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1. Introduction. Suppose throughout that A > 0, K > - l . y i s real and that

Y (n + y\ " „ 1 " K-I n I \
e n = ( I , sn = 2 i « r . »» = , « 2 J € n _ r s r (n. = u, l , . . . ) .

\ W / r=0 en r-0
oo

The series 2 on is said to be
o

(i) summable (G, K) to s if s£ -*- s,
(ii) strongly summable ((7, K +1) with index A, or summable \G, K + 1|A, to s if

1 n

(iii) absolutely summable (C, K) with indices y, A, or summable \C, K, y\x, if

S 1 « ; -« ;_ , | A < oo.
n=l

Definitions (ii) and (iii), for general K, A, y, are due respectively to Hyslop [11] and Flett [4].
Their papers contain references to special cases considered earlier.

Let Q — (<?„.,.) (n, r = 0, 1, ...) be a (summability) matrix, and let

ffn = QM = S 3n,r«r-
r=0

It is to be supposed that all matrices referred to in this paper are of the above type. The
symbol P will be reserved for matrices (pn r) with pn r > 0 (n, r = 0, 1, ...). The series

n

o
(iv) summable Q to 5, and we write sn ->s{Q), if <rn is defined for all n and tends to a as

W-J- oo.
We now generalise the above definitions of strong and absolute summability in a natural

00

way as follows. We say that 2 an is

o
(v) summable [P, Q]A to s, and we write sn -»• s[P, Q]A, if

f p B i f | a r -
f-0

is defined for each n and tends to 0 as n -*• oo,
(vi) summable | Q, y |A if

oo.
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ON STRONG AND ABSOLUTE SUMMABILITY 123

We also define " product " processes of the form QR, [P, QR]*, | QR, y |A, where R is any
matrix, by replacing Q in (iv), (v), (vi) by QR and taking an to be Q{R{sn)} ; i.e. an = Q(rn)
where rn = R{sn).

Denoting by CK the matrix of the transformation which changes {sn} into {s*}, we observe
that the summability processes [0, « + l]A and | C, K, y |A are respectively the same as
[Cv CK]A and | CK, y |A.

The unit matrix will be denoted by / , so that I ($„) — sn.
Let V and W be summability processes (or matrices). We shall use the notation

V ~ W

to mean that any series summable V to s is necessarily summable W to s provided that neither
V nor W is an absolute summability process ; otherwise we shall understand the notation to
mean simply that every series summable V is also summable W. In either case we say that
V is included in W. We say that V and W are equivalent and write

V ~ W

if each is included in the other, and we write V = W if V and W denote the same process (or
matrix).

If / => V and V is not an absolute summability process, then V is said to be regular.
In this paper some of the properties of the strong and absolute summability processes

defined above are investigated.

2. Simple inclusions.

THEOBEM 1. If Q is any matrix and P = (pnj), where

T,Pnr<M ( n -0 ,1 , . . . ) , (1)
r=0

and if A > /x > 0, then [P, Q]A => [P, Q]M.
In particular, the conclusion holds if A > /u, > 0 and P is regular.
This generalises a result proved by Hyslop [11, Theorem 1].

Proof. By Holder's inequality,

P > r h | ( * , K
r=0 \f=0

for any sequence {ivn}. The required inclusion follows.
To complete the proof we have only to note that (1) is a necessary condition for the regu-

larity of P [7, Theorem 2].
Note. Here and elsewhere an inclusion involving an arbitrary matrix Q is essentially no

more general than the same inclusion with / in place of Q, the former being an immediate
consequence of the latter.

THEOREM 2. / / Q is any matrix and A > ^ > 0, ]8A > â . > 0, then [Ca, Q]A => [Cp, Q]M.

Proof. Let p = A//x, q = p/(p-l) and let {ivn} be any sequence. Then, by Holder's
inequality (cf. Hyslop [11, Theorem 2]).

Cflfl W. |") = ~f S e? - 1 I »n-r I"
en r=0
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124 D. BORWEIN

n > I/a

£ (r + 1 )0«-« / J> - I I

r=O J
< J f {C.(| ton I*)}1/*, (2)

since a > 0, j8 > 0, fiq-aqjp = (j3A -a/t)g/A > 0. The numbers Jfx and J f are independent
of n and t he sequence {««„}.

The required result follows from (2).
Note. Since Ca => Oe (]8 > a > - 1 ) , i t is evident t h a t

[0 . , Q]A => to,,, 0 ] , (jB > a > 0, A > 0),

and i t follows from this and a well known Tauberian theorem [7, Theorem 93] t h a t

[0 . , Q]K ~ [Clt Qk (a > 1, A > 0).

Consequently the condition y8A > a/n > 0 in Theorem 2 is only significant if 0 < a ^ 1.
When a > 1 the condition can be replaced by /JA > (j..

THEOREM 3. If P,Q are matrices and P is regular, then

(i) Q * [P, Q]A for A > 0, (ii) [P, Q], => PQ for A > 1.

Proof, (i) If s n ->s , then, since P is regular, P(\sn-s |A) -> 0, i.e. / => [P, 7]A and
inclusion (i) follows.

(ii) Suppose that sn -> s[P, J]A. Then, by Theorem 1, sn -> s[P, 7]x and so

Since P is regular, it follows that P(sn) ->• s. Hence [P, 7]^ => P and inclusion (ii) is an im-

mediate consequence.
As a corollary of part (i) of Theorem 3 we have

(I). If P, Q are regular matrices and A > 0, then [P, Q]A is regular.

THEOREM 4. If A ^ p > 0, y > 8, <Aen

( to \l/n / to \1/A

S n*^"-11 wn |") < M ( E «vA+A-11 w» |A) ,
n=l / \n=l /

w^ere Jf is independent of the sequence {wn},
(ii) | Q, y |A =>• | Q, 8 ^ /or amy m«rfria; Q.

Proo/ o/ (i). The case A = p is evident. Suppose therefore that A > /x. Then, by
Holder's inequality,

» / oo WA/ oo \l-nM

«=1 \n=l / \n-l /

where a(1-/A/A) = 8/A+/X-1 - (yA + A - l)/x/A = - /*(y-8) - ( 1 -/i/A), so that a < - 1 . The
required inequality follows.

Result (ii) is an immediate consequence of (i).
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ON STRONG AND ABSOLUTE SUMMABILITY 125

Note. The case A ^ / x ^ l . y ^ s O o f Theorem 4(i) is contained in a result proved by Flett
([4, Theorem 4] ; take a = /?, T£ = nwn).

The following three results, which concern the relation of | Q, y |A to | Q, 8 |̂  when y = 8,
were kindly communicated to me by Dr B. Kuttner. The first of these shows that it is not
valid to replace the condition y > 8 by y ^ 8 in either part of Theorem 4.

A. There are regular (and non-regular) matrices Q such that, for positive A, p and every
y> I Q> y |A is not included in \ Q, y \^ unless A = fx.

B. There are regular (and non-regular) matrices Q such that, for every y, | Q, y \x => | Q, y |tf
whenever A > /x > 0.

C. / / A > / x > v > 0 and Q is any matrix, then every series summable \ Q, y |A and \Q, y \V

is also summable \ Q, y \^.

Proofs. A. Suppose that Q = (qn r) is a matrix having the property that given any
sequence {crn} there is a sequence {«„} (not necessarily unique) satisfying the equations

M q.r
r=0

In particular, Q could be any matrix with qn r = 0 for r > n, qn_n 960 (n - 0, 1, ...)•
Let a > 0 ; and let xx = x2 = 0,

a;n = w-i (iOg w)-iM(iOg log n)-11*-" for «, > 3,

_ j-m-iM-*2-™(i-iM> for n = 2™ (m = 0, 1, ...),
y" ~ 1 0 otherwise.

000

Then 2 fan)" n"~1 is convergent if and only if ju > A and 2 (2/n)" ra"-1 is convergent if and
n=l n=l

00

only if JX < A. Hence S (xn+yn)
ti w"~1 is convergent if and only if n = A.

l

00

n=l

Now let {<rn}, {«„} be sequences such that

and Q (sn) = an. The series of which {sn} is the sequence of partial sums is then summable
I Q> y \\ but not | Q, y 1̂  for any fj, ^ A. Result A follows.

B. Given an arbitrary matrix Q = (gn>r), form the matrix Q* = (q*r) by repeating
certain rows in Q as follows : let

9*o,r = ?o,n < r = <W for 2«-i < n < 2» (m = 1, 2, ...).

Note that Q* is regular if and only if Q is regular.
n

Let sn = S ar> a* = Q* (sn) and let
r=0

5 __ JJI sit /AM _- n i \

00

Then a* - a* , = 0 when n * 2m and so summability I Q*, y L of 2 «n is equivalent to the
n n i 0

convergence of
CO

m—0
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126 D. BORWEIN
00

Consequently, if 2 an is summable | Q*, y |A, then
o

8m = 0(2-'«

and so 2"1<w+"-1> | 8m |" = 0(2-"J(1-"'A)),

from which it follows that the series is summable | Q*, y 1̂  provided A > ft > 0. i.e.

I Q*, y |A •» I Q*. y |M for A > ,i > 0 .

C. I f A > / x > i ' > 0 and {«;„} is any sequence, then, by Holder's inequality,

( to \ A - * / oo \u-v / oo \A—d

2 n^"-11 wn I") < ( 2 w^*"11 wn IM ( 2 «"+'-11 wn |' 1 ;
n- l / \n=l / \n-l /

and the required " convexity " result is a direct consequence.

3. Hausdorff matrices. Given a real sequence {£„}, let

0 otherwise,

and denote the matrix (xnr) by {h, £n). Matrices of this type are said to be real Hausdorff
matrices. We shall assume hereafter that all Hausdorff matrices considered are real.

Let X = {h, !„), Y = (h, rjn). Then it is known that XY = YX = (h, tnVn). Conse-
quently X"1 = (h, l/fn) provided fn # 0, and it is familiar and easily verified that in this case
X => Y if and only if YX'1 is regular.

Further, it is known that X is regular if and only if

f1
J 00

where x is a real function of bounded variation in [0,1] such that

X(O + ) =X(O) =X(1)~1 (3)

it being assumed in the case of f0 that 0° = 1.
The above results are proved in [7, Ch. XI].

n
Suppose as before that sn = 2 ar a n d let <rn = X(sn), a_1 = 0. Since both X and

r=0
Cf1 are Hausdorff matrices [7, § 11.2],

XG^(sn) = C f 1 * ^ ) (4)

Also, it is easily verified that

Consequently

on+X(rmn) = X(sn+nan) =

and so

X(7Mn) =n(0 n -a n _ 1 ) ( n - 1 , 2 , ...) (5)

Conversely, reversing the above argument, we see that (4) holds for any matrix X satis-
fying (5), and it is known [7, Theorem 198] that (4) implies that X must be a Hausdorff matrix.
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ON STRONG AND ABSOLUTE SUMMABILITY 127
00

It follows from (5) that, for a Hausdorff matrix X, £ an is summable | X, y |A if and only
o

if
S M^"1 | X(nan) |A < oo.

n=l

We proceed to prove two general theorems about strong and absolute summability pro-
cesses associated with Hausdorff matrices. We shall use

LEMMA 1. If X = (h, £H), 2 = (h, £,), where

L=f1tndX(t), L = fV|dx(') |<» (n = 0, 1, ...),
Jo Jo

and if A ^ 1, then, for any sequence {wn},

Proof. Let X = (znr), X = (xnr). Then it is known and easily verified that, for
0 < r < n,

Hence, by Holder's inequality,

* ( " > „ ) |A =
r=0

1

r=0 / f=-0
S ^n.r I W, |A = (lo)

0

THEOREM 5. If P, X are regular Hausdorff matrices, Q is any matrix and A ^ 1, then
[P, Q]A => [P, ZQ]A.

Proof. Let X = (7i, | n ) and let an = -X(sn). Since X is regular,

<7n-5 = X(sn-S),

and

= I' tndX(t)
J o

where x is a real function of bounded variation in [0, 1] satisfying (3). Hence, using Lemma 1
and its notation, we get

| a . - a ^ ^ - ^ t I ««-«!*)•
Since P is a Hausdorff matrix with non-negative elements and X is a Hausdorff matrix, it

follows that

P( | on -s |*) < &Y-Wl{ I sn -s I*) = (fo)A-^P( I a. -« |A) (6)

Now it is easily verified by means of a variant of Toeplitz's theorem [7, Theorem 4] that
X, though not necessarily regular, is such that X(un)-+0 whenever «„->(). Hence if
^ ( K - s | A ) - * 0 then, by (6), P( | an -s |*) ->0, i.e. [P, / ] A => [P, Z]A. The required
inclusion follows.

As an immediate consequence of the above theorem we have

(II). / / A ^ 1 and P, Y, Z are Hausdorff matrices such that P is regular, Y = (h, ijn) with
r)n * 0, and Y => Z, then [P, Y]x => [P, Z\.
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128 D. BORWEIN

THEOREM 6. If X = (^ fn), where

p
" J o

X being a real function of bounded variation in [0, 1], and if

t~v I dx(t) I < oo (7)
J o

and A ^ 1, then
ti\ \* «yA-l I ~Y (tin \ \^ <1 Af ^ «vA —1 I eftn 1̂

n=l n= l

w^ere J / is independent of the sequence {an},

(ii) | Q, y |A => | ZQ, y |A /or awy matrix Q.

