ON STRONG AND ABSOLUTE SUMMABILITY by D. BORWEIN

(Received 13 July, 1959; and in revised form 2 October, 1959)

1. Introduction. Suppose throughout that $\lambda > 0$, $\kappa > -1$, γ is real and that

$$s_n^{\gamma} = {n+\gamma \choose n}, \quad s_n = \sum_{r=0}^n a_r, \quad s_n^{\kappa} = \frac{1}{\epsilon_n^{\kappa}} \sum_{r=0}^n \epsilon_{n-r}^{\kappa-1} s_r \quad (n=0,1,\ldots).$$

The series $\sum_{0}^{\infty} a_{n}$ is said to be

- (i) summable (C, κ) to s if $s_n^{\kappa} \to s$,
- (ii) strongly summable $(C, \kappa + 1)$ with index λ , or summable $|C, \kappa + 1|_{\lambda}$, to s if

$$\frac{1}{n+1}\sum_{r=0}^{n} |s_r^{\kappa}-s|^{\lambda} = o(1),$$

(iii) absolutely summable (C, κ) with indices γ, λ , or summable $|C, \kappa, \gamma|_{\lambda}$, if

$$\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} \mid s_n^{\kappa} - s_{n-1}^{\kappa} \mid^{\lambda} < \infty.$$

Definitions (ii) and (iii), for general κ , λ , γ , are due respectively to Hyslop [11] and Flett [4]. Their papers contain references to special cases considered earlier.

Let $Q = (q_{n,r})$ (n, r = 0, 1, ...) be a (summability) matrix, and let

$$\sigma_n = Q(s_n) = \sum_{r=0}^{\infty} q_{n,r} s_r.$$

It is to be supposed that all matrices referred to in this paper are of the above type. The symbol P will be reserved for matrices $(p_{n,r})$ with $p_{n,r} \ge 0$ (n, r = 0, 1, ...). The series $\sum_{n=1}^{\infty} a_n$ is said to be

(iv) summable Q to s, and we write $s_n \to s(Q)$, if σ_n is defined for all n and tends to s as $n \to \infty$.

We now generalise the above definitions of strong and absolute summability in a natural way as follows. We say that $\sum_{n=0}^{\infty} a_n$ is

(v) summable $[P, Q]_{\lambda}$ to s, and we write $s_n \to s[P, Q]_{\lambda}$, if

$$P(|\sigma_n - s|^{\lambda}) = \sum_{r=0}^{\infty} p_{n,r} |\sigma_r - s|^{\lambda}$$

is defined for each n and tends to 0 as $n \to \infty$,

(vi) summable $|Q, \gamma|_{\lambda}$ if

$$\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} |\sigma_n - \sigma_{n-1}|^{\lambda} < \infty.$$

We also define "product" processes of the form QR, $[P, QR]_{\lambda}$, $|QR, \gamma|_{\lambda}$, where R is any matrix, by replacing Q in (iv), (v), (vi) by QR and taking σ_n to be $Q\{R(s_n)\}$; i.e. $\sigma_n = Q(\tau_n)$ where $\tau_n = R(s_n)$.

Denoting by C_{κ} the matrix of the transformation which changes $\{s_n\}$ into $\{s_n^{\kappa}\}$, we observe that the summability processes $[C, \kappa + 1]_{\lambda}$ and $|C, \kappa, \gamma|_{\lambda}$ are respectively the same as $[C_1, C_{\kappa}]_{\lambda}$ and $|C_{\kappa}, \gamma|_{\lambda}$.

The unit matrix will be denoted by I, so that $I(s_n) = s_n$.

Let V and W be summability processes (or matrices). We shall use the notation

 $V \Rightarrow W$

to mean that any series summable V to s is necessarily summable W to s provided that neither V nor W is an absolute summability process; otherwise we shall understand the notation to mean simply that every series summable V is also summable W. In either case we say that V is included in W. We say that V and W are equivalent and write

 $V \simeq W$

if each is included in the other, and we write V = W if V and W denote the same process (or matrix).

If $I \Rightarrow V$ and V is not an absolute summability process, then V is said to be regular.

In this paper some of the properties of the strong and absolute summability processes defined above are investigated.

2. Simple inclusions.

THEOREM 1. If Q is any matrix and $P = (p_{n,r})$, where

and if $\lambda > \mu > 0$, then $[P, Q]_{\lambda} \Rightarrow [P, Q]_{\mu}$.

In particular, the conclusion holds if $\lambda > \mu > 0$ and P is regular. This generalises a result proved by Hyslop [11, Theorem 1].

Proof. By Hölder's inequality,

$$\sum_{r=0}^{\infty} p_{n,r} \mid w_r \mid^{\mu} \leq \left(\sum_{r=0}^{\infty} p_{n,r} \mid w_r \mid^{\lambda}\right)^{\mu/\lambda} M^{1-\mu/\lambda}$$

for any sequence $\{w_n\}$. The required inclusion follows.

To complete the proof we have only to note that (1) is a necessary condition for the regularity of P [7, Theorem 2].

Note. Here and elsewhere an inclusion involving an arbitrary matrix Q is essentially no more general than the same inclusion with I in place of Q, the former being an immediate consequence of the latter.

THEOREM 2. If Q is any matrix and $\lambda > \mu > 0$, $\beta \lambda > \alpha \mu > 0$, then $[C_{\alpha}, Q]_{\lambda} \Rightarrow [C_{\beta}, Q]_{\mu}$.

Proof. Let $p = \lambda/\mu$, q = p/(p-1) and let $\{w_n\}$ be any sequence. Then, by Hölder's inequality (cf. Hyslop [11, Theorem 2]).

$$C_{\beta}(\mid w_{n} \mid^{\mu}) = \frac{1}{\epsilon_{n}^{\beta}} \sum_{r=0}^{n} \epsilon_{r}^{\beta-1} \mid w_{n-r} \mid^{\mu}$$

since $\alpha > 0$, $\beta > 0$, $\beta q - \alpha q/p = (\beta \lambda - \alpha \mu)q/\lambda > 0$. The numbers M_1 and M are independent of *n* and the sequence $\{w_n\}$.

The required result follows from (2).

Note. Since $C_{\alpha} \Rightarrow C_{\beta}$ $(\beta > \alpha > -1)$, it is evident that

$$[C_{\alpha}, Q]_{\lambda} \Rightarrow [C_{\beta}, Q]_{\lambda} \quad (\beta > \alpha > 0, \lambda > 0),$$

and it follows from this and a well known Tauberian theorem [7, Theorem 93] that

 $[C_{\alpha}, Q]_{\lambda} \simeq [C_1, Q]_{\lambda} \quad (\alpha > 1, \lambda > 0).$

Consequently the condition $\beta \lambda > \alpha \mu > 0$ in Theorem 2 is only significant if $0 < \alpha \leq 1$. When $\alpha > 1$ the condition can be replaced by $\beta \lambda > \mu$.

THEOREM 3. If P, Q are matrices and P is regular, then

(i) $Q \Rightarrow [P, Q]_{\lambda}$ for $\lambda > 0$, (ii) $[P, Q]_{\lambda} \Rightarrow PQ$ for $\lambda \ge 1$.

Proof. (i) If $s_n \to s$, then, since P is regular, $P(|s_n - s|^{\lambda}) \to 0$, i.e. $I \Rightarrow [P, I]_{\lambda}$ and inclusion (i) follows.

(ii) Suppose that $s_n \to s[P, I]_{\lambda}$. Then, by Theorem 1, $s_n \to s[P, I]_1$ and so

$$|P(s_n-s)| \leq P(|s_n-s|) = o(1).$$

Since P is regular, it follows that $P(s_n) \to s$. Hence $[P, I]_{\lambda} \Rightarrow P$ and inclusion (ii) is an immediate consequence.

