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BAER ENDOMORPHISM RINGS AND 
CLOSURE OPERATORS 

SOUMAYA M. KHURI 

A Baer ring is a ring in which every right (and left) annihilator ideal is 
generated by an idempotent . Generalizing quite natura l ly from the fact t h a t 
the endomorphism ring of a vector space is a Baer ring, Wolfson [5 ; 6] in
vest igated questions such as when the endomorphism ring of a free module is 
a Baer ring, and when the ring of continuous linear t ransformations on a pair 
of dual vector spaces is a Baer ring. A further generalization was made in [7], 
where the question of when the endomorphism ring of a torsion-free module 
over a semiprime left Goldie ring is a Baer ring was t reated. T h e results are 
as follows: 

If R V is a free module, then B = H o m i 2 ( F , V) is a Baer ring if and only if 
every closed submodule of F is a direct summand in V [6], Theorem 9], where 
closure is defined in terms of the dual module V* = H o m i 2 ( F , R); and if, in 
addit ion, V has a finite basis and R is a commuta t ive integral domain, then 
the closed submodules of V are jus t the pure ones [6, Theorems 9 and 13]. 

If V and W are a pair of dual vector spaces over a division ring and B is 
the ring of all "con t inuous" linear t ransformations on (V, W), then the 
question of whether B is Baer reduces to the question of the existence of a 
certain type of complement for each closed subspace of V [5]. 

If F is a finite-dimensional (in the sense of Goldie) torsion-less module over 
a semiprime left Goldie ring Ry then B = H o m B ( F , V) is a Baer ring if and 
only if every "annihilator-closed" submodule of F is a direct summand in V, 
where the annihilator-closure operator is the one obtained from the Galois 
connection between V and B which is given by Baer 's " three-cornered Galois 
T h e o r y " ; and if the ring R has a (semisimple) two-sided quot ient ring, then 
the annihilator-closed submodules of V are jus t the essentially-closed ones 
([7]; this also follows from Corollary 3.7). 

In the above examples, the question of whether B is Baer depends on the 
behavior of a certain class of closed submodules of V. Wi th this in mind, it is 
natural to ask the following two questions: first, given RV and a subring B of 
H o m f l ( F , V), is it possible to distinguish a class of submodules of V which 
will determine whether B is Baer? An answer to this question is given in 
Section 2, in terms of a collection, ^B, of submodules which depends on B; 
(in case V is free and B = H o m f l ( F , V), the elements of ^B are precisely 
the closed submodules of F when closure is defined in terms of V*). Secondly, 
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given R V, a class ^ of closed submodules of Vf and a subring B of Hom# ( V, V) 
which is ''continuous with respect to 97" (in the sense that the image by b G B 
of the closure of a submodule of V is contained in the closure of its image), 
when will *$ determine whether B is Baer? In Proposition 2.4, necessary and 
sufficient conditions are given in order that a class ^f of closed submodules of V 
should be equal to fâB. For the important case where *$ — *€e, the collection 
of essentially closed submodules of F, we show that ^\ ~ ^ B if and only if 
HomB(F, U) ^ 0 for each non-zero U £ &e and rB(£7) ^ 0 for each F ^ 
£/ Ç 9% (where rfl(f/) = {& G 5 : £76 = 0}) (Corollary 3.6), or, if and only if 
every non-zero left (right) ideal of HomR(E(V), E(V)) has nonzero inter
section with B (where E(V) is the injective hull of V) (Corollary 3.7). 

2. General closure operators. Throughout this paper, R denotes an 
associative ring with 1, B F a left jR-module and B a subring of HomB(F, V) 
which contains 1. The action of elements of B on V will be written on the right. 
The right (left) annihilator in B of a subset, H, of B will be denoted 
by 3%{H) («if (if)), while r and / will be used for annihilators in V of subsets of 
B, or in B of subsets of V, e.g. 

lv(H) = {v £ H :vh = 0,\/h e H}, H QB and 

rB(U) = {b £ B :ub = OVu £ U},UQV. 

