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LOGICS FROM ULTRAFILTERS

DANIELE MUNDICI

Department of Mathematics and Computer Science “Ulisse Dini,”
University of Florence

Abstract. Ultrafilters play a significant role in model theory to characterize logics having
various compactness and interpolation properties. They also provide a general method to
construct extensions of first-order logic having these properties. A main result of this paper
is that every class Ω of uniform ultrafilters generates a Δ-closed logic LΩ. LΩ is �-relatively
compact iff some D ∈ Ω fails to be �1-complete iff LΩ does not contain the quantifier “there
are uncountably many.” If Ω is a set, or if it contains a countably incomplete ultrafilter, then
LΩ is not generated by Mostowski cardinality quantifiers. Assuming ¬0� or ¬L�, if D ∈ Ω is a
uniform ultrafilter over a regular cardinal �, then every family Ψ of formulas in LΩ with |Φ| ≤ �
satisfies the compactness theorem. In particular, if Ω is a proper class of uniform ultrafilters
over regular cardinals, LΩ is compact.

§1. Introduction. Lindström’s 1969 theorem [14] (reprinted in [2, pp. 237–246];
also see [9, theorem 1.1.4]) characterizes first-order logic L�� as the maximal compact
logic satisfying the downward Löwenheim–Skolem theorem. After this fundamental
result a variety of methods were developed for constructing extensions of L�� . The
six Parts A–F of the book [1] may give an idea of the range of techniques available
for such extensions, and their applications to algebra, probability, topology, set theory
and game theory. In [1] one can also find a comprehensive study of extensions of
L�� satisfying many forms of interpolation, compactness, and Löwenheim–Skolem
properties.

Ultrafilters and ultraproducts have a pervasive role in the literature, both for the
characterization of all these properties in extensions of L�� and for the construction
of such extensions. For instance, in [15], [16, pp. 230–234] and [17, sec. 3] various
compactness properties of a logicL are characterized in terms of ultrafilters. As another
example, in [20] one can find a general method to construct logics on classes of
models satisfying a maximality condition with respect to a suitable variant of the Łoś
ultraproduct theorem. Likewise, the paper [21] is devoted to the construction of logics
via the property of being preserved from the models to their ultraproduct. Specific
examples are given involving cardinality quantifiers. From a fragment of second-order
logic having this preservation property, in [21, p. 636] the author constructs a compact
Δ-closed logic L (in the sense of [7, p. 18]).
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2 DANIELE MUNDICI

Pursuing this line of research, in the present paper every (nonempty) class Ω of
uniform ultrafilters is shown to generate a Δ-closed logic LΩ. Depending on Ω, LΩ

may satisfy various forms of compactness.
All logics constructed in the present paper naturally arise from classes of ultrafilters

and automatically satisfy the basic regularity/closure properties considered in abstract
model theory [7, definitions 1.2.1–1.2.3].

1.1. Main results. With Str(�) denoting the class of all structures of type �, and
	 ⊆ �, let |̀ �	 : Str(�) → Str(	) denote the reduct operation. For any class Ω of uniform
ultrafilters, let L(�) = L(�,Ω) be the family of subclasses 
 ⊆ Str(�) such that there is
a finite type 	 ⊆ � and a class � ⊆ Str(	) having the following property:

For every D ∈ Ω, both � and its complement Str(	) \ � are closed
under isomorphisms and ultraproducts modulo D, and 
 is the class
of expansions to � of all structures in �.

In Sections 3 and 4 the following results are proved:
(i) There is a unique regular logic L = LΩ whose elementary classes of any type

� coincide with the classes in L(�). L is Δ-closed. If Ω contains a κ-descendingly
incomplete ultrafilter,1 L is κ-relatively compact.2 L is compact only if Ω is a proper
class. See Theorem 3.1(i).