As a corollary of part (i) of Theorem 3 we have

(I). If P, Q are regular matrices and $\lambda > 0$, then $[P, Q]_{\lambda}$ is regular.

THEOREM 4. If $\lambda \ge \mu > 0$, $\gamma > \delta$, then

(i)
$$\left(\sum_{n=1}^{\infty} n^{\delta\mu+\mu-1} \mid w_n \mid^{\mu}\right)^{1/\mu} \leq M \left(\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} \mid w_n \mid^{\lambda}\right)^{1/\lambda}$$

where M is independent of the sequence $\{w_n\}$,

(ii) $|Q, \gamma|_{\lambda} \Rightarrow |Q, \delta|_{\mu}$ for any matrix Q.

Proof of (i). The case $\lambda = \mu$ is evident. Suppose therefore that $\lambda > \mu$. Then, by Hölder's inequality,

$$\sum_{n=1}^{\infty} n^{\delta\mu+\mu-1} |w_n|^{\mu} \leq \left(\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} |w_n|^{\lambda}\right)^{\mu/\lambda} \left(\sum_{n=1}^{\infty} n^{\alpha}\right)^{1-\mu/\lambda},$$

where $\alpha(1-\mu/\lambda) = \delta\mu + \mu - 1 - (\gamma\lambda + \lambda - 1)\mu/\lambda = -\mu(\gamma - \delta) - (1-\mu/\lambda)$, so that $\alpha < -1$. The required inequality follows.

Result (ii) is an immediate consequence of (i).

Note. The case $\lambda \ge \mu \ge 1$, $\gamma \ge 0$ of Theorem 4(i) is contained in a result proved by Flett ([4, Theorem 4]; take $\alpha = \beta$, $\tau_n^{\alpha} = nw_n$).

The following three results, which concern the relation of $|Q, \gamma|_{\lambda}$ to $|Q, \delta|_{\mu}$ when $\gamma = \delta$, were kindly communicated to me by Dr B. Kuttner. The first of these shows that it is not valid to replace the condition $\gamma > \delta$ by $\gamma \ge \delta$ in either part of Theorem 4.

A. There are regular (and non-regular) matrices Q such that, for positive λ , μ and every γ , $|Q, \gamma|_{\lambda}$ is not included in $|Q, \gamma|_{\mu}$ unless $\lambda = \mu$.

B. There are regular (and non-regular) matrices Q such that, for every γ , $|Q, \gamma|_{\lambda} \Rightarrow |Q, \gamma|_{\mu}$ whenever $\lambda > \mu > 0$.

C. If $\lambda > \mu > \nu > 0$ and Q is any matrix, then every series summable $|Q, \gamma|_{\lambda}$ and $|Q, \gamma|_{\nu}$ is also summable $|Q, \gamma|_{\mu}$.

Proofs. A. Suppose that $Q = (q_{n,r})$ is a matrix having the property that given any sequence $\{\sigma_n\}$ there is a sequence $\{s_n\}$ (not necessarily unique) satisfying the equations

$$\sigma_n = Q(s_n) = \sum_{r=0}^{\infty} q_{n,r} s_r \quad (n = 0, 1, ...).$$

In particular, Q could be any matrix with $q_{n,r} = 0$ for r > n, $q_{n,n} \neq 0$ (n = 0, 1, ...).

Let $\alpha > 0$; and let $x_1 = x_2 = 0$,

$$\begin{aligned} x_n &= n^{-1} (\log n)^{-1/\lambda} (\log \log n)^{-1/\lambda - \alpha} & \text{for } n \ge 3, \\ y_n &= \begin{cases} m^{-1/\lambda - \alpha} 2^{-m(1-1/\lambda)} & \text{for } n = 2^m & (m = 0, 1, ...), \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

Then $\sum_{n=1}^{\infty} (x_n)^{\mu} n^{\mu-1}$ is convergent if and only if $\mu \ge \lambda$ and $\sum_{n=1}^{\infty} (y_n)^{\mu} n^{\mu-1}$ is convergent if and

only if $\mu \leq \lambda$. Hence $\sum_{n=1}^{\infty} (x_n + y_n)^{\mu} n^{\mu-1}$ is convergent if and only if $\mu = \lambda$.

Now let $\{\sigma_n\}, \{s_n\}$ be sequences such that

$$n^{\gamma}(\sigma_n - \sigma_{n-1}) = x_n + y_n \quad (n \ge 1)$$

and $Q(s_n) = \sigma_n$. The series of which $\{s_n\}$ is the sequence of partial sums is then summable $|Q, \gamma|_{\lambda}$ but not $|Q, \gamma|_{\mu}$ for any $\mu \neq \lambda$. Result A follows.

B. Given an arbitrary matrix $Q = (q_{n,r})$, form the matrix $Q^* = (q_{n,r}^*)$ by repeating certain rows in Q as follows: let

$$q_{0,r}^* = q_{0,r}, \quad q_{n,r}^* = q_{m,r} \quad \text{for } 2^{m-1} \leq n < 2^m \quad (m = 1, 2, ...).$$

Note that Q^* is regular if and only if Q is regular.

Let $s_n = \sum_{r=0}^n a_r$, $\sigma_n^* = Q^*(s_n)$ and let

$$\delta_m = \sigma_{2m}^* - \sigma_{2m-1}^* \quad (m = 0, 1, \ldots).$$

Then $\sigma_n^* - \sigma_{n-1}^* = 0$ when $n \neq 2^m$ and so summability $|Q^*, \gamma|_{\lambda}$ of $\sum_{0}^{\infty} a_n$ is equivalent to the convergence of

$$\sum_{m=0}^{\infty} 2^{m(\gamma\lambda+\lambda-1)} \mid \delta_m \mid^{\lambda}.$$

Consequently, if $\sum_{0}^{\infty} a_{n}$ is summable $|Q^{*}, \gamma|_{\lambda}$, then

$$\delta_m = o \left(2^{-m(\gamma+1-1/\lambda)} \right)$$

and so $2^{m(\gamma\mu+\mu-1)} \mid \delta_m \mid^{\mu} = o \left(2^{-m(1-\mu/\lambda)} \right),$

from which it follows that the series is summable $|Q^*, \gamma|_{\mu}$ provided $\lambda > \mu > 0$. i.e. $|Q^*, \gamma|_{\lambda} \Rightarrow |Q^*, \gamma|_{\mu}$ for $\lambda > \mu > 0$.

C. If $\lambda > \mu > \nu > 0$ and $\{w_n\}$ is any sequence, then, by Hölder's inequality,

$$\left(\sum_{n=1}^{\infty} n^{\gamma\mu+\mu-1} \mid w_n \mid^{\mu}\right)^{\lambda-\nu} \leqslant \left(\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} \mid w_n \mid^{\lambda}\right)^{\mu-\nu} \left(\sum_{n=1}^{\infty} n^{\gamma\nu+\nu-1} \mid w_n \mid^{\nu}\right)^{\lambda-\mu} \leq \left(\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} \mid w_n \mid^{\lambda}\right)^{\mu-\nu} \left(\sum_{n=1}^{\infty} n^{\gamma\nu+\nu-1} \mid w_n \mid^{\lambda}\right)^{\lambda-\mu} \leq \left(\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} \mid w_n \mid^{\lambda}\right)^{\mu-\nu} \left(\sum_{n=1}^{\infty} n^{\gamma\nu+\nu-1} \mid w_n \mid^{\lambda}\right)^{\lambda-\mu} \leq \left(\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} \mid w_n \mid^{\lambda}\right)^{\mu-\nu} \left(\sum_{n=1}^{\infty} n^{\gamma\nu+\nu-1} \mid w_n \mid^{\lambda}\right)^{\lambda-\mu} \leq \left(\sum_{n=1}^{\infty} n^{\gamma\lambda+\lambda-1} \mid w_n \mid^{\lambda}\right)^{\mu-\nu} \left(\sum_{n=1}^{\infty} n^{\gamma\nu+\nu-1} \mid w_n \mid^{\lambda}\right)^{\lambda-\mu} \leq \left(\sum_{n=1}^{\infty} n^{\gamma\nu+\nu-1} \mid^{\lambda$$

and the required " convexity " result is a direct consequence.

3. Hausdorff matrices. Given a real sequence $\{\xi_n\}$, let

$$x_{n,r} = \begin{cases} \binom{n}{r} \sum_{\nu=0}^{n-r} (-1)^{\nu} \binom{n-r}{\nu} \xi_{r+\nu} & \text{for } 0 \leqslant r \leqslant n, \\ 0 & \text{otherwise,} \end{cases}$$

and denote the matrix $(x_{n,r})$ by (h, ξ_n) . Matrices of this type are said to be real Hausdorff matrices. We shall assume hereafter that all Hausdorff matrices considered are real.

Let $X = (h, \xi_n)$, $Y = (h, \eta_n)$. Then it is known that $XY = YX = (h, \xi_n\eta_n)$. Consequently $X^{-1} = (h, 1/\xi_n)$ provided $\xi_n \neq 0$, and it is familiar and easily verified that in this case $X \Rightarrow Y$ if and only if YX^{-1} is regular.

Further, it is known that X is regular if and only if

$$\xi_n = \int_0^1 t^n \, d\chi(t),$$

where χ is a real function of bounded variation in [0, 1] such that

$$\chi(0+) = \chi(0) = \chi(1) - 1,$$
(3)

it being assumed in the case of ξ_0 that $0^0 = 1$.

The above results are proved in [7, Ch. XI].

Suppose as before that $s_n = \sum_{r=0}^n a_r$ and let $\sigma_n = X(s_n)$, $\sigma_{-1} = 0$. Since both X and C_1^{-1} are Hausdorff matrices [7, § 11.2],

$$XC_1^{-1}(s_n) = C_1^{-1}X(s_n).$$
 (4)

Also, it is easily verified that

$$C_1^{-1}(s_n) = s_n + na_n.$$

Consequently

$$\sigma_n + X(na_n) = X(s_n + na_n) = XC_1^{-1}(s_n) = C_1^{-1}X(s_n) = C_1^{-1}(\sigma_n) = \sigma_n + n(\sigma_n - \sigma_{n-1}),$$

and so

Conversely, reversing the above argument, we see that (4) holds for any matrix X satisfying (5), and it is known [7, Theorem 198] that (4) implies that X must be a Hausdorff matrix.

It follows from (5) that, for a Hausdorff matrix X, $\sum_{n=1}^{\infty} a_n$ is summable $|X, \gamma|_{\lambda}$ if and only

if

$$\sum_{n=1}^{\infty} n^{\gamma \lambda - 1} \mid X(na_n) \mid^{\lambda} < \infty.$$

We proceed to prove two general theorems about strong and absolute summability processes associated with Hausdorff matrices. We shall use

LEMMA 1. If $X = (h, \xi_n), \tilde{X} = (h, \tilde{\xi}_n),$ where

$$\xi_n = \int_0^1 t^n \, d\chi(t), \quad \xi_n = \int_0^1 t^n \, |d\chi(t)| < \infty \quad (n = 0, 1, ...),$$

and if $\lambda \ge 1$, then, for any sequence $\{w_n\}$,

$$\mid X(w_n) \mid^{\lambda} \leqslant (\xi_0)^{\lambda-1} \widetilde{X}(\mid w_n \mid^{\lambda})$$

Proof. Let $X = (x_{n,r})$, $\tilde{X} = (\tilde{x}_{n,r})$. Then it is known and easily verified that, for $0 \leq r \leq n$

$$x_{n,r} = \binom{n}{r} \int_0^1 t^r (1-t)^{n-r} d\chi(t), \quad \tilde{x}_{n,r} = \binom{n}{r} \int_0^1 t^r (1-t)^{n-r} |d\chi(t)|.$$

Hence, by Hölder's inequality,

$$|X(w_n)|^{\lambda} = \left|\sum_{r=0}^n x_{n,r} w_r\right|^{\lambda} \leqslant \left(\sum_{r=0}^n \tilde{x}_{n,r}\right)^{\lambda-1} \sum_{r=0}^n \tilde{x}_{n,r} |w_r|^{\lambda} = (\xi_0)^{\lambda-1} \tilde{X}(|w_n|^{\lambda}).$$

THEOREM 5. If P, X are regular Hausdorff matrices, Q is any matrix and $\lambda \ge 1$, then $[P, Q]_{\lambda} \Rightarrow [P, XQ]_{\lambda}.$

Proof. Let $X = (h, \xi_n)$ and let $\sigma_n = X(s_n)$. Since X is regular,

$$\sigma_n - s = X(s_n - s),$$

and

$$\xi_n = \int_0^1 t^n \, d\chi(t)$$

where χ is a real function of bounded variation in [0, 1] satisfying (3). Hence, using Lemma 1 and its notation, we get

$$\mid \sigma_n - s \mid^{\lambda} \leqslant (\xi_0)^{\lambda - 1} \tilde{X}(\mid s_n - s \mid^{\lambda}).$$

Since P is a Hausdorff matrix with non-negative elements and \tilde{X} is a Hausdorff matrix, it follows that

$$P(\mid \sigma_n - s \mid^{\lambda}) \leqslant (\xi_0)^{\lambda - 1} P \hat{X}(\mid s_n - s \mid^{\lambda}) = (\xi_0)^{\lambda - 1} \tilde{X} P(\mid s_n - s \mid^{\lambda}).$$
(6)

Now it is easily verified by means of a variant of Toeplitz's theorem [7, Theorem 4] that \hat{X} , though not necessarily regular, is such that $\hat{X}(u_n) \to 0$ whenever $u_n \to 0$. Hence if $P(|s_n - s|^{\lambda}) \to 0$ then, by (6), $P(|\sigma_n - s|^{\lambda}) \to 0$, i.e. $[P, I]_{\lambda} \Rightarrow [P, X]_{\lambda}$. The required inclusion follows.

As an immediate consequence of the above theorem we have

(II). If $\lambda \ge 1$ and P, Y, Z are Hausdorff matrices such that P is regular, $Y = (h, \eta_n)$ with $\eta_n \neq 0$, and $Y \Rightarrow Z$, then $[P, Y]_{\lambda} \Rightarrow [P, Z]_{\lambda}$.

THEOREM 6. If $X = (h, \xi_n)$, where

$$\xi_n = \int_0^1 t^n \, d\chi(t) \quad (n = 0, 1, \ldots),$$

 χ being a real function of bounded variation in [0, 1], and if

and $\lambda \ge 1$, then

(i)
$$\sum_{n=1}^{\infty} n^{\gamma\lambda-1} | X(na_n) |^{\lambda} \leq M \sum_{n=1}^{\infty} n^{\gamma\lambda-1} | na_n |^{\lambda}$$
,

where M is independent of the sequence $\{a_n\}$,

(ii)
$$|Q, \gamma|_{\lambda} \Rightarrow |XQ, \gamma|_{\lambda}$$
 for any matrix Q.

When $\gamma > 0$ the integral in condition (7) should be interpreted in the Lebesgue-Stieltjes sense; when $\gamma \leq 0$ the condition is redundant.

Proof of (i). Suppose first that $\gamma \leq 0$. Then, by Lemma 1, since $n^{\gamma\lambda} \leq r^{\gamma\lambda}$ for $n \geq r$,

$$\begin{split} \sum_{n=1}^{\infty} n^{\gamma\lambda-1} \mid X(na_n) \mid^{\lambda} &\leqslant (\xi_0)^{\lambda-1} \sum_{n=1}^{\infty} n^{\gamma\lambda-1} \sum_{r=1}^{n} \mid ra_r \mid^{\lambda} \binom{n}{r} \int_0^1 t^r (1-t)^{n-r} \mid d_X(t) \mid \\ &= (\xi_0)^{\lambda-1} \int_0^1 \mid d_X(t) \mid \sum_{r=1}^{\infty} r^{-1} \mid ra_r \mid^{\lambda} t^r \sum_{n=r}^{\infty} n^{\gamma\lambda} \binom{n-1}{r-1} (1-t)^{n-r} \\ &\leqslant (\xi_0)^{\lambda} \sum_{r=1}^{\infty} r^{\gamma\lambda-1} \mid ra_r \mid^{\lambda}, \end{split}$$

as required.

Suppose now that $\gamma > 0$, and let

$$f_n(t) = \sum_{r=0}^n \binom{n}{r} t^r (1-t)^{n-r} r a_r,$$

where $0 \le t \le 1$. Then (cf. Hardy [7, § 11.17]), by Hölder's inequality,

$$|f_n(t)|^{\lambda} \leqslant \sum_{r=0}^n \binom{n}{r} t^r (1-t)^{n-r} |ra_r|^{\lambda} \left\{ \sum_{r=0}^n \binom{n}{r} t^r (1-t)^{n-r} \right\}^{\lambda-1}$$

= $\sum_{r=1}^n \binom{n}{r} t^r (1-t)^{n-r} |ra_r|^{\lambda},$

and so

$$\begin{split} \sum_{n=1}^{\infty} n^{\gamma\lambda-1} |f_n(t)|^{\lambda} &\leq M_1 \sum_{n=1}^{\infty} \epsilon_n^{\gamma\lambda-1} \sum_{r=1}^n \binom{n}{r} t^r (1-t)^{n-r} |ra_r|^{\lambda} \\ &= M_1 \sum_{r=1}^{\infty} \epsilon_r^{\gamma\lambda-1} |ra_r|^{\lambda} t^r \sum_{n=r}^{\infty} \epsilon_{n-r}^{\gamma\lambda+r-1} (1-t)^{n-r} \\ &\leq M_2 t^{-\gamma\lambda} \sum_{r=1}^{\infty} r^{\gamma\lambda-1} |ra_r|^{\lambda}, \end{split}$$

where M_1 and M_2 are independent of $\{a_n\}$.

Now
$$X(na_n) = \int_0^1 f_n(t) d\chi(t)$$

https://doi.org/10.1017/S2040618500034043 Published online by Cambridge University Press

and so, by a form of Minkowski's inequality,

$$\begin{split} \left(\sum_{n=1}^{\infty} n^{\gamma\lambda-1} \mid X(na_n) \mid^{\lambda}\right)^{1/\lambda} &\leq \int_{0}^{1} \mid d_{X}(t) \mid \left(\sum_{n=1}^{\infty} n^{\gamma\lambda-1} \mid f_n(t) \mid^{\lambda}\right)^{1/\lambda} \\ &\leq M_2^{1/\lambda} \int_{0}^{1} t^{-\lambda} \mid d_{X}(t) \mid \left(\sum_{r=1}^{\infty} r^{\gamma\lambda-1} \mid ra_r \mid^{\lambda}\right)^{1/\lambda} \end{split}$$

The proof of part (i) is thus complete.

It follows from (i) that $|I, \gamma|_{\lambda} \Rightarrow |X, \gamma|_{\lambda}$, and inclusion (ii) is an immediate consequence. The next theorem generalises a result given by Hyslop [11, Theorem 3].

THEOREM 7. If P is a regular matrix, Q is a matrix and $\lambda \ge 1$, then necessary and sufficient conditions for a series to be summable $[P, Q]_{\lambda}$ to s are that it be summable PQ to s and summable $[P, (I - P)Q]_{\lambda}$ to 0.

Proof. Let
$$\sigma_n = Q(s_n), \tau_n = P(\sigma_n)$$
. We have to prove that
$$\frac{P(1 \sigma_n + s_n)}{P(1 \sigma_n + s_n)} = O(1)$$

if and only if

$$\tau_n \rightarrow s$$
(9)

and

(i) Suppose that (8) holds. Then, by Theorem 3(ii), (9) holds, and so $P(|\tau_n - s|^{\lambda}) = o(1)$ since P is regular. Hence, by Minkowski's inequality and (8),

$$\{P(\mid \sigma_n - \tau_n \mid^{\lambda})\}^{1/\lambda} \leqslant \{P(\mid \sigma_n - s \mid^{\lambda})\}^{1/\lambda} + \{P(\mid \tau_n - s \mid^{\lambda})\}^{1/\lambda} = o(1)$$

and (10) follows.

(ii) Suppose that (9) and (10) hold. Since P is regular, it follows from (9) that

$$P(\mid \tau_n - s \mid^{\lambda}) = o(1).$$

Hence, by Minkowski's inequality and (10),

$$\{P(\mid \sigma_n - s \mid^{\lambda})\}^{1/\lambda} \leq \{P(\mid \sigma_n - \tau_n \mid^{\lambda})\}^{1/\lambda} + \{P(\mid \tau_n - s \mid^{\lambda})\}^{1/\lambda} = o(1)$$

so that (8) holds.

The proof is thus complete.

Now it is known [7, Ch. XI] that $C_{\kappa} = (h, 1/\epsilon_n^{\kappa})$ ($\kappa > -1$) and that

$$C_{\alpha}C_{\beta} \simeq C_{\alpha+\beta} \quad (\alpha > -1, \beta > -1, \alpha+\beta > -1).$$
(11)

Further, if $s_n = \sum_{r=0}^n a_r$, then for any Hausdorff matrix X,

In virtue of (12) we have the following corollary of Theorem 7.

(III). If X is a Hausdorff matrix and $\lambda \ge 1$, then necessary and sufficient conditions for a series $\sum_{0}^{\infty} a_n$ to be summable $[C_1, X]_{\lambda}$ to s are that it be summable C_1X to s and that

$$na_n \to 0 [C_1, C_1 X]_{\lambda}.$$

Now by (11), $C_1 C_{\alpha-1} \simeq C_{\alpha}$ ($\alpha > 0$), and so, by result (II), $[C_1, C_1 C_{\alpha-1}]_{\lambda} \simeq [C_1, C_{\alpha}]_{\lambda}$ ($\alpha > 0, \lambda \ge 1$). Consequently, by (III), we have

(IV). If $\lambda \ge 1$, $\alpha > 0$, then necessary and sufficient conditions for a series $\sum_{n=0}^{\infty} a_n$ to be sum-

mable $[C, \alpha]_{\lambda}$ to s are that it be summable (C, α) to s and that $\sum_{n=0}^{m} |C_{\alpha}(na_{n})|^{\lambda} = o(m)$. This result has been proved directly by Hyslop [11] and it suggested the following defini-

tion of summability $[C, 0]_{\lambda}$ to him : $\sum_{0}^{\infty} a_{n}$ is summable $[C, 0]_{\lambda}$ to s if it is convergent with sum s and

$$\sum_{n=0}^{m} |na_n|^{\lambda} = o(m).$$

4. Equivalence of Cesàro and Hölder summability processes. For any real α let H_{α} be the Hausdorff matrix $(h, (n+1)^{-\alpha})$. Then $C_1 = H_1$, $H_{\alpha}H_{\beta} = H_{\alpha+\beta}$, and it is known [7, Theorem 211] that

 $C_{\kappa} \simeq H_{\kappa} \quad (\kappa > -1).$ (13)

In conformity with the notation described in § 1, we denote the Hölder type summability processes H_{α} , $[H_1, H_{\alpha-1}]_{\lambda}$ and $|H_{\alpha}, \gamma|_{\lambda}$ by (H, α) , $[H, \alpha]_{\lambda}$ and $|H, \alpha, \gamma|_{\lambda}$ respectively.

We now prove two theorems.

THEOREM 8. If $\alpha \ge 0$, $\lambda \ge 1$, then $[C, \alpha]_{\lambda} \simeq [H, \alpha]_{\lambda}$.

For $\alpha > 0$ this follows from (13) by result (II), and for $\alpha = 0$ it is a consequence of (III) with $X = H_{-1} = C_1^{-1}$.

The next theorem is a generalisation of the known result (see Knopp and Lorentz [12] and Morley [14]) that

$$|C, \alpha, 0|_1 \simeq |H, \alpha, 0|_1 \qquad (\alpha > -1).$$

THEOREM 9. (i) If $\alpha > -1$, $\lambda \ge 1$, $\gamma < \min(1, 1+\alpha)$, then

(ii) If either
$$\alpha > -1$$
, $\lambda \ge 1$, $\gamma < 1$ or $\alpha = 2, 3, ..., \lambda \ge 1$, $\gamma < 2$, then
 $|H, \alpha, \gamma|_{\lambda} \Rightarrow |C, \alpha, \gamma|_{\lambda}$.

In connection with the second part of (ii) it should be noted that

$$|H, 0, \gamma|_{\lambda} = |C, 0, \gamma|_{\lambda}$$
 and $|H, 1, \gamma|_{\lambda} = |C, 1, \gamma|_{\lambda}$.

The cases $\gamma \leq 0$ of the propositions contained in Theorem 9 follow directly from (13) by Theorem 6(ii). To deal with the remaining cases we shall use

LEMMA 2. If $\sigma_0 < 0$ and g(s) is an analytic function of $s = \sigma + i\tau$ in the region $\sigma > \sigma_0$, and if, for $\sigma > \sigma_0$ and large |s|,

$$g(s) = K + O(|s|^{-\delta}),$$

where K, δ are constants and $\delta > \frac{1}{2}$, then

$$g(n) = \int_0^1 t^n d\chi(t) \quad (n \ge 0),$$

ON STRONG AND ABSOLUTE SUMMABILITY

where χ is a function of bounded variation in [0, 1] such that

$$\int_0^1 t^c \mid d\chi(t) \mid < \infty$$

for every $c > \sigma_0$.

Proof. Let
$$f(s) = g(s) - K$$
. Then, for $c > \sigma_0 + \epsilon > \sigma_0$,
$$\int_{-\infty}^{\infty} |f(c+it)|^2 dt < M_{\epsilon},$$

where M_{ϵ} is a finite number independent of c. Hence, by a result due to Rogosinski [15, 185-6],

$$f(n) = \int_0^1 t^n \phi(t) dt \quad (n \ge 0),$$

where $t^{c}\phi(t) \in L(0, 1)$ for every $c > \sigma_{0} + \epsilon$ and so for every $c > \sigma_{0}$.

Consequently

$$g(n) = \int_0^1 t^n d\chi(t) \quad (n \ge 0),$$

where

$$\chi(t) = \int_0^t \phi(u) \, du \text{ for } 0 \le t < 1 \text{ and } \chi(1) = K + \int_0^1 \phi(u) \, du$$

It is evident that $\int_0^1 t^c |d\chi(t)| < \infty$ for every $c > \sigma_0$.

The lemma is thus proved.

Completion of the proof of Theorem 9. Let

$$w(s) = (s+1)^{-\alpha} \frac{\Gamma(s+\alpha+1)}{\Gamma(\alpha+1)\Gamma(s+1)}$$

and let W be the Hausdorff matrix (h, w_n) , where $w_n = w(n)$.

(i) By Stirling's theorem, w(s) satisfies the hypotheses of g(s) in Lemma 2 with $\delta = 1$, $\sigma_0 = \max(-1, -1-\alpha)$. Hence by Theorem 6 (ii), with X = W,

$$|C_{\alpha}, \gamma|_{\lambda} \Rightarrow |WC_{\alpha}, \gamma|_{\lambda}$$

for $-\gamma > \sigma_0$, i.e. for $\gamma < \min(1, 1+\alpha)$. Since $WC_{\alpha} = H_{\alpha}$, the proof of part (i) is complete.

(ii) The function 1/w(s) satisfies the hypotheses of g(s) in Lemma 2 with $\delta = 1$, $\sigma_0 = -1$ when $\alpha > -1$ and with $\delta = 1$, $\sigma_0 = -2$ when $\alpha = 2, 3, ...$ Hence by Theorem 6(ii), with $X = W^{-1}$,

$$| H_{\alpha}, \gamma |_{\lambda} \Rightarrow | W^{-1}H_{\alpha}, \gamma |_{\lambda}$$

for $-\gamma > -1$ when $\alpha > -1$, and for $-\gamma > -2$ when $\alpha = 2, 3, ...$ Since $W^{-1}H_{\alpha} = C_{\alpha}$, this completes the proof of part (ii).

5. Hausdorff matrices associated with functions of class L^p . In this section we deal with Hausdorff matrices (h, ξ_n) such that $\xi_n = \int_0^1 t^n \phi(t) dt$, where $\phi(t) \in L(0, 1)$ and $t^c \phi(t) \in L^p(0, 1)$ for some real c and some p > 1. It is known [7, Theorem 215] that a Hausdorff matrix $(x_{n, r})$ satisfies these conditions with c = 0 if and only if

$$\sum_{r=0}^{n} |x_{n,r}|^{p} < M(n+1)^{1-p} \quad (n = 0, 1, ...),$$

where M is independent of n. Note that if $\phi(t)$ is in $L^{p}(0, 1)$ then it is necessarily in L(0, 1).

We establish two theorems which augment Theorems 5 and 6. In the proof of the first of these we use

LEMMA 3. Let $\phi(t)$ be a real function in the class $L^p(0, 1)$, where p > 1, and let

$$\begin{split} \xi_n &= \int_0^1 t^n \phi(t) \, dt, \quad \xi_n^{(p)} = \int_0^1 t^n \, \big| \, \phi(t) \, \big|^p \, dt \quad (n = 0, 1, \ldots), \quad X = (h, \, \xi_n), \quad X^{(p)} = (h, \, \xi_n^{(p)}). \\ &If \, \mu > \lambda \ge 1 \text{ and } 1 + 1/\mu - 1/\lambda = 1/p, \text{ then, for any sequence } \{w_n\}, \\ & \quad | \, X(w_n) \, |^\mu \leqslant (\xi_0^{(p)})^{\mu(1-1/\lambda)} \{C_1(\mid w_n \mid^{\lambda})\}^{\mu/\lambda - 1} X^{(p)}(\mid w_n \mid^{\lambda}). \end{split}$$

Proof. Let

$$f_n(t) = \sum_{r=0}^n \binom{n}{r} t^r (1-t)^{n-r} w_r,$$

where $0 \leq t \leq 1$. Then, as in the proof of Theorem 6,

$$|f_n(t)|^{\lambda} \leqslant \sum_{r=0}^n \binom{n}{r} t^r (1-t)^{n-r} |w_r|^{\lambda},$$

so that and

Further, using Hölder's inequality twice, we have

The required result follows from (14), (15) and (16).

THEOREM 10. Let $\mu > \lambda \ge 1$, $1/p = 1 + 1/\mu - 1/\lambda$, and let $X = (h, \xi_n)$, where

$$\xi_n = \int_0^1 t^n \phi(t) dt$$
 with $\phi(t) \in L^p(0, 1)$ and $\xi_0 = 1$.

Then $[C_1, Q]_{\lambda} \Rightarrow [C_1, XQ]_{\mu}$ for any matrix Q.

Proof. Observe that X is a regular Hausdorff matrix and (in the notation of Lemma 3) that $X^{(p)}$ is a Hausdorff matrix such that $X^{(p)}(v_n) \to 0$ whenever $v_n \to 0$.