Also, let IB(U) = {b £ B : Vb<^ U} and UH = {uh:u £ U and h 6 H}. 
The following lemma is straightforward [6, Lemma 1]. 

LEMMA 2.1. If U Q V and J C B, then 
(i) 7/2,(17) C U. 

(ii) UQlvrB(U). 
(iii) IB(U)rB(U) = 0. 
( iv ) I B / F ( J ) = JS?(7). 
(v) r f l (K/ ) = ^ ( 7 ) . 

Let L be a complete lattice. A closure operator on L is a mapping cp : L —> L, 
written < (̂a) = ac, such that: 

(cl) a ^ b implies ac S bc; 
(c2) a ^ ac; 
(c3) (ac)c = ac. 

An element a is closed under <p if a = ac. In addition, we will assume that the 
closure operators considered here satisfy 

(c4) The zero element is closed: 0C = 0. 

Let V be another complete lattice. A Galois connection between L and L' is 
a pair of mappings a: L —> L' and r: V —> L satisfying: 
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(1) %i ̂  x2 implies o-(xi) ^ a(x2) for Xi, x2 G L. 
(2) yi ^ y2 implies 7(3/1) ^ r(y2) for yh y2 G Z/. 
(3) x ^ re(x) and y ^ or (3/) for x G L, 3; G L'. 

Given a Galois connection, it can be shown that (770-(x) = o-(x) and 70-7(3/) = 
r(y) for x Ç L, 3/ Ç Lr, so that the maps 70- and 0-7 are closure operators on L 
and Lf, respectively. The closed elements in L are those which are of the form 
r(y) for some y £ L'. a and 7 induce an anti-isomorphism between the cor
responding lattices of closed elements [3, pp. 76-78]. 

It is easily seen that «if and & form a Galois connection between the lattice 
L' of right ideals of B and the lattice L" of left ideals of B, and that the map
pings rB and lv form a Galois connection between the lattice L of submodules 
of R F and Z/, giving the closure operators rB/F and /FrB on 1/ and L, respectively. 
Let ^a = { U C 17 : [/ = / ^ B ( Z 0 } be the collection of closed submodules of V 
with respect to the closure operator lvrB, and set &B = {£/ Ç F : [/ = 
lvS% (H), for H ÇL B}. The members of ^a will be referred to as the ''annihilator-
closed" submodules of V. Note that &B C %?a, i.e. every element of ^B is 
annihilator-closed. For the closure operator rBlv, the following lemma holds: 

LEMMA 2.2. If B contains an idempotent with null-space lv&(H), where 
H ÇZ B, then rBlvS% (H) = S? (H) (i.e. S? (H) is closed with respect to the closure 
operator rBlv). 

Proof. Let U = lv& (H) = lv(e), where e = e2 G B. Since 1 G B, 1 - e G B, 
and since U = lv(e) = 7(1 - e), 1 - e G IB(U) ; therefore, i7 = F( l - e) C 
F/B ( f / ) , hence, by Lemma 2.1 (i), 1/= F/ 5 (£ / ) . Then, 

rBlv^(H) = rB(U) = rB(VIB(U)) = &(IB(U)) (by Lemma 2.1 (v)) 
= Û$(IBlv&(H)) = S%<£ëiï(R) (by Lemma 2.1 (iv)) = &(H). 

We can now show that the collection 9%B is the one that determines whether 
or not B is Baer. 

PROPOSITION 2.3. B is a Baer ring if and only if, for each U G *$B, B contains 
an idempotent with null-space U. 

Proof. If B is Baer, then, given U = lvS%(H) G ^ B , we have @ {H) = eB, 
where e = e2 G £ and hence U = lv3& (H) = lv(e). 

Conversely, assume that, for each &(H), B contains an idempotent, e, with 
null-space lvâ?(H). Then U = lvS% (H) = lv(e) is a direct summand in 
V : V = Ve® lv(e) = Ve 0 F( l - e). Clearly, Ue = [lvât (H)]e = [lv(e)]e 
= 0 implies e G rBlv0ê{H) = S?(H), the last equality by Lemma 2.2, so that 
eB Q&(H). On the other hand, if b G &(H), then [lv& (H)]b - 0 or 
[/F(g)]& = 0, so that, for any v G F, we have vb = [ve -\- v(l — e)]b = ve b. 
This last implies b = eb, and so 0? (H) C eB ; hence & (H) = <LB and £ is Baer. 

Remarks. 1) If £ = H om#(F, F), then .B contains an idempotent with 
null-space U if and only if U is a direct summand in F, so that in this case, 
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B is Baer if and only if every U G ^ B is a direct summand in V. In particular, 
Theorem 6 of [6], namely tha t if RV is completely reducible then H o m f i ( F , V) 
is a Baer ring, is an immediate corollary of Proposition 2.3. 

2) If RV is a free module and B = UomR(V, V), let F* = H o m * ( F , i ? ) and 
write (Vyf) for the effect of/ G F* on z; Ç F. Then [ / Ç F i s said to be closed 
if U = ±U±, where £/-*-={/G F* : (E/ , / ) = O j a n d ^ I F = {v £ V : (v, W) = 
0}, for IF Ç F*. By Theorem 8 of [6], U is closed if and only if U = lvrB(U) 
and by Theorem 7 and Lemma 2 (i) of [6], rB(U) = &[IB(U)], i.e. in this 
case, £7 is closed if and only if U G &B. 

In any case, Proposition 2.3 says tha t whether B is Baer or not depends on 
the collection &B. Since ^B Ç ^ a , it is natural to ask here, when does the 
"Baer-ness" of B depend on ^a, i.e. when is ^ B = *$a. More generally, given 
a closure operator <t>(U) = Uc and letting (éP = {UQV:U = Uc], when is 
(ifB = &? The following proposition answers these questions for a general 
closure operator </>. First, we need a definition. 

Definition. U V,B and ^ are as defined above, then B is said to be continuous 
with respect to *$ if 

Xcb C (Xb)c for all b G 5 and I a . 

PROPOSITION 2.4. L ^ flF, -5, ^fB and & be as defined above. Then 
a) cia = tfBifandonlyifrB[VIB(U)] = rB(U) for each U G ^a. 
b) If B is continuous with respect to *% then ^B Q ^a Ç ^ . Also, in this case 

^a = ^ifandonlyiflvrB(X) = Xefor allX G L. 

Proof, a) Assume ^a = <éB and let U G ^ « , then U = lvg%{H) for some 
i J C 5 , and so IB(U) = IBlv@(H) = i f ^ ( # ) , by Lemma 2.1 (iv). There
fore, ^ [ / B ( £ / ) ] = 0?^3%(H) = âS(H), and [/ = lv&(H) = / ^ [ ^ ( c / ) ] , 
which implies 

' * (£ / ) = ^ / ^ [ ^ ( c / ) ] = ^ W F / B ( c / ) ] , by Lemma 2.1 (v) 

= rB[VIB(U)]. 

Conversely, assume rB[VIB(U)] = rB(U) for each U G ^ a » a n d let U G ^ « . 
Then U = lvrB(U) = lvrB[VIB(U)] = lv@[IB(U)} G ^B by Lemma 2.1 (v) . 

b) <€B C ^ a follows from Lemma 2.1 (v). To show ^a C ^ , let î / G ^ „ , 
so tha t £7 = lvrB(U) = /^ (7) , with / = rB(c7) Ç if. If x G c7c, then, by 
continuity, xJ Q UCJ Q (UJ)C = 0; therefore, x G lv(J) = U and c/c = £/, 
i.e. U = Uc G # \ 

Now assume lvrB(X) = Xe for all X G L and let f/ G ^ , so tha t Î/ = Uc. 
Then / F r 5 (c7) = [/ and U G ^ « . This implies <*f Ç <*fa so t ha t ^ = Ç?a. 
Conversely, assume ^ = ^ G . Note first t ha t continuity oî B with respect to ^f 
gives r s (X) = rfî (X e) for any X £ L. Since X Ç Xe, we always have rB (Xe) Ç 
r f î ( X ) ; on the other hand, if b G rB(X), then Xc& Ç (Xb)c = 0, hence 6 G 
r f l (X c ) , proving equality. Now if X G L, then X e G ^ Ç ^ „ , so t ha t Xe = 
lvrB{Xc) = / F r * ( X ) . 
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Remark. In both the free module case of [6] and the continuous ring case of 
[5], ^a = &B follows from Proposition 2.4 a) because VIB(U) = U for all 
submodules U ([6, Theorem 7] and [5, Lemma 1(5)]) . In order to apply 
Proposition 2.4 b) to these two cases we show first t ha t B = H o m ^ F , V) is 
continuous with respect to & = {U £ L : U = ±U±} i.e. t h a t ^X^b C 
±(Xb)±, for each X G L and b G B. Let y G ±X±, so t ha t (y, X-1) = 0 and let 
g G (X&)-1- so tha t (X6, g) = 0. Then 0 = (Xb, g) = (X, b*g) implies b*g G X-1, 
which implies 0 = (y, b*g) = (yb, g), and this last implies (yb, (Xb)1) = 0 
since g was arbi t rary in (Xb)-1-; i.e. 3/6 G ±(Xb)±

} completing the proof. Now, 
recalling from the proof of Proposition 2.4 b) t h a t cont inui ty of B with respect 
to ^ implies rB(X) = TB^X1-), and using the fact t ha t lvrB(U) = U for all 
U G ^ ([6, Theorem 8] and [5, Lemma 3(1)] ) , we see t ha t lvrB(X) = 
lyfB^X1-) = ±X±, for all X e L. Hence, ^a = <% follows from Proposition 
2.4 b ) . 

3. Essent ia l c losure . A module V is an essential extension of a submodule U 
—wri t ten U C ' V— if every nonzero submodule of V has nonzero intersection 
with U. One then says t ha t U is essential in F. A submodule U of a module F 
is said to be essentially closed in F if U has no proper essential extensions in V. 
For any v G F, set [£/ : z>] = j r Ç i ? : n i ^ t/} ; it is known tha t , if U C ' F , 
then, if 0 ^ ^ G F, [C/ : w] C ' ^ - The singular submodule ZR(V) of F is defined 
to be {v G F : [0 : z/] C r -R}. F is said to be non-singular if ZR(V) = 0. If 
U C ' F, then F is nonsingular if and only if [/ is nonsingular. A ring will be 
called (left) nonsingular if its left regular representat ion is nonsingular. For 
details on essential extensions and nonsingular modules see [1] or [2]. 

Let RV be a. nonsingular module and let RV be an injective hull of RV. If U 
is any submodule of F , denote by U the unique (see [1, p. 61]) injective hull of 
U contained in F. Then the essential closure of U in F is given by V P» Û. 
For an injective nonsingular module, the essentially closed submodules are 
simply the direct summands . There is a latt ice isomorphism between the lattice 
of essentially closed submodules of V and the latt ice of essentially closed sub-
modules of V given by U —> Û with inverse U —» Û Pi F (see [1, p. 61], or 
[3, p. 250]). 

The following known lemma will be used frequently in the sequel. 

LEMMA 3.1. If RV is nonsingular and U, Y are submodules of V such that 
U C Y,thenrB(U) = rB(Y). 

Proof. rB(Y) C rB(U) since U C Y. Let b G rB(U), so t ha t Ub = 0. For 
any y G F, [U : y] C ' R and [U : y]yb = 0. Since RV is nonsingular, this 
implies yb = 0 and hence b G rB(Y). This completes the proof. 

We prove now tha t , for a nonsingular module RV, any subring B of 
H o m B ( F , F) is continuous with respect to the collection of essentially closed 
submodules. Denote by Ue the essential closure of U, i.e. the largest essential 
extension of U in F , or U P V. 
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LEMMA 3.2. Let RV be a nonsingular module and ^ e = { U C V : U = £/6}. 

77&ew awy subring, B, of UomR(V, V) is continuous with respect to &e. 

Proof. Let x G /7e& for some U G L and & G 5 , so tha t x = ;y&, with 3; G [/e. 
In order to show x G (Ub)e, we show [76 C ' f/6 + ^ x . Let 0 9^ z = ub + 
rx G CT + i ta , with u ^ U and r £ R, and show 7?z C\ Ub ?* 0. If rx = 0, 
there is nothing to prove, so assume rx j* 0, i.e. ryb = rx 9e 0. Since r;y G £7e, 
[£/ : ry] C ' ^ , and since [ [ / : ry] C [Ub : r;yfr] ( r ^^ Ç [/=> r ^ f r G t/6), also 
[Ub : r̂ &J C ' ^ . Since V is non-singular, [f/6 : ryb]z 9^ 0, but [Ub : ryôjz = 
[£/6 : rx]z C 7?z P\ f/6, completing the proof. 

LEMMA 3.3. If RV is non-singular, then D = H o m f l ( F , F) is regular, left 
self-infective, any subring B of H o m # ( F , V) can be embedded in D and, for each 
U G <Jf„ 

rB(U) = rD(Û) H B and IB(U) = ID(Û) C\ B. 

Proof. Since F is injective, the Jacobson radical, / , of D = H o m B ( F , V) 
consists of those endomorphisms whose kernels are essential submodules of F 
[3, Proposition X I V 1.1], and D/J is regular and left self-injective [3, Theorem 
X I V 1.2]. Here, 7 = 0 since g G / implies lv(g) C ' F, so tha t by Lemma 3.1, 
since F i s nonsingular, rBlv(g) = 0, which last implies g = 0 [since g G rBlv(g)]. 
Hence D is regular and left self-injective. Given b G B, b has an extension 
b G D, since F i s injective. If b\ is another extension of b, then bx — b G rD(V), 
which, by Lemma 3.1, implies b\ — b G rD{V) = 0. Hence each b £ B has a 
unique extension in D and henceforth we can identify the elements of B with 
their extensions and consider B CZ D. 

Now, with the help of Lemma 3.1, it is clear tha t b G ?B(U) if and only if 
b G rD(Û) H B. For IB(U) = ID(U) C\ B, one uses the fact tha t U is the 
injective hull of U so tha t if b G B maps F into U, then its extension 5 maps F 
into £/; in other words, the unique extension b is the one making the following 
diagram commute : 

0 >v—l-—>y 
b\ 

/ 
T ' 

" A 
tu 

I * 
U 

where iv and iu are the natural injections. This gives IB(U) Q ID(U) Pi B; 
but b £ ID(Û) (^ B ==ï Vb Ç1 V r\ Û == U, giving the reverse inclusion. 

T H E O R E M 3.4. Let RVbe a non-singular module, ^f e the collection of essentially 
closed submodules of V and B a subring of H o m i 2 ( F , V). Then the following are 
equivalent: 
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(i) u = Ue^rB(U) =@[IB(U)]. 

(ii) rB[VIB(U)} = rB(U) for every U G Ve. 
(iii) IB(U) 7*0 for every 0 9* U G tf e. 
(iv) Every nonzero left ideal of H o m i 2 ( F , F) Aas nonzero intersection with B. 

Proof, (i) <=» ( i i ) : L e t £ / = E/«; by Lemma 2.1 (v) , r f l [7 / f l (C/) ] = @[IB(U)], 

hence, ^ ( £ 7 ) = ^ [ / ^ ( C / ) ] <=»rB(t/) = r B [ F / s ( £ / ) ] . 
(ii)=> (iii): Let 0 5* £7 G tfe.UIB(U) = 0, then F / s ( £ 7 ) = 0<mdrB(U) = 

rB[VIB(U)] = 5 . Bu t then £7 C / F r 5 ( £ / ) = lv(B) = 0, contradict ing U ^ 0. 
(iii) => (ii): First note t ha t (iii) <=> F / 5 ( [ 7 ) C £/, for all U G ^ \ . For, 

given U t tf^letO 7± u £ U and let F = (Ru)e. Since £7 is closed, Y Q U 
and therefore J * ( F ) C 7B(£7). Since 0 ^ F G ^ e , by (iii), there is 0 ^ c G 
7 B ( F ) . Then Fc Ç F a n d , since Ru C Y, there is 0 ^ x G Fc H i t a . There
fore, 0 ^ x 6 VIB(U) C\ Ru, proving t ha t VIB(U) C '£/ . Clearly, rB ( [7) C 
rB[VIB(U)], since VIB(U) Ç £7. Let b G r B [ F i * ( £ / ) ] ; then, for any 0 ?* u £ U, 
[VIB(U) \ u\ Cf R and [ F i ^ L O : w]^6 = 0. Since V is non-singular, this 
implies ub = 0. Therefore Ub = 0 and 6 G rB(U), proving (ii). 

(iii) =» (iv): To prove (iv) it is sufficient to show tha t B intersects every 
nonzero principal left ideal of D = H o m / 2 ( F , V). By Lemma 3.3, D is regular, 
hence any principal ideal, K, of D is generated by an idempotent (see e.g. [3, 
Proposition 1-12.1]), say K = De, where e = e2 G D. Consider the submodule 
Ve; clearly, e G ID(Ve) and therefore De Ç ID(Ve). On the other hand, 
d G IoiVe) => F<i Ç Fe => for each £ G V, vd = ye for some ^ G F, => £de = 
ye = vd =^> de = d, or d £ De. Therefore, De = ID(Ve). 

Since Fe is a direct summand in F, and therefore closed, we have, by the 
lattice isomorphism between the closed submodules of V and those of F , t h a t 
Ve = 0 where £7 = Ve H F is closed in F. By (iii), J* ( £7) ^ 0 since X ^ 0 =» 
£ 7 ^ 0 , and by Lemma 3.3, ID(Û) H B = IB(U), i.e. K r\ B = IB(U) ^ 0, 
proving (iv). 

(iv) => (iii): If every nonzero left ideal of D intersects B, then, in part icular , 
for any nonzero closed U, IB(U) = ID(U) Pi B j * 0. 

T H E O R E M 3.5. Let R V, & eand B be as in the preceding theorem. Then the follow
ing are equivalent: 

(i) U = Ue=ï U = lv(J), for some subset J of B. 
(ii) Xe = lvrB(X), for every submodule X G L. 

(iii) rB(U) ^ 0 for every V j* U G # V 
(iv) Every nonzero right ideal of H o m ^ ( F , F) feas nonzero intersection with B. 

Proof, (i) => (ii): L e t X G £ ; b y (i), X e = lv(J),JQ B;then 

lvrB(X) = lvrB(Xe), by Lemma 3.1, since X C ' Xe, 

= lvrBly(J) = lv(J) = Z e , 
proving (ii). 

(ii) => (i) is obvious. 
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( i i )=>( i i i ) : Let U G 9%. Then, by (ii), U= Ue = lvrB(U), so t ha t 
rB(U) = 0=> U = lv(fl) = V. 

(iii) => (ii): From the proof of Proposition 2.4b), we know tha t since, by 
Lemma 3.2, B is continuous with respect to &ey every lv(J), for J Q B, is 
closed. Hence, X C lvrB(X) =» X e C lvrB(X), so to prove (ii), it is sufficient 
to show tha t X C ' lvrB(X). 

Recall tha t , if Uisa, submodule of W, then a relative complement for U'mW 
is any submodule, F, of TV, which is maximal with respect to the property 
Ur\ Y•= 0, and in this case, U ® Y C W (see e.g. [2, Proposition I. 1.3]). 
I t is known tha t a submodule, U, of F is essentially closed in V if and only if 
U is a relative complement for some F Ç F [2, Proposition I. 1.4]. 