When y > 0 the integral in condition (7) should be interpreted in the Lebesgue-Stieltjes
sense ; when y ^ 0 the condition is redundant.

Proof of (i). Suppose first that y < 0. Then, by Lemma 1, since nvX =̂  ryA for n 5= r,

n = l
-i | I K ) |* < (#0)*-i £ n"*"1 S I «̂r |A (W) f'

n=l r=l V / J 0

\dX(t)\ S
0 r=l

< doY S »-vA-11«, r.
r=l

as required.
Suppose now that y > 0, and let

where 0 < t < 1. Then (cf. Hardy [7, § 11.17]), by Holder's inequality,

= r|if)<
r(l-«)"-r|mr|\

and so

S n**"1 |/»W |A < M1 $ ^ i
n=l n=l r=l

* S J"^"11 rar

where Mx and Jkf2 are independent of {an}.

Now X(nan) = C fn(t)dx(t)
Jo
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ON STRONG AND ABSOLUTE SUMMABILITY 129

and so, by a form of Minkowski's inequality,

( oo \1/A (U / M

E n*-i | Z(»ian) N < | dx(t) | ( 2 nv*-i | /n(
n=l / Jo \n=l

1/A

^ J 0 V=l

The proof of part (i) is thus complete.
It follows from (i) that | / , y |A => \ X, y |A, and inclusion (ii) is an immediate consequence.
The next theorem generalises a result given by Hyslop [11, Theorem 3].

THEOREM 7. If P is a regular matrix, Q is a matrix and A ^ 1, then necessary and sufficient
conditions for a series to be summable [P, Q]A to s are that it be summable PQ to s and summable
[P,(I-P)Q],toO.

Proof. Let an = Q{sn), rn = P(an). We have to prove that

P(\on-s\*) =0(1) (8)
if and only if

rn^S (9)
and

P( | an-rn |A) = o(l) (10)

(i) Suppose that (8) holds. Then, by Theorem 3(ii), (9) holds, and so P( | rn -s |A) = o(l)
since P is regular. Hence, by Minkowski's inequality and (8),

{P{ | an-rn |*)}1M < {P( | an -S \W+{P( \rn-S |

and (10) follows.
(ii) Suppose that (9) and (10) hold. Since P is regular, it follows from (9) that

P ( \ r n - s \ * ) = 0 ( 1 ) .

Hence, by Minkowski's inequality and (10),

{r( | an -s I")}'/" =ss {^( | <rn - r n |*))i/« +{r( | rn -s

so that (8) holds.
The proof is thus complete.
Now it is known [7, Ch. XI] that CK = (h, l/e«) (« > -1) and that

n
Further, if sn = 2 *r. then for any Hausdorff matrix X,

r=0

CJM = X{8n-CM = XC.ina,,) (12)

In virtue of (12) we have the following corollary of Theorem 7.

(III). If X is a Hausdorff matrix and A > 1, then necessary and sufficient conditions for a
00

series 2 an '° be summable [Cv X]x to s are that it be summable C^X to s and that
o
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130 D. BORWEIN

Now by (11), GXC._X ~Ca(*> 0), and so, by result (II), [Cv C1Ca_1]A ~ [Cv Ca]A

(a > 0, A ~£z 1). Consequently, by (III), we have
to

(IV). / / A ^ 1, a > 0, then necessary and sufficient conditions for a series 2 an '° oe sum-
o

m
mable [C, a]A to s are that it be summable (C, a) to s and that 2 | Gx(nan) |A = o(m).

n=0
This result has been proved directly by Hyslop [11] and it suggested the following defini-

00

tion of summability [C, 0]A to him : 2 an is summable [C, 0]A to s if it is convergent with sum s
o

and
m

2 | nan |A = o(m).

4. Equivalence of Cesaro and Holder summability processes. For any real a let Ha

be the Hausdorff matrix (h, (m + l)~°). Then G1=H1, HJl^^H^, and it is known [7,
Theorem 211] that

CK~HK (K> - 1 ) (13)

In conformity with the notation described in § 1, we denote the Holder type summability
processes Hx, [Hv H^]* and | Hx, y |A by (H, a), [H, a]A and | H, a, y |A respectively.

We now prove two theorems.

THEOREM 8. / / a ^ 0, A 5* 1, then [C, a]A ~ [H, a]A.
For a > 0 this follows from (13) by result (II), and for a = 0 it is a consequence of (III)

with X = # _ ! = Of1.
The next theorem is a generalisation of the known result (see Knopp and Lorentz [12] and

Morley [14]) that
I C a . O ^ S \H,»,0\1 (<x> -1) .

THEOREM 9. (i) / / a > - 1 , A > 1, y < min (1, 1 +a), then

I @> a> y |A =»• I -ff. a> y |A-

(ii) 7/ eitter a > - 1 , A > 1, y < 1 or a = 2, 3, ..., A =̂ 1, y < 2, ttew

| H> a, y |A =»• I G, a, y |A.

In connection with the second part of (ii) it should be noted that

| H, 0, y |A = | G, 0, y |A and | H, 1, y |A = | C, 1, y |A.

The cases y < 0 of the propositions contained in Theorem 9 follow directly from (13) by
Theorem 6(ii). To deal with the remaining cases we shall use

LEMMA 2. If a0 < 0 and g(s) is an analytic function ofs = a + ir hi the region a > CT0, and
if, for a > <70 and large \s\,

g(s) = K + O(\s\-*),

where K, 8 are constants and 8 > | , then

g(n) T t"dx(t)Jo
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ON STRONG AND ABSOLUTE SUMMABILITY 131

where x is a function of bounded variation in [0, 1] such that

P t°\dx(t)\ < co
J o

for every c > CT0.

Proof. Let/(s) = g{s) -K. Then, for c > oQ+e > CT0,

\f(c + it) \2dt <M,,

where M, is a finite number independent of c. Hence, by a result due to Rogosinski [15,

185-6],

f(n) = P tn<f>(t)dt ( M > 0 ) ,
Jo

where t"<f>(t) e ^(0, 1) for every c > cr0 + e and so for every c > cr0.
Consequently

g(w) = tn dx(t) (n ^ 0),
Jo

P f1

where xW = <p(w) du for 0 < i < 1 and x(l) = K + \ <f>(u) du.
Jo Jo

f1

It is evident that Vs \ dx(t) \ < co for every c > or0.
J o

The lemma is thus proved.
Completion of the proof of Theorem 9. Let

and let W be the Hausdorff matrix (h, wn), where wn =
(i) By Stirling's theorem, w(s) satisfies the hypotheses of g(s) in Lemma 2 with 8 = 1,

a0 = max ( - 1 , - 1 - a ) . Hence by Theorem 6 (ii), with X = W,

for - y > tr0, i.e. for y < min (1, 1 +a). Since WCa = Ha, the proof of part (i) is complete,
(ii) The function l/w(s) satisfies the hypotheses of g(s) in Lemma 2 with 8 = 1, a0 = - 1

when a > - 1 and with 8 = 1, a0 = - 2 when a = 2, 3, . . . . Hence by Theorem 6(ii), with
X = W-\

I Ha, y |A - | JT-iff., y |A

for - y > - 1 when a > - 1 , and for - y > - 2 when a = 2, 3, . . . . Since W~1Ha = <?„, this
completes the proof of part (ii).

5. Hausdorff matrices associated with functions of class Lv. In this section we deal

with Hausdorff matrices (h, £n) such that fn = tn<j> {t) dt, where <f> (t) eL (0, 1) and
J o

te<f> (t) e i " (0,1) for some real cand somep > 1. I t is known [7, Theorem 215] that a Hausdorff

matrix (xn r) satisfies these conditions with c = 0 if and only if
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132 D. BORWEIN

\xn r\*<M{n + V?-* (n = 0 , 1 , . . . ) ,
r=0

where M is independent of w. Note that if j> (t) is in Lp(0, 1) then it is necessarily in L(0, 1).
We establish two theorems which augment Theorems 5 and 6. In the proof of the first

of these we use

LEMMA 3. Let <j>(t) be a real function in the class Lp(0, 1), where p > 1, and let

(n = P t"<j>{t) dt, £„<») = P t» | <f>(t) |" dt (n = 0, 1, . . . ) , X = (h, U, X{v) = (A, liP))-
Jo Jo

/ / /x > A ^ 1 and 1 + l//x - I/A = l/p, then, for any sequence {wn},

I X(wn) |" < (|(dP))'i(1-1/A){C1( | w» |A)}"M-iX(")( | wn \").

Proof. Let

/.W = t(")r(i-t)n-rwr,
r=0 \ r /

where 0 < < < 1. Then, as in the proof of Theorem 6,

K

sothat f |/n(0|A«ft<-l- f;
Jo m +1 r=o

Further, using Holder's inequality twice, we have

r
J 0

The required result follows from (14), (15) and (16).

THEOREM 10. Let ji > A > 1, l/p = 1 + 1 / ^ - I/A, emd Ze< X = (h, | n ) ,

fn = I tn4>(t)dt with6(t)eLv{0, 1) and g0 = 1.
Jo

Oj, Q]A => [Cj, XQ]M /or awy matrix Q.

(14)

and f | ^ W | p | / « W | A * < i ( 1 " ( | w . | * ) (15)
J o

Proof. Observe that X is a regular HausdorfF matrix and (in the notation of Lemma 3)
that X(J)) is a Hausdorff matrix such that X(J))(i)n) -»• 0 whenever vn -> 0.
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ON STRONG AND ABSOLUTE SUMMABILITY 133

Suppose that sn -*• s[Gv Q]A, and let

wn = Q(8n) -s = an-s, vn=G1(\wn |*), k = ( ^ Y ' 1 - 1 ' ^ sup (O"'"-1-

Then un -> 0 so that k is finite and, by Lemma 3,

CV( | X(an) - s |M) = Cx( I X(wn) \») < W71Z<P)( | wn |A) = ftZ«»>(wn) = o(l).

Hence sn -> s[Glt XQ]^ and the theorem is established.

Remark. I am indebted to Dr B. Kuttner for pointing out that Theorem 10 continues to
hold when p = oo (with \jp = 1 - I/A if A > 1 and p = oo if A = 1) provided the following
natural conventions are taken to apply : (i) [Cv XQ]X denotes the same summability process
as XQ (cf. Glatfeld [6, Theorem 4]), (ii) <f> (t) e Lx (0, 1) means that <j> (t) is measurable and essen-
tially bounded in (0, 1). To justify this assertion suppose that the hypotheses of Theorem 10
hold with fx = oo. Then (16) can be replaced by the simpler inequality

al \A-1

I (j>(t) \vdt) if A > 1 and m = ess-sup I </>(t) I if A = 1. Since (14) applies
o / o < t < i

unchanged, it follows that

and this yields the required inclusion, namely | Cv Q |* => XQ.

THEOBEM 11. Let /x > A > 1, l/p = 1 + 1 / ^ - I/A, y > 0, and let X = (h, £n), where

fn = rt»<f>(t)dtiuith<f>{t)eL(O,l)andt1-^-1^<j>{t)eLv(O,l).
J o

Then

( 00 \ / 00 \1/A

S »v"-1 I Jf(mon) I" I1'" < -W ( S w^-1 I ««„ |A ) ,
n=l / \n=l /

where M is independent of the sequence {an},
(ii) | Q, y |A => | ZQ, y |M /or any matrix Q.

Proof of (i). We shall use the symbols Mv M2, M3, Mi to denote positive numbers inde-
pendent of TO, t and the sequence {an}.

Let

S S ^ 1 ! W»n |A < 00,

and let

where 0 s < 1 . Then,

8

/„(<)

as before,

n = l

n= s
r=0

| / « W | S
r=0

and so
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\ P
/ J o

r = l
(17)

Also

r = l
(18)

for y > 0 this has been established in the proof of Theorem 6 (i), and an argument similar to
that used in the proof of the case y — 0 of Theorem 6 (i), involving the identity

l/n\ _lfn- 1\
n\r) ~ r\r-l)'

shows that the inequality is valid when y = 0.
Now let c = l-y-llp,i(i(t) = tc<j>{t), and let

k = | \t/j(t) \*dt.
J o

Then k is finite, and, as in the proof of Lemma 3,

< P-1 ( P P

s ince fi/A —fie— ju.y = /x/A -

n""-1 | Z (no,) | " < i ( A -

and so, by (17) and (18),
00

(t) I^^-AC-AV^

-M/.WI**)1"

^(i-i/p) = l.

( A f1

l)" A71"AJV '

"MAW

Hence

I/.WI*

Jo

IA ^

<A(t) IP^/A—»JC-M

\M/A-I n

dt) | ^ (
/ Jo

00

</<(<) | p / y A d< 2
n=l

Result (i) follows. Hence | / , y |A => | X, y \^ and result (ii) is an immediate consequence.
We state next two propositions.