Suppose that $s_n \to s[C_1, Q]_{\lambda}$, and let

$$w_n = Q(s_n) - s = \sigma_n - s, \quad v_n = C_1(|w_n|^{\lambda}), \quad k = (\xi_0^{(p)})^{\mu(1-1/\lambda)} \sup_{n \ge 0} (v_n)^{\mu(\lambda-1)}$$

Then $v_n \to 0$ so that k is finite and, by Lemma 3,

$$C_1(|X(\sigma_n) - s|^{\mu}) = C_1(|X(w_n)|^{\mu}) \leqslant kC_1 X^{(p)}(|w_n|^{\lambda}) = kX^{(p)}(v_n) = o(1).$$

Hence $s_n \to s[C_1, XQ]_{\mu}$, and the theorem is established.

Remark. I am indebted to Dr B. Kuttner for pointing out that Theorem 10 continues to hold when $\mu = \infty$ (with $1/p = 1 - 1/\lambda$ if $\lambda > 1$ and $p = \infty$ if $\lambda = 1$) provided the following natural conventions are taken to apply: (i) $[C_1, XQ]_{\infty}$ denotes the same summability process as XQ (cf. Glatfeld [6, Theorem 4]), (ii) $\phi(t) \in L^{\infty}(0, 1)$ means that $\phi(t)$ is measurable and essentially bounded in (0, 1). To justify this assertion suppose that the hypotheses of Theorem 10 hold with $\mu = \infty$. Then (16) can be replaced by the simpler inequality

$$|X(w_n)|^{\lambda} \leqslant m \int_0^1 |f_n(t)|^{\lambda} dt,$$

where $m = \left(\int_{0}^{1} |\phi(t)|^{p} dt\right)^{\lambda-1}$ if $\lambda > 1$ and $m = \underset{0 < t < 1}{\text{ess-sup}} |\phi(t)|$ if $\lambda = 1$. Since (14) applies unchanged, it follows that

 $\mid X(w_n)\mid^{\scriptscriptstyle\lambda}\leqslant mC_1(\mid w_n\mid^{\scriptscriptstyle\lambda}) ;$

and this yields the required inclusion, namely $|C_1, Q|_{\lambda} \Rightarrow XQ$.

THEOREM 11. Let $\mu > \lambda \ge 1$, $1/p = 1 + 1/\mu - 1/\lambda$, $\gamma \ge 0$, and let $X = (h, \xi_n)$, where $\xi_n = \int_0^1 t^n \phi(t) dt$ with $\phi(t) \in L(0, 1)$ and $t^{1-\gamma-1/p} \phi(t) \in L^p(0, 1)$. Then

(i)
$$\left(\sum_{n=1}^{\infty} n^{\gamma\mu-1} \mid X(na_n) \mid^{\mu}\right)^{1/\mu} \leq M \left(\sum_{n=1}^{\infty} n^{\gamma\lambda-1} \mid na_n \mid^{\lambda}\right)^{1/\lambda}$$
,

where M is independent of the sequence $\{a_n\}$,

(ii) $|Q, \gamma|_{\lambda} \Rightarrow |XQ, \gamma|_{\mu}$ for any matrix Q.

Proof of (i). We shall use the symbols M_1 , M_2 , M_3 , M_4 to denote positive numbers independent of n, t and the sequence $\{a_n\}$.

Let

$$S = \sum_{n=1}^{\infty} n^{\gamma \lambda - 1} |na_n|^{\lambda} < \infty,$$

and let

$$f_n(t) = \sum_{r=0}^{n} \binom{n}{r} t^r (1-t)^{n-r} r a_r,$$

where $0 \leq t \leq 1$. Then, as before,

$$|f_n(t)|^{\lambda} \leqslant \sum_{r=0}^n \binom{n}{r} t^r (1-t)^{n-r} |ra_r|^{\lambda},$$

and so

ĩ

Also

for $\gamma > 0$ this has been established in the proof of Theorem 6 (i), and an argument similar to that used in the proof of the case $\gamma = 0$ of Theorem 6 (i), involving the identity

$$\frac{1}{n}\binom{n}{r} = \frac{1}{r}\binom{n-1}{r-1},$$

shows that the inequality is valid when $\gamma = 0$.

Now let $c = 1 - \gamma - 1/p$, $\psi(t) = t^c \phi(t)$, and let

$$k = \int_0^1 |\psi(t)|^p dt.$$

Then k is finite, and, as in the proof of Lemma 3,

$$\begin{split} |X(na_{n})|^{\lambda} &= \left| \int_{0}^{1} \psi(t) t^{-c} f_{n}(t) dt \right|^{\lambda} \\ &\leqslant k^{\lambda-1} \int_{0}^{1} |\psi(t)|^{p\lambda/\mu} t^{1-\lambda c-\lambda \gamma} t^{\gamma\lambda-1} |f_{n}(t)|^{\lambda} dt \\ &\leqslant k^{\lambda-1} \left(\int_{0}^{1} t^{\gamma\lambda-1} |f_{n}(t)|^{\lambda} dt \right)^{1-\lambda/\mu} \left(\int_{0}^{1} |\psi(t)|^{p} t^{\mu/\lambda-\mu c-\mu \gamma} t^{\gamma\lambda-1} |f_{n}(t)|^{\lambda} dt \right)^{\lambda/\mu} \\ &= k^{\lambda-1} \left(\int_{0}^{1} t^{\gamma\lambda-1} |f_{n}(t)|^{\lambda} dt \right)^{1-\lambda/\mu} \left(\int_{0}^{1} |\psi(t)|^{p} t^{\nu\lambda} |f_{n}(t)|^{\lambda} dt \right)^{\lambda/\mu}, \end{split}$$

since $\mu/\lambda - \mu c - \mu \gamma = \mu/\lambda - \mu (1 - 1/p) = 1$. Hence

$$n^{\gamma\mu-1} \mid X(na_n) \mid^{\mu} \leq k^{(\lambda-1)\mu/\lambda} \left(n^{\gamma\lambda} \int_0^1 t^{\gamma\lambda-1} \mid f_n(t) \mid^{\lambda} dt \right)^{\mu/\lambda-1} \int_0^1 \mid \psi(t) \mid^p t^{\gamma\lambda} n^{\gamma\lambda-1} \mid f_n(t) \mid^{\lambda} dt$$

and so, by (17) and (18),

$$\begin{split} \sum_{n=1}^{\infty} n^{\gamma\mu-1} \mid X(na_n) \mid^{\mu} &\leq M_3 S^{\mu/\lambda-1} \int_0^1 \mid \psi(t) \mid^{\mathfrak{p}} t^{\gamma\lambda} \, dt \sum_{n=1}^{\infty} n^{\gamma\lambda-1} \mid f_n(t) \mid^{\lambda} \\ &\leq M_3 S^{\mu/\lambda-1} k M_2 S = M_4 S^{\mu/\lambda}. \end{split}$$

Result (i) follows. Hence $|I, \gamma|_{\lambda} \Rightarrow |X, \gamma|_{\mu}$, and result (ii) is an immediate consequence. We state next two propositions.

(V). If Q is any matrix and either (i) $\mu \ge \lambda \ge 1$, $\rho > 1/\lambda - 1/\mu$ or (ii) $\mu > \lambda > 1$, $\rho = 1/\lambda - 1/\mu$, then

$$[C_1, Q]_{\lambda} \Rightarrow [C_1, C_{\rho}Q]_{\mu}.$$

https://doi.org/10.1017/S2040618500034043 Published online by Cambridge University Press

(VI). If Q is any matrix and either (i) $\mu \ge \lambda \ge 1$, $\rho > 1/\lambda - 1/\mu$, $\alpha + 1 > \gamma \ge 0$ or (ii) $\mu > \lambda > 1$, $\rho = 1/\lambda - 1/\mu$, $\alpha + 1 > \gamma \ge 0$, then

$$|C_{\alpha}Q, \gamma|_{\lambda} \Rightarrow |C_{\alpha+\rho}Q, \gamma|_{\mu}$$

Proposition (V) follows directly from the case $\alpha = 0$ of a theorem on strong Cesàro summability given by Flett (Theorem 2 in [5], where the notation $\{C, \alpha\}_k$ is used with the same meaning as $[C, \alpha + 1]_k$ in the present paper). The case $\alpha > -1/k$ of this theorem is a corollary of an earlier result on strong Rieszian summability due to Glatfeld ([6, Theorem 8]; see also line 7 on p. 130 and the references there given). Proposition (VI) can be immediately derived from a result due to Flett [4, Theorem 1].