Supposing X is not essential in lvrB(X), let F be a relative complement for X 
in lvrB(X), so that I © F C ' lvrB(X) ; and let P be a relative complement for 
lvrB(X) in F, so tha t P © lvrB(X) C ' F. Consider / F r B ( P 0 X ) : we have 
P Ç P 0 X C / F r 5 ( P e l ) , a n d J Ç P 0 l = > / 7 r f l ( I ) Ç V s C ? © X). 
Therefore, P © / F r 5 ( X ) C / F r B ( P 0 X ) , and since P © J F r * P 0 C ' F, also 
/ y ^ ( P © X ) C V. But then, by Lemma 3.1, rBlvrB(P © X ) = rB(V) - 0, 
o r r 5 ( P © I ) = 0 and therefore r B ( ( P © X)e) = 0, again by Lemma 3.1. But , 
by (iii), this last implies (P © X)e = Vor P © X C ' F. Hence F n ( ? 0 l ) 
= 0 implies F = 0 and Z C / ^ 5 ( X ) . 

(iii) => (iv): As in the proof of Theorem 3.4, D = H o m f l ( F , V) is regular, 
left self-injective, hence also Baer. If K is a nonzero principal right ideal of D, 
then, since D is regular, i£ is generated by an idempotent , say e, i.e. X = eZ). 
Consider ly{e) : this is a direct summand, hence closed, hence, as in the previous 
theorem, ly(e) = U, where U = ly(e) P\ F i s closed in F. Clearly, e £ rDly(e), 
so e£> C rDly(e). And, if d £ rDly(e), then, for any # G F, vd = [ve -\- v(l — e)]d 
= tied, since #(1 — e) (z ly(e) ;so d = ed £ eD and eD = rDly(e), or K = rD{Û). 
Now X = eD ^ 0 implies ly(e) ^ F and therefore U ^ F, so 0 ^ r f l(E/) = 
^D(U) H P , i.e. i£ intersects P and hence so does every right ideal in D. 

(iv) => (iii) is obvious from rD(U) C\ B = rB(U), since U ^ F and [/ £ 
^ e = > [/ ^ p=>fz>(i7) ^ 0. 

Remark. If we take ^ F = #P , where P is a left non-singular ring, then 
Theorem 3.5 becomes Utumi ' s theorem [4, Theorem 2.2], giving necessary and 
sufficient conditions for the lattice of closed left ideals of R to be equal to the 
lattice of annihilator left ideals of R (see also [3, Proposition XI I—4.7] ) . Here, 
since R is non-singular, H o m ^ ( P , R) ~ Qmax, the maximal left quotient ring 
of P . 

Now, noting tha t condition (ii) of Theorem 3.4 is a) of Proposition 2.4, and 
(ii) of Theorem 3.5 is b) of Proposition 2.4, we have the following. 

If RV, &e and B are as in the preceding theorems then: 

COROLLARY 3.6. &e = ^B ifand only if 
a) IB(U) 9* 0 for every 0 ?* U G c€e, and 
b) rB(U) * 0 for every V ^ U (E Ve. 
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COROLLARY 3.7. ^e = %B if and only if 
a) Every nonzero left ideal of Hom i2(F, V) has nonzero intersection with B, 

and 
b) Every nonzero right ideal of H o m ^ F , V) has nonzero intersection with B. 

Remark. If R V is a finite-dimensional (in the sense of Goldie), torsionless 
module over a ring R which possesses a semisimple two-sided quotient ring S, 
and B = Hom f i(F, F), then H o m ^ F , V) is a semisimple two-sided quotient 
ring of B ([8], Theorem 2.3 and 3.3 and their proofs), hence every nonzero right 
(respectively left) ideal of Hom7e(F, V) has nonzero intersection with B, i.e. a) 
and b) of Corollary 3.7 are satisfied, and therefore B is Baer if and only if every 
essentially-closed submodule of F is a direct summand in V. 
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