,1)$ and

$$
t^{1-y-1 / p} \phi(t) \in L^{p}(0,1)
$$

and the required inclusion follows by Theorem 11 (ii).
Many special inclusions can be established with the aid of the above results. As an illustration we prove the following (cf. [5, Theorem 2]) :

$$
[H, \alpha]_{\lambda} \Rightarrow[H, \beta]_{\mu}
$$

if either $\mu \geqslant \lambda \geqslant 1, \beta>\alpha+1 / \lambda-1 / \mu$ or $\mu>\lambda>1, \beta=\alpha+1 / \lambda-1 / \mu$.
By (13), $C_{\rho} H_{\alpha-1} \simeq H_{\rho+\alpha-1}(\rho>-1)$, and the result is therefore a consequence of (II) and (V). Note that α can be any real number.

D. BORWEIN

6. Relations between summability processes of different types. We first prove

Theorem 12. If $\lambda>1,2>\rho>-1, X$ is a Hausdorff matrix, and if $\sum_{0}^{\infty} a_{n}$ is (i) summable $\left|C_{1} X, 0\right|_{\lambda}$ and (ii) summable $A C_{\rho} X$ to s, then the series is summable $\left[C_{1}, X\right]_{\lambda}$ to s.

When $\lambda=1$ condition (ii) is not required.
Here A denotes the Abel method of summability and summability $A C_{\rho} X$ is to be interpreted as follows : $s_{n} \rightarrow s\left(A C_{\rho} X\right)$ means that $\sigma_{n}=C_{\rho} X\left(s_{n}\right) \rightarrow s(A)$, i.e. that

$$
\lim _{x \rightarrow 1-}(1-x) \sum_{0}^{\infty} \sigma_{n} x^{n}=s
$$

It is known (see [1] and the references there given) that

$$
\begin{equation*}
C_{\alpha} \Rightarrow A C_{\beta} \Rightarrow A C_{\gamma} \quad(\alpha>-1, \gamma>\beta>-1) . \tag{19}
\end{equation*}
$$

Proof. Let $s_{n}=\sum_{r=0}^{n} a_{r}, \tau_{n}=C_{1} X\left(n a_{n}\right)$. Then, by hypothesis (i),

$$
\frac{1}{n+1} \sum_{r=1}^{n}\left|\tau_{r}\right|^{\lambda}=\sum_{r=1}^{n} \frac{\left|\tau_{r}\right|^{\lambda}}{r}-\frac{1}{n+1} \sum_{r=1}^{n}(n+1-r) \frac{\left|\tau_{r}\right|^{\lambda}}{r}=o(1)
$$

so that

$$
n a_{n} \rightarrow 0\left[C_{1}, C_{1} X\right]_{\lambda}
$$

Hence, by result (III), we have only to show that

$$
\begin{equation*}
s_{n} \rightarrow s\left(C_{1} X\right) \tag{20}
\end{equation*}
$$

in order to complete the proof. When $\lambda=1,(20)$ is an immediate consequence of hypothesis (i), and so hypothesis (ii) is redundant in this case.

Suppose now that $\lambda>1$ and that $2>\rho \geqslant 1+1 / \lambda$. In view of (19) the additional restriction of ρ can be imposed without loss in generality. Let
so that, by (5),

$$
\begin{aligned}
C_{p} X\left(s_{n}\right) & =w_{n}=\sum_{r=0}^{n} u_{r}, \\
n u_{n} & =C_{\rho} X\left(n a_{n}\right) .
\end{aligned}
$$

Then, by (ii),

$$
\begin{equation*}
w_{n} \rightarrow s(A) \tag{21}
\end{equation*}
$$

i.e. $\sum_{0}^{\infty} u_{n}$ is summable A to S.

Further, by result (VI), $\left|C_{1} X, 0\right|_{\lambda} \Rightarrow\left|C_{\rho} X, 0\right|_{\mu}(\mu>\lambda)$ since $\rho-1>1 / \lambda-1 / \mu$. Hence, by (i),

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|n u_{n}\right|^{\mu}}{n}<\infty \tag{22}
\end{equation*}
$$

Now by a Tauberian theorem of Hardy and Littlewood [8] (see also Flett [3, Theorem 4]), a consequence of (21) and (22) is that, for every $\delta>1 / \mu-1, \sum_{0}^{\infty} u_{n}$ is summable ($\left.C, \delta\right)$ to s, i.e. that

$$
\begin{equation*}
C_{8}\left(w_{n}\right) \rightarrow s \tag{23}
\end{equation*}
$$

But μ can be taken arbitrarily large and so (23) holds for every $\delta>-1$. Consequently

$$
C_{1-\rho}\left(w_{n}\right)=C_{1-\rho} C_{\rho} X\left(s_{n}\right) \rightarrow s_{n}^{n}
$$

and, since $C_{1-\rho} C_{\rho} \simeq C_{1}$, (20) follows.
In order to establish the next theorem we require
Lemma 4. If Q is any matrix and either
(i) $\lambda=\mu \geqslant 1, \gamma \geqslant 0, \alpha+1>\gamma>\delta, \beta \geqslant \alpha-\gamma+\delta, \beta>-1$,
or \quad (ii) $\lambda>\mu \geqslant 1, \gamma \geqslant 0, \alpha+1>\gamma>\delta, \beta>\alpha-\gamma+\delta, \beta>-1$,
then $\left|C_{\alpha} Q, \gamma\right|_{\lambda} \Rightarrow\left|C_{\beta} Q, \delta\right|_{\mu}$.
The two results incorporated in this lemma are immediate consequences of theorems due to Flett [4, Theorems 3 and 4].

Theorem 13. If X is a Hausdorff matrix, $\lambda \geqslant 1, \alpha>\gamma>0, \beta \geqslant \alpha-\gamma-1$, then

$$
\left|C_{\alpha} X, \gamma\right|_{\lambda} \Rightarrow\left[C_{1}, C_{\beta} X\right]_{\lambda} .
$$

Proof. Let $Y=C_{1}^{-1} C_{\alpha-\gamma} X$, so that, by (11)

$$
Y \simeq C_{\alpha-\gamma-1} X \quad \text { and } \quad C_{\gamma+1} Y \simeq C_{\alpha} X
$$

Then, by Lemma 4 and (19),

$$
\left|C_{\alpha} X, \gamma\right|_{\lambda} \Rightarrow\left|C_{\alpha} X, 0\right|_{1} \Rightarrow C_{\alpha} X \Rightarrow A C_{\rho} Y
$$

for every $\rho>-1$. Further, by Lemma 4 (i),

$$
\left|C_{\alpha} X, \gamma\right|_{\lambda} \Rightarrow\left|C_{1} Y, 0\right|_{\lambda} .
$$

Hence, by Theorem 12 and result (II), $\left|C_{\alpha} X, \gamma\right|_{\lambda} \Rightarrow\left[C_{1}, Y\right]_{\lambda} \Rightarrow\left[C_{1}, C_{\beta} X\right]_{\lambda}$.
We conclude with some corollaries of Theorems 12 and 13 , but first we prove the inclusion :

$$
\begin{equation*}
[H, \alpha]_{\lambda} \Rightarrow(H, \beta) \quad(\lambda>1, \beta>\alpha-1+1 / \lambda) . \tag{24}
\end{equation*}
$$

By Theorem 2,

$$
[H, \alpha]_{\lambda}=\left[C_{1}, H_{\alpha-1}\right]_{\lambda} \Rightarrow\left[C_{\beta-\alpha+1}, H_{\alpha-1}\right]_{1}
$$

since $\beta-\alpha+1>1 / \lambda$. Consequently, by Theorem 3 (ii) and (13),

$$
[H, \alpha]_{\lambda} \Rightarrow C_{\beta-\alpha+1} H_{\alpha-1} \simeq H_{\beta},
$$

and (24) is thus established. Alternatively, (24) can be deduced directly from the case $\mu=\infty$ of Theorem 10. By Theorem 3 (ii), the inclusion is also valid when $\lambda=1, \beta \geqslant \alpha$.

Similarly we can prove the companion inclusion :

$$
[C, \alpha]_{\lambda} \Rightarrow(C, \beta) \quad(\lambda>1, \beta>\alpha-1+1 / \lambda, \alpha \geqslant 0) .
$$

This result is known (except possibly for the case $\alpha=0$), the cases $\alpha=1, \alpha>1 / \lambda$ and $\alpha>0$ being due respectively to Kuttner [13], Hyslop [11] and Chow [2] (see also Flett [5]).
(VII). If $\lambda>1,1+\alpha>\rho$, and if $\sum_{0}^{\infty} a_{n}$ is (i) summable $|H, \alpha, 0|_{\lambda}$ and (ii) summable $A H_{\rho}$ to s, then the series is summable $[H, \alpha]_{\lambda}$ to s and consequently summable (H, β) to s for every $\beta>\alpha-1+1 / \lambda$.

Proof. Let δ be a positive number such that $2>\delta \geqslant \rho+1-\alpha$. Then, by (13), $H_{\rho} \Rightarrow H_{\delta} H_{\alpha-1} \simeq C_{\delta} H_{\alpha-1}$, and so, by a result due essentially to Hausdorff ([9]; see also [1, Theorem 4]),

$$
A H_{\mathrm{p}} \Rightarrow A C_{\delta} H_{\alpha-1}
$$

Since $H_{\alpha}=C_{1} H_{\alpha-1}$, we obtain the required result by applying first Theorem 12 (with δ in place of ρ) and then inclusion (24).

In the same way we can prove
(VII)'. If $\lambda>1,1+\alpha>\rho \geqslant 0, \beta>\alpha-1+1 / \lambda$, and if $\sum_{0}^{\infty} a_{n}$ is (i) summable $|C, \alpha, 0|_{\lambda}$ and (ii) summable $A C_{\rho}$ to s, then the series is summable (H, β) to s.

The case $\alpha=0, \rho=0$ of this result is effectively the theorem of Hardy and Littlewood used in the above proof of Theorem 12. The case $\lambda=2, \rho=0, \alpha>-\frac{1}{2}$, is due to Zygmund [16], and Flett [4] has established the case $\alpha>-1 / \lambda, \rho=0$.
(VIII). If $\lambda>1, \gamma>0, \beta>\alpha-1-\gamma+1 / \lambda$, then

$$
|H, \alpha, \gamma|_{\lambda} \Rightarrow[H, \alpha-\gamma]_{\lambda} \Rightarrow(H, \beta) .
$$

Proof. Let $X=C_{\rho}^{-1} H_{\alpha}$ where $\rho>\gamma$. Then $C_{\rho} X=H_{\alpha}$ and, by (13),

$$
C_{\rho-\gamma-1} X \simeq H_{\alpha-\gamma-1} .
$$

Consequently, by Theorem 13 and results (II) and (24),

$$
|H, \alpha, \gamma|_{\lambda}=\left|C_{\rho} X, \gamma\right|_{\lambda} \Rightarrow\left[C_{1}, C_{\rho-y-1} X\right]_{\lambda} \simeq\left[H_{1}, H_{\alpha-\gamma-1}\right]_{\lambda}=[H, \alpha-\gamma]_{\lambda} \Rightarrow(H, \beta) .
$$

A similar proof shows that
(VIII)'. If $\lambda>1, \alpha>-1, \gamma>0, \beta>\alpha-1-\gamma+1 / \lambda$, then

$$
|C, \alpha, \gamma|_{\lambda} \Rightarrow(H, \beta)
$$

The case $\alpha>\gamma-1 / \lambda$ of this result has been proved by Flett [4].

REFERENCES

1. D. Borwein, Theorems on some methods of summability, Quart. J. of Math. (2), 9 (1958), 310-316.
2. H. C. Chow, A further note on the summability of a power series on its circle of convergence, Ann. Acad. Sinica, 1 (1954), 559-567.
3. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. (3), 7 (1957), 113-141.
4. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, ibid. (3), 8 (1958), 357-387.
5. T. M. Flett, Some remarks on strong summability, Quart. J. of Math. 10 (1959), 115-139.
6. M. Glatfeld, On strong Rieszian summability, Proc. Glasgow Math. Assoc. 3 (1957), 123-131.
7. G. H. Hardy, Divergent series (Oxford, 1949).
8. G. H. Hardy and J. E. Littlewood, Some theorems concerning Dirichlet's series, Messenger of Math. 43 (1913-14), 134-147.
9. G. H. Hardy, J. E. Littlewood and G. Pólya, The maximum of a certain bilinear form, Proc. London Math. Soc. (2), 25 (1926), 265-282.
10. F. Hausdorff, Die Äquivalenz der Hölderschen und Cesàroschen Grenzwerte negativer Ordnung, Math. Z., 31 (1930), 186-196.
11. J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow Math. Assoc. 1 (1951-3), 16-20.
12. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Archiv. der Math. 2 (1949), 10-16.
13. B. Kuttner, Note on strong summability, J. London Math. Soc. 21 (1946), 118-122.
14. H. Morley, A theorem on Hausdorff transformations and its application to Cesàro and Hölder means, J. London Math. Soc. 25 (1950), 168-173.
15. W. W. Rogosinski, On Hausdorff methods of summability, Proc. Cambridge Phil. Soc. 38 (1942), 166-192.
16. A. Zygmund, Remarque sur la sommabilité des séries de fonctions orthogonales, Bull. de l'Acad. Pol. Serie A, (1926), 185-191.
St. Salvator's College, University of St. Andrews