(V). / / Q is any matrix and either (i) /x ^ A ^ 1, p > I/A - I/ft or (ii) ^ > A > 1,
p = I/A - 1/jLt, then
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(VI). / / Q is any matrix and either (i) ^ > A ^ 1, p > I/A - l//x, a +1 > y > 0 or
(ii) ^ > A > 1, p = I/A - l//x, a +1 > y 2* 0, ^ew

I C.Q, y \, - I C«+PQ. y L-

Proposition (V) follows directly from the case a = 0 of a theorem on strong Cesaro sum-
mability given by Flett (Theorem 2 in [5], where the notation {C, a}k is used with the same
meaning as [C, a + l]k in the present paper). The case a > - \jk of this theorem is a corollary
of an earlier result on strong Rieszian summability due to Glatfeld ([6, Theorem 8] ; see also
line 7 on p. 130 and the references there given). Proposition (VI) can be immediately derived
from a result due to Flett [4, Theorem 1].

To indicate the scope of Theorems 10 and 11 we shall employ them, together with (II)
and Theorem 6 (ii), to give alternative proofs of (V) (i) and (VI) (i). Parts (ii) of propositions
(V) and (VI) cannot be deduced from the general theorems of the present paper ; the proofs of
Flett and Glatfeld, pertaining to these parts of the propositions, depend ultimately on a deep
but special inequality of Hardy, Littlewood and P61ya [9] (see also [3, 120]).

Proof of (V) (i). The case A = /x is a direct consequence of result (II). Suppose therefore
that /x > A and let 1/p = 1 +1/̂ x - I/A. Now Cp = (h, l/6£) and

PJ [t»+{t)dt,
o

where tf>(t) = p(l-«)p~1. Further, p - 1 > -1-1//X + 1/A = -1 /p so that j p ( p - l ) > - 1 .
Hence <j>(t) eLp(0, 1), and the required inclusion follows by Theorem 10.

Proof of (VI) (i). Note that Oa+P = C.+^C. = XC, where X = (h, e ^ O , and

that e^K,+p = (ltn<f>{t) dt, where
J o

Suppose first that A = /x. Then, since a — y > — 1, p > 0, we see that t~Y<f>(t) e£(0, 1),
and so, by Theorem 6(ii), | Ca, y |A => | Ca+P, y |A. The required inclusion is an immediate
consequence.

Suppose now that /x > A and let 1/p = 1 + 1/jx - I/A. Then, as above, p(p -1) > - 1 ,
and, since a + 1 - y > 0, p(a + l - y - l / p ) > - 1 . Hence <f>(t) eL(0, 1) and

i ' - ' - 1 i^ ( ( )eI»(0 , 1),

and the required inclusion follows by Theorem 11 (ii).

Many special inclusions can be estabhshed with the aid of the above results. As an illus-
tration we prove the following (cf. [5, Theorem 2]) :

[H, «]A * [H, a

if either /* > A ^ 1, j3 > a + I/A - l//x or p > A > 1, jS = a + I/A - l//u.

By (13), Cl>Ha_1 ci -ffp+a-! (p > -1) , and the result is therefore a consequence of (II)
and (V). Note that a can be any real number.
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6. Relations between summability processes of different types. We first prove

to

THEOREM 12. I / A > 1 , 2 > p > -l,XisaHausdorffmatrix,andif^anis (i) summable
o

| CjX, 0 |A and (ii) summable ACpX to s, then the series is summable [Gv Z]A to s.
When A = 1 condition (ii) is not required.
Here A denotes the Abel method of summability and summability ACpX is to be inter-

preted as follows : sn -> s{AGpX) means that on = CpX(sn) -*• s(A), i.e. that
00

lim (1 -a;) 2 CTn x" ~ s-
x->l- 0

It is known (see [1] and the references there given) that

Ca^AC^ACy ( a > -l,y>p> - 1 ) (19)

n
Proof. Let sn — £ ar, Tn = GxX{nan). Then, by hypothesis (i),

r=0

so that

Hence, by result (III), we have only to show that
sn^s(C1X) (20)

in order to complete the proof. When A = 1, (20) is an immediate consequence of hypothesis
(i), and so hypothesis (ii) is redundant in this case.

Suppose now that A > 1 and that 2 > /> > 1 + I/A. In view of (19) the additional restric-
tion of p can be imposed without loss in generality. Let

n

<V^(Sn) = U>n = S «r.
r=0

so that, by (5), nun = CpZ(man).

Then, by (ii),
v>n-+s(A); (21)

00

i.e. 2 un is summable A to S.
o

Further, by result (VI), | GtX, 0 |A * | CpX, 0 ^ (p > A) since p - 1 > I/A - l//x.
Hence, by (i),

CO I ivtn I I H

S L^ld_ < a, (22)
n = l w

Now by a Tauberian theorem of Hardy and Littlewood [8] (see also Flett [3, Theorem 4]),
00

a consequence of (21) and (22) is that, for every 8 > l//x - 1 , 2 «n is summable (G, 8) to s, i.e.
o

that
0 8 K ) - •« (23)

https://doi.org/10.1017/S2040618500034043 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034043


ON STRONG AND ABSOLUTE SUMMABILITY 137

But n can be taken arbitrarily large and so (23) holds for every 8 > - 1 . Consequently

ow(wn) = c ^ x («„)-*«:
and, since Cj_pCp ~ Clt (20) follows.

In order to establish the next theorem we require

LEMMA 4. If Q is any matrix and either

(i) A = y. ̂  1, yS= 0, a + 1 > y > 8, j8 > a - y + 8, j8 > - 1,

or (ii) A > f i > l , y > O , a + l > y > 8 ) / 3 > a - y + 8, j 3 > - 1,

Men | C,Q, y |A => | 0 $ , 8 |M.

The two results incorporated in this lemma are immediate consequences of theorems due
to Flett [4, Theorems 3 and 4].

THEOREM 13. If X is a Hausdorff matrix, A 5= 1, < x > y > 0 , j3 > a - y - 1 , then

| G.X, y |A => [d, GPX]A.

Proof. Let T = CTlCa_yX, so that, by (11)

Y~C^yX and C y + i r ~ C a X .

Then, by Lemma 4 and (19),

| GaX, y |A => | CaZ, 0 | t => (7OX => 4 0 , 7

for every p > - 1 . Further, by Lemma 4 (i),

I cax, y |A => | ^ y , o |A.
Hence, by Theorem 12 and result (II), | CaX, y \h => [ d , 7]A => [ d , CPX]A.

We conclude with some corollaries of Theorems 12 and 13, but first we prove the inclusion :

[H, «]A => (H, j3) (A> l , / 5 > a - l + l / A ) (24)

By Theorem 2,

[if, a]A = [Ox, fl..,]A - [ O ^ + 1 I £?«_!]!

since /3 - a +1 > I/A. Consequently, by Theorem 3 (ii) and (13),

[H, «]A - Cf.^H.^ ~ Hp,

and (24) is thus established. Alternatively, (24) can be deduced directly from the case /x = oo
of Theorem 10. By Theorem 3 (ii), the inclusion is also valid when A = 1, j8 ̂  a.

Similarly we can prove the companion inclusion :

[G, «]A => (G, J3) (A > 1, 0 > a - 1 + 1/A, a > 0).

This result is known (except possibly for the case a = 0), the cases « = 1, a > I/A and a > 0
being due respectively to Kuttner [13], Hyslop [11] and Chow [2] (see also Flett [5]).

00

(VII). If X> 1,1+a> p, and if £ an is (i) summable \ H, a, 0 |A and (ii) summable AHp to s,
o

then the series is summable [H, a]A to s and consequently summable (H, /?) to s for every

]3 > a - 1 + I/A.
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Proof. Let S be a positive number such that 2 > 8 > p + l - « . Then, by (13),
H9 => HgH^^ ci (V?,»_i, and so, by a result due essentially to Hausdorff ([9] ; see also
[1, Theorem 4]),

AHp => ACtH.^.
Since Hx = Cfl^, we obtain the required result by applying first Theorem 12 (with 8 in
place of p) and then inclusion (24).

In the same way we can prove
00

(VII)'. 7/ A > 1, 1 + a > p ̂  0, ] 8 > a - l + I/A, and if £ an is (i) summable \ C, a, 0 |A
o

and (ii) summable AGP to s, then the series is summable (H, jS) to s.
The case a = 0, p — 0 of this result is effectively the theorem of Hardy and Littlewood

used in the above proof of Theorem 12. The case A = 2, p = 0, a > - \, is due to Zygmund
[16], and Flett [4] has established the case a > - I/A, p = 0.

(VIII). / / A > 1 , y > 0 , / S > a - l - y + I/A, then

\H,a,yU~[H,cc-y]x~(H,l3).

Proof. Let X = C^R* where p > y. Then CpX = Ha and, by (13),

Cp-y-l-^ — #a-y-l-

Consequently, by Theorem 13 and results (II) and (24),

| H, a, y |A = | (7pX, y |A => [ C ^ ^ X ] , - [#!, # ._ ,_! ] , = [H, « -y] A => (J5T, /S).

A similar proof shows that

(VIII)'. 7 / A > l , a > - l , y > 0 ) / 3 > a - l - y + I/A, <Aere

| 0, «, y |A => (H, J8).

The case a > y - I/A of this result has been proved by Flett [4].
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