To indicate the scope of Theorems 10 and 11 we shall employ them, together with (II) and Theorem 6 (ii), to give alternative proofs of (V) (i) and (VI) (i). Parts (ii) of propositions (V) and (VI) cannot be deduced from the general theorems of the present paper; the proofs of Flett and Glatfeld, pertaining to these parts of the propositions, depend ultimately on a deep but special inequality of Hardy, Littlewood and Pólya [9] (see also [3, 120]).

Proof of (V) (i). The case $\lambda = \mu$ is a direct consequence of result (II). Suppose therefore that $\mu > \lambda$ and let $1/p = 1 + 1/\mu - 1/\lambda$. Now $C_{\rho} = (h, 1/\epsilon_{\mu}^{\rho})$ and

$$1/\epsilon_n^{\rho} = \int_0^1 t^n \phi(t) \, dt,$$

where $\phi(t) = \rho(1-t)^{\rho-1}$. Further, $\rho - 1 > -1 - 1/\mu + 1/\lambda = -1/p$ so that $p(\rho - 1) > -1$. Hence $\phi(t) \in L^{p}(0, 1)$, and the required inclusion follows by Theorem 10.

Proof of (VI) (i). Note that $C_{\alpha+\rho} = C_{\alpha+\rho}C_{\alpha}^{-1}C_{\alpha} = XC_{\alpha}$ where $X = (h, \epsilon_n^{\alpha}/\epsilon_n^{\alpha+\rho})$, and that $\epsilon_n^{\alpha}/\epsilon_n^{\alpha+\rho} = \int_0^1 t^n \phi(t) dt$, where

$$\phi(t) = \frac{\Gamma(\alpha+\rho+1)}{\Gamma(\rho)\Gamma(\alpha+1)} t^{\alpha}(1-t)^{\rho-1}.$$

Suppose first that $\lambda = \mu$. Then, since $\alpha - \gamma > -1$, $\rho > 0$, we see that $t^{-\gamma}\phi(t) \in L(0, 1)$, and so, by Theorem 6(ii), $|C_{\alpha}, \gamma|_{\lambda} \Rightarrow |C_{\alpha+\rho}, \gamma|_{\lambda}$. The required inclusion is an immediate consequence.

Suppose now that $\mu > \lambda$ and let $1/p = 1 + 1/\mu - 1/\lambda$. Then, as above, $p(\rho - 1) > -1$, and, since $\alpha + 1 - \gamma > 0$, $p(\alpha + 1 - \gamma - 1/p) > -1$. Hence $\phi(t) \in L(0, 1)$ and

$$t^{1-\gamma-1/p}\phi(t) \in L^p(0, 1),$$

and the required inclusion follows by Theorem 11 (ii).

Many special inclusions can be established with the aid of the above results. As an illustration we prove the following (cf. [5, Theorem 2]):

$$[H, \alpha]_{\lambda} \Rightarrow [H, \beta]_{\mu}$$

if either $\mu \ge \lambda \ge 1$, $\beta > \alpha + 1/\lambda - 1/\mu$ or $\mu > \lambda > 1$, $\beta = \alpha + 1/\lambda - 1/\mu$.

By (13), $C_{\rho}H_{\alpha-1} \simeq H_{\rho+\alpha-1}$ ($\rho > -1$), and the result is therefore a consequence of (II) and (V). Note that α can be any real number.

6. Relations between summability processes of different types. We first prove

THEOREM 12. If $\lambda > 1$, $2 > \rho > -1$, X is a Hausdorff matrix, and if $\sum_{0}^{\infty} a_n$ is (i) summable $|C_1X, 0|_{\lambda}$ and (ii) summable $AC_{\rho}X$ to s, then the series is summable $[C_1, X]_{\lambda}$ to s.

When $\lambda = 1$ condition (ii) is not required.

Here A denotes the Abel method of summability and summability $AC_{\rho}X$ is to be interpreted as follows: $s_n \to s(AC_{\rho}X)$ means that $\sigma_n = C_{\rho}X(s_n) \to s(A)$, i.e. that

$$\lim_{x\to 1-} (1-x)\sum_{0}^{\infty} \sigma_n x^n = s.$$

It is known (see [1] and the references there given) that

$$C_{\alpha} \Rightarrow AC_{\beta} \Rightarrow AC_{\gamma} \quad (\alpha > -1, \gamma > \beta > -1).$$
 (19)

Proof. Let
$$s_n = \sum_{r=0}^n a_r$$
, $\tau_n = C_1 X(na_n)$. Then, by hypothesis (i),

$$\frac{1}{n+1}\sum_{r=1}^{n} |\tau_{r}|^{\lambda} = \sum_{r=1}^{n} \frac{|\tau_{r}|^{\lambda}}{r} - \frac{1}{n+1}\sum_{r=1}^{n} (n+1-r) \frac{|\tau_{r}|^{\lambda}}{r} = o(1),$$

so that

$$na_n \rightarrow 0[C_1, C_1X]_{\lambda}.$$

Hence, by result (III), we have only to show that

 $s_n \rightarrow s(C_1X)$ (20) in order to complete the proof. When $\lambda = 1$, (20) is an immediate consequence of hypothesis (i), and so hypothesis (ii) is redundant in this case.

Suppose now that $\lambda > 1$ and that $2 > \rho \ge 1 + 1/\lambda$. In view of (19) the additional restriction of ρ can be imposed without loss in generality. Let

i.e. $\sum_{0}^{\infty} u_n$ is summable A to S.

Further, by result (VI), $|C_1X, 0|_{\lambda} \Rightarrow |C_{\rho}X, 0|_{\mu}$ ($\mu > \lambda$) since $\rho - 1 > 1/\lambda - 1/\mu$. Hence, by (i),

Now by a Tauberian theorem of Hardy and Littlewood [8] (see also Flett [3, Theorem 4]), a consequence of (21) and (22) is that, for every $\delta > 1/\mu - 1$, $\sum_{0}^{\infty} u_n$ is summable (C, δ) to s, i.e. that

$$C_{\delta}(w_n) \rightarrow s.$$
 (23)

But μ can be taken arbitrarily large and so (23) holds for every $\delta > -1$. Consequently

$$C_{1-\rho}(w_n) = C_{1-\rho}C_{\rho}X(s_n) \to s_1^r$$

and, since $C_{1-\rho}C_{\rho} \simeq C_1$, (20) follows.

In order to establish the next theorem we require

LEMMA 4. If Q is any matrix and either

i)
$$\lambda = \mu \ge 1, \gamma \ge 0, \alpha + 1 > \gamma > \delta, \beta \ge \alpha - \gamma + \delta, \beta > -1,$$

or

(1)
$$\lambda = \mu \ge 1, \gamma \ge 0, \alpha + 1 > \gamma > \delta, \beta \ge \alpha - \gamma + \delta, \beta > -1,$$

(ii) $\lambda > \mu \ge 1, \gamma \ge 0, \alpha + 1 > \gamma > \delta, \beta > \alpha - \gamma + \delta, \beta > -1,$

then $|C_{\alpha}Q, \gamma|_{\lambda} \Rightarrow |C_{\beta}Q, \delta|_{\mu}$.

The two results incorporated in this lemma are immediate consequences of theorems due to Flett [4, Theorems 3 and 4].

THEOREM 13. If X is a Hausdorff matrix, $\lambda \ge 1$, $\alpha > \gamma > 0$, $\beta \ge \alpha - \gamma - 1$, then

$$C_{\alpha}X, \gamma \mid_{\lambda} \Rightarrow [C_1, C_{\beta}X]_{\lambda}$$

Proof. Let $Y = C_1^{-1}C_{\alpha-\nu}X$, so that, by (11) $Y \simeq C_{\alpha-\nu-1}X$ and $C_{\nu+1}Y \simeq C_{\alpha}X$.

Then, by Lemma 4 and (19),

$$\mid C_{\alpha}X, \gamma \mid_{\lambda} \Rightarrow \mid C_{\alpha}X, 0 \mid_{1} \Rightarrow C_{\alpha}X \Rightarrow AC_{\rho}Y$$

for every $\rho > -1$. Further, by Lemma 4 (i),

$$C_{\alpha}X, \gamma \mid_{\lambda} \Rightarrow \mid C_{1}Y, 0 \mid_{\lambda}.$$

Hence, by Theorem 12 and result (II), $|C_{\alpha}X, \gamma|_{\lambda} \Rightarrow [C_1, Y]_{\lambda} \Rightarrow [C_1, C_{\beta}X]_{\lambda}$.

We conclude with some corollaries of Theorems 12 and 13, but first we prove the inclusion :

By Theorem 2,

$$[H, \alpha]_{\lambda} = [C_1, H_{\alpha-1}]_{\lambda} \Rightarrow [C_{\beta-\alpha+1}, H_{\alpha-1}]_1$$

since $\beta - \alpha + 1 > 1/\lambda$. Consequently, by Theorem 3 (ii) and (13),

$$[H, \alpha]_{\lambda} \Rightarrow C_{\beta-\alpha+1}H_{\alpha-1} \simeq H_{\beta},$$

and (24) is thus established. Alternatively, (24) can be deduced directly from the case $\mu = \infty$ of Theorem 10. By Theorem 3 (ii), the inclusion is also valid when $\lambda = 1, \beta \ge \alpha$.

Similarly we can prove the companion inclusion :

$$[C, \alpha]_{\lambda} \Rightarrow (C, \beta) \quad (\lambda > 1, \beta > \alpha - 1 + 1/\lambda, \alpha \ge 0).$$

This result is known (except possibly for the case $\alpha = 0$), the cases $\alpha = 1$, $\alpha > 1/\lambda$ and $\alpha > 0$ being due respectively to Kuttner [13], Hyslop [11] and Chow [2] (see also Flett [5]).

(VII). If
$$\lambda > 1$$
, $1 + \alpha > \rho$, and if $\sum_{0}^{\infty} a_n$ is (i) summable $|H, \alpha, 0|_{\lambda}$ and (ii) summable AH_{ρ} to s,

then the series is summable $[H, \alpha]_{\lambda}$ to s and consequently summable (H, β) to s for every $\beta > \alpha - 1 + 1/\lambda$.

Proof. Let δ be a positive number such that $2 > \delta \ge \rho + 1 - \alpha$. Then, by (13), $H_{\rho} \ge H_{\delta}H_{\alpha-1} \simeq C_{\delta}H_{\alpha-1}$, and so, by a result due essentially to Hausdorff ([9]; see also [1, Theorem 4]),

$$AH_{p} \Rightarrow AC_{\delta}H_{\alpha-1}$$

Since $H_{\alpha} = C_1 H_{\alpha-1}$, we obtain the required result by applying first Theorem 12 (with δ in place of ρ) and then inclusion (24).

In the same way we can prove

(VII)'. If $\lambda > 1$, $1 + \alpha > \rho \ge 0$, $\beta > \alpha - 1 + 1/\lambda$, and if $\sum_{0}^{\infty} a_n$ is (i) summable $|C, \alpha, 0|_{\lambda}$

and (ii) summable AC_{ρ} to s, then the series is summable (H, β) to s.

The case $\alpha = 0$, $\rho = 0$ of this result is effectively the theorem of Hardy and Littlewood used in the above proof of Theorem 12. The case $\lambda = 2$, $\rho = 0$, $\alpha > -\frac{1}{2}$, is due to Zygmund [16], and Flett [4] has established the case $\alpha > -1/\lambda$, $\rho = 0$.

(VIII). If $\lambda > 1$, $\gamma > 0$, $\beta > \alpha - 1 - \gamma + 1/\lambda$, then $| H, \alpha, \gamma |_{\lambda} \Rightarrow [H, \alpha - \gamma]_{\lambda} \Rightarrow (H, \beta).$ Proof. Let $X = C_{\rho}^{-1}H_{\alpha}$ where $\rho > \gamma$. Then $C_{\rho}X = H_{\alpha}$ and, by (13), $C_{\rho-\gamma-1}X \simeq H_{\alpha-\gamma-1}.$

Consequently, by Theorem 13 and results (II) and (24),

 $|H, \alpha, \gamma|_{\lambda} = |C_{\rho}X, \gamma|_{\lambda} \Rightarrow [C_{1}, C_{\rho-\gamma-1}X]_{\lambda} \simeq [H_{1}, H_{\alpha-\gamma-1}]_{\lambda} = [H, \alpha-\gamma]_{\lambda} \Rightarrow (H, \beta).$

A similar proof shows that

(VIII)'. If $\lambda > 1$, $\alpha > -1$, $\gamma > 0$, $\beta > \alpha - 1 - \gamma + 1/\lambda$, then

$$|C, \alpha, \gamma|_{\lambda} \Rightarrow (H, \beta).$$

The case $\alpha > \gamma - 1/\lambda$ of this result has been proved by Flett [4].

REFERENCES

1. D. Borwein, Theorems on some methods of summability, Quart. J. of Math. (2), 9 (1958), 310-316.

2. H. C. Chow, A further note on the summability of a power series on its circle of convergence, Ann. Acad. Sinica, 1 (1954), 559-567.

3. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, *Proc. London Math. Soc.* (3), 7 (1957), 113-141.

4. T. M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, *ibid.* (3), 8 (1958), 357–387.

5. T. M. Flett, Some remarks on strong summability, Quart. J. of Math. 10 (1959), 115-139.

M. Glatfeld, On strong Rieszian summability, Proc. Glasgow Math. Assoc. 3 (1957), 123-131.
 G. H. Hardy, Divergent series (Oxford, 1949).

8. G. H. Hardy and J. E. Littlewood, Some theorems concerning Dirichlet's series, Messenger of Math. 43 (1913-14), 134-147.

9. G. H. Hardy, J. E. Littlewood and G. Pólya, The maximum of a certain bilinear form, Proc. London Math. Soc. (2), 25 (1926), 265-282.

10. F. Hausdorff, Die Äquivalenz der Hölderschen und Cesaroschen Grenzwerte negativer Ordnung, Math. Z., 31 (1930), 186–196.

11. J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow Math. Assoc. 1 (1951-3), 16-20.

12. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Archiv. der Math. 2 (1949), 10-16.

13. B. Kuttner, Note on strong summability, J. London Math. Soc. 21 (1946), 118-122.

14. H. Morley, A theorem on Hausdorff transformations and its application to Cesaro and Hölder means, J. London Math. Soc. 25 (1950), 168-173.

15. W. W. Rogosinski, On Hausdorff methods of summability, Proc. Cambridge Phil. Soc. 38 (1942), 166-192.

16. A. Zygmund, Remarque sur la sommabilité des séries de fonctions orthogonales, Bull. de l'Acad. Pol. Serie A, (1926), 185-191.

ST. SALVATOR'S COLLEGE,

UNIVERSITY OF ST. ANDREWS