(ii) (Assuming ¬0� or ¬L�.3) Let D ∈ Ω be an ultrafilter over a regular cardinal �.
Then for a family Ψ of L-sentences with |Ψ| ≤ � to have a model it is sufficient that
every finite subfamily of Ψ has a model. In particular, if Ω is a proper class and each
D ∈ Ω is an ultrafilter over a regular cardinal, then L is compact. See Theorem 3.1(ii).

(iii) If Ω is a set or Ω contains a countably incomplete ultrafilter, then L is not
generated by Mostowski cardinality quantifiers. See Theorem 4.1.

(iv) Every ultrafilter D ∈ Ω is �1-complete iff L contains the quantifier “there are
infinitely many” iff L contains the quantifier “there are uncountably many” iff L
contains the well-ordering quantifier iff L is not �-relatively compact. See Theorem
4.3 and Corollary 4.4.

(v) If in (ii) we assume, instead of ¬L�, the existence of a proper class of measurable
cardinals, then (ii) no longer holds. See Corollary 4.5.

Using Lindström’s characterization theorem, in Theorem 4.7 and Corollary 4.8,
certain specific assumptions on the map Ω �→ L are shown to be related to the Chang–
Keisler conjecture [4, p. 599, conjecture 18].

Throughout this paper we will work with classes, typically with subclasses of Str(�),
and with families or collections of classes, such as the family of all elementary classes
of type � in a logic L. All these mathematical entities can be handled by adding an
extra stage of flexibility to the Gödel–Bernays–von Neumann set theory. For the sake
of definiteness, throughout this paper we will adopt the Isbell–Mac Lane–Feferman
approach, where our families are called “conglomerates.” See [10, pp. 329–331] for
details. Our syntax-free approach to abstract logics via their elementary classes agrees
with Lindström’s approach in his characterization theorem.

1 See [13].
2 In the sense of [16, p. 230].
3 For ¬0� see [11, p. 312]. ¬L� is shorthand for “there is no inner model with a measurable

cardinal.” See [6, p. 56].
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LOGICS FROM ULTRAFILTERS 3

We will refrain from introducing new logics. By letting Ω range over arbitrary classes
of uniform ultrafilters, our readers will be able to manufacture the logics that best suit
their needs.

Standard background references for model theory, abstract model theory and set
theory are, respectively, given by [1, 4, 11], where the reader can find the definitions of
all unexplained notions occurring in this paper.

§2. Basic notation and terminology. Following common usage we let α, , � denote
ordinals and let κ, �, �, � denote cardinals. V is the class of all sets. A symbol is a pair
R = 〈α, a〉 where α is an ordinal and a is an integer: the absolute value |a| is the arity
(= number of places) of R. R is said to be a function, constant, or relation symbol
according as a < 0, a = 0, or a > 0.

A type (“language” in [4, p. 18], “vocabulary” in [7, p. 26]) is a set of symbols.
Following [4], in this paper we will only consider one-sorted types. We let 	, � denote
types. We say that � is relational if it does not contain function or constant symbols.
The empty type is known as the pure identity language. Following [4, p. 22], identity is
understood as a logical symbol, denoted =.4

A structure (“model” in [4, p. 20]) of type � is a function

A : {∅} ∪ � → V,

where A = A(∅) is a nonempty set, called the universe of A, and for each constant
symbol c ∈ �, A(c) is an element of A, and for each |a|-ary relation (resp. function)
symbol R ∈ �, A(R) is an |a|-ary relation (resp. function) over A. We write cA and
RA instead of A(c) and A(R). Str(�) denotes the class of all structures of type �. R
and S will usually denote unary relation symbols, E a binary relation symbol, and
c a constant symbol. Further,M,N,A,B are the universes of M,N,A,B. Structures
will be displayed as in [4, p. 20]: thus, e.g., by writing A = 〈A,E, c, Sα〉α<κ we mean
that A is a structure of type {E, c, Sα}α<κ and by a traditional abuse of notation,
E = EA, c = cA, Sα = SA

α for each α < κ.
If M ∈ Str(�) and 	 ⊆ � then the reduct of M to 	 (in symbols, M |̀	, or M |̀ �	 for

greater definiteness) is the structure of type 	 obtained by restricting to 	 ∪ {∅} the
domain � ∪ {∅} of M.We say that B ∈ Str(�) is an expansion (to �) of A ∈ Str(	) if
� ⊇ 	 and A = B |̀	. If 	 is a relational type, M ∈ Str(	) andM ′ is a nonempty subset
of M, then

MIM ′ is the substructure (“submodel” in [4, p.21]) of M with universeM ′. (1)

For Θ a set of first-order sentences, we let A |= Θ mean that A satisfies every � ∈ Θ.
For D an ultrafilter over an infinite set I, we let ΠDA denote the ultrapower ofA modulo
D. As in [4, p. 215], for any map g : I → Awe let gD ∈ ΠDA denote the =D-equivalence
class of g. Given a family {Ai}i∈I of structures of type �, we let ΠD〈Ai | i ∈ I 〉 denote
their ultraproduct modulo D. A class 
 ⊆ Str(�) is closed under ultraproducts modulo D
if {Ai}i∈I ⊆ 
 implies ΠD〈Ai | i ∈ I 〉 ∈ 
.We say that
 is closed under isomorphisms
if B ∼= A ∈ 
 implies B ∈ 
.

4 The identity symbol is denoted ≡ in [4].
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4 DANIELE MUNDICI

2.1. Preparatory results. The next four lemmas are routine exercises for readers
familiar with Łoś ultraproduct theorem and its consequences ([12, theorem 3.1], [4,
sec. 4]). As a warm up we only prove the first one.

Lemma 2.1. Let D be a κ-d. i. ultrafilter over a set I. Let A = 〈A,E, Sα〉α<κ be a
structure of type � = {E,Sα}α<κ, where E is an equivalence relation having exactly κ
distinct equivalence classes, denoted {A |  < κ}, and Sα =

⋃
<α A for each α < κ

(with S0 = ∅).
Then for every expansionM ofA to any type �+ ⊇ � and every constant symbol c /∈ �+,

the ultrapower ΠDM has an expansion B of type �+ ∪ {c} such that

B |= {¬Sαc | α < κ}.

Proof. We first consider the particular case �+ = �, i.e., M = A. Let

X0 ⊇ X1 ⊇ ··· ⊇ Xα ⊇ ··· (α < κ)

be a sequence of elements of D with empty intersection. Let the function t : I → κ
map each i ∈ I to

t(i) = least α < κ such that i /∈ Xα.

For each α < κ pick an element xα ∈ Aα. For each i ∈ I let Ai be the expansion of A
to the type � ∪ {c} such that cAi = xt(i). Let B = ΠD〈Ai | i ∈ I 〉 ∈ Str(� ∪ {c}). By
Łoś theorem,

{i ∈ I | Ai |= ¬Sαc} = {i ∈ I | xt(i) /∈ Sα} = {i ∈ I | t(i) ≥ α} ⊇ Xα ∈ D.

Thus B |= {¬Sαc | α < κ}. By the expansion theorem ([4, theorem 4.1.8], [12,
proposition 4.1]),

B |̀ � = ΠD〈Ai |̀ � | i ∈ I 〉 = ΠDA,

which shows that B is the desired expansion of ΠDM (= ΠDA).
In the general case when M is an expansion of A in a type �+ strictly containing �,

again from the expansion theorem it follows that

(ΠDM) |̀ � = ΠD(M |̀ �) = ΠDA.

Arguing as in case �+ = �, it is not hard to see that the universe of the structure
(ΠDM) |̀ � has an element c with

〈(ΠDM) |̀ �, c〉 |= {¬Sαc | α < κ}.

As a consequence, 〈ΠDM, c〉 |= {¬Sαc | α < κ}.

Lemma 2.2. Let D be an ultrafilter over a set I, � a relational type, and M ∈ Str(�).
AssumeE ∈ � andEM is an equivalence relation. For any map g : I →M let gD ∈ ΠDM
denote the =D-equivalence class of g. Let further

EgD = {hD ∈ ΠDM | ΠDM |= hDEgD},

and for every i ∈ I, Eg(i) = {x ∈M | M |= xEg(i)}.
Then, with “I” as defined in (1), (ΠDM)IEgD ∼= ΠD〈(MIEg(i)) | i ∈ I 〉.
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LOGICS FROM ULTRAFILTERS 5

Definition 2.3. For � a relational type, let R,E be relation symbols not in �, with R
unary and E binary. For each class
 ⊆ Str(�) the class
RE ∈ Str(� ∪ {R,E}) is defined
by stipulating that for any M ∈ Str(� ∪ {R,E}),

M ∈ 
RE iff EM is an equivalence relation and RM = {x ∈M | (MIEx) |̀ � ∈ 
},
where Ex = {y ∈M | M |= yEx}.

Intuitively,RM is the union of the equivalence classes Ex such that the substructure
of M with universe Ex satisfies 
.

Lemma 2.4. Let D be an ultrafilter over I, and � a relational type not containing the
relation symbols R (unary) and E (binary). Let us assume that the class 
 ⊆ Str(�) and
its complementary class Str(�) \ 
 are both closed under isomorphisms and ultraproducts
modulo D.

Then ΠDM belongs to 
RE for all M ∈ Str(� ∪ {R,E}) such that M ∈ 
RE .

Combining [4, theorem 4.1.8 and exercise 4.1.11] with [8, theorem 4.2 and p. 114]
we obtain:

Lemma 2.5. Let D be an ultrafilter over I, and � a relational type not containing
the unary relation symbol R. Assume the class 
 ⊆ Str(�) and its complementary class
Str(�) \ 
 are both closed under isomorphisms and ultraproducts modulo D. Define

R ⊆ Str(� ∪ {R}) by the following stipulation:

For any M ∈ Str(� ∪ {R}), M ∈ 
R iff (RM �= ∅ and (M |̀ �)IRM ∈ 
).

Then both 
R and its complement are closed under isomorphisms and ultraproducts
modulo D.

Following [22, p. 251], a topological space X is said to be [�, �]-compact if every
open cover of cardinality ≤ � has a subcover of cardinality < �.

Proposition 2.6. Let D be a κ-d. i. ultrafilter over a set I. Let � be a relational type,
and J be a set having the property that for each j ∈ J there is a class 
j ⊆ Str(�) such
that both 
j and ¬
j = Str(�) \ 
j are closed under isomorphisms and ultraproducts
modulo D.

Then Str(�) is [κ, κ]-compact for the topology generated by the subbase {¬
j}j∈J .
Proof. Arguing by way of contradiction, let {Fα | α < κ} be a family of closed

subspaces of Str(�) with empty intersection, such that for noW ⊆ κ with |W | < κ we
have

⋂
α∈W Fα = ∅. For each  < κ let F̂ =

⋂
α< Fα (with F̂0 = Str(�)). Then

F̂0 ⊇ F̂1 ⊇ ··· ⊇ F̂ ⊇ ··· , ( < κ), F̂ �= ∅,
⋂
<κ

F̂ = ∅. (2)

We may safely assume that the subbase {¬
j}j∈J is closed under finite intersections.
In this way, every closed set is a (possibly infinite) intersection of closed subsets of
Str(�) taken from the family {
j}j∈J . By (2) there is a sequence J0 ⊆ J1 ⊆ ··· ⊆ J ⊆
··· ( < κ) of subsets of J satisfying

F̂ =
⋂

{
j | j ∈ J}, for each  < κ. (3)

Since each 
j is closed under isomorphisms, we also have a sequence of structures
A ∈ Str(�) satisfying

A ∈ F̂ , Aα ∩ A = ∅, (α <  < κ). (4)
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6 DANIELE MUNDICI

Let

�+ = � ∪ {E} ∪ {Sα}α<κ ∪ {Rj}j∈I ,
where each Sα and Rj is a unary relation symbol, and E is binary. Since J is a set, �+

is a type. Define M ∈ Str(�+) by the following stipulations:

(i) M =
⋃
α<κ Aα, (M IAα) |̀ � = Aα, and for every T ∈ �, TM =

⋃
α<κ T

Aα .
(ii) EM is an equivalence relation with κ components, and for every x, y ∈M,
xEMy iff there is α < κ with x, y ∈ Aα .

(iii) SM
0 = ∅, SM

α =
⋃
<α A for every α < κ.

(iv) RM
j =

⋃
{A | A ∈ 
j} for every j ∈ J.

The existence of M satisfying condition (i) is ensured by our assumption that � is
relational and the Aα ’s are pairwise disjoint. With the notation of Definition 2.3, by
(i), (ii), and (iv) we can write

RM
j = {x ∈M | (M IEx) |̀ � ∈ 
j},

i.e.,

M |̀ (� ∪ {Rj,E}) ∈ 
RjEj for every j ∈ J. (5)

If x ∈M \ SM
α+1 then by (iii), Ex = A for a unique  with α <  < κ. Then by

(2)–(4), conditions (i) and (ii) yield

(MIEx) |̀ � = A ∈
⋂

{
j | j ∈ J}

whence, by (iv), x ∈ RM
j for each j ∈ J . A fortiori, x ∈ RM

j for each j ∈ Jα, and we
may write

M |= ∀x(¬Sα+1x → Rjx) for all α < κ and j ∈ Jα. (6)

By Lemma 2.1, the ultrapower ΠDM has an expansion B = 〈ΠDM, c〉 such that
B |= ¬{Sαc | α < κ}. Combining Łoś theorem with (6) we can write

B |= ∀x(¬Sα+1x → Rjx), for all α < κ and j ∈ Jα.
As a consequence,

〈ΠDM, c〉 |= Rjc for all j ∈
⋃
α<κ

Jα. (7)

For every j ∈ J let

�j = � ∪ {Rj,E} and Mj = M |̀ �j.

From (5) we have Mj ∈ 

RjE

j . Lemma 2.4 now yields

ΠDMj ∈ 

RjE

j , whence by expansion, (ΠDM) |̀ �j ∈ 

RjE

j .

Setting now N = ΠDM, by Definition 2.3 we have

RN
j = {x ∈ N | (N IEx) |̀ � ∈ 
j} for each j ∈ J.

By (7), (N IEc) |̀ � ∈ 
j for all j ∈
⋃
α<κ Jα. Finally, by (3), (N IEc) |̀ � belongs to F̂

for all  < κ, in contradiction with (2). The proof is complete.
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§3. From classes of ultrafilters to logics.

3.1. Logics, elementary classes, Δ-closure. Statement of the main theorem.
Following [7, definition 1.1.1], by a logic L we mean a pair (StcL, |=L), where StcL is
a map assigning to every type � a family StcL(�), called the family of sentences in L
of type �, and |=L (called L-satisfaction) is a relation between structures and sentences
satisfying conditions (i)–(v) in [7, p. 28]. Via |=L, each sentence
 of type � is identified
with a class, also denoted 
, of structures of type �. We write L(�) instead of StcL(�).
Given Φ ⊆ L(�) we say that Φ has a model if there is N ∈ Str(�) such that N |=L φ for
all φ ∈ Φ.

As already remarked, |= denotes the satisfaction relation of first-order logic.
Following [16, p. 230] logic L is κ-relatively compact (κ-r. c.) if for any two sets Ψ,Ξ

of sentences in L with |Ψ| = κ, if Ψ0 ∪ Ξ has a model for every Ψ0 ⊆ Ψ with |Ψ0| < κ
and arbitrary Ξ, then so does Ψ ∪ Ξ.

A class � ⊆ Str(�) is elementary of type � in L if there is 
 ∈ L(�) such that
� = {M ∈ Str(�) | M |=L 
}. EC�L denotes the family of all such classes. Two logics
are equivalent if they have the same elementary classes. For types 	 ⊆ � and � ⊆ Str(	)
we let

( |̀ �	)–1� = {M ∈ Str(�) | M |̀ �	 ∈ �},
where |̀ �	 : Str(�) → Str(	) is the reduct operation.

Following [7, p. 18] we say that L is Δ-closed if it has the following property:
Let � ⊆ �′ ∩ �′′, 
′ ∈ EC�′L , 
′′ ∈ EC�′′L . Suppose ( |̀ �′� )
′ = Str(�) \ ( |̀ �′′� )
′′. Then
( |̀ �′� )
′ ∈ EC�L.

The following theorem is our first main result in this paper:

Theorem 3.1. Let Ω be a nonempty class of uniform ultrafilters. Let the map L = LΩ

assign to every type � the family L(�) specified as follows:


 ∈ L(�) iff 
 ⊆ Str(�) and there is a finite type 	 ⊆ � and a class
� ⊆ Str(	) such that 
 = ( |̀ �	)–1�, with both � and Str(	) \ � closed
under isomorphisms and ultraproducts modulo D for all D ∈ Ω.

We then have:

(i) Up to equivalence, there is a unique regular logic L = LΩ such that for every
type �, L(�) = EC�L. L is Δ-closed. If Ω contains a κ-descendingly incomplete
ultrafilter, L is κ-relatively compact. L is compact only if Ω is a proper class.

(ii) (¬0� or ¬L�) IfD ∈ Ω is an ultrafilter over a regular cardinal � then for a family
Ψ of L-sentences with |Ψ| ≤ � to have a model it is sufficient that every finite
subfamily of Ψ has a model. In particular, if Ω is a proper class and each D ∈ Ω
is an ultrafilter over a regular cardinal, then L is compact.

3.2. First part of the proof of Theorem 3.1(i): Basic properties of L = LΩ.

Proposition 3.2. With the above notation and terminology concerning Ω and L, we
have:

(1) Both ∅ and Str(�) belong to L(�).
(2) If 
 belongs to L(�) then so does its complement ¬
 = Str(�) \ 
.
(3) Every
 ∈ L(�) (as well as ¬
) is closed under isomorphisms and ultraproducts

modulo D for all D ∈ Ω.
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8 DANIELE MUNDICI

(4) For every finite type �, if both 
 ⊆ Str(�) and its complement are closed under
isomorphisms and ultraproducts modulo D for all D ∈ Ω, then 
 belongs to
L(�).

(5) If 
 ∈ L(�) and � ⊇ � then ( |̀ ��)–1
 ∈ L(�).
(6) Let � : � → 	 be an arity preserving bijection of � onto 	 sending relations,

constants and functions to relations, constants and functions. (For short, � is a
renaming.) For eachM ∈ Str(�) letM� ∈ Str(	) be the structure with the same
universe as M, where each symbol S ∈ 	 is interpreted precisely as the symbol
�–1 is interpreted in M. Let 
� = {M� | M ∈ 
}. Then for all 
 ∈ L(�),

� ∈ L(	).

(7) For every first-order sentence � of a finite type �, the class


 = {N ∈ Str(�) | N |= �}

belongs to L(�).
(8) If 
, φ ∈ L(�) then 
 ∩ φ ∈ L(�).
(9) For any 
 ∈ L(�) and constant symbol c, let the class ∃c
 ⊆ Str(� \ {c}) be

defined by

∃c
 =
(
|̀ ���\{c}

)

.

If c /∈ � then ∃c
 = 
. If c ∈ � then for every M ∈ Str(� \ {c}) we have:
M ∈ ∃c
 iff there is m ∈M such that 〈M, c/m〉 ∈ 
. Here 〈M, c/m〉 denotes
the expansion of M to � where c is interpreted by m.

(10) For every 
 ∈ L(�) and constant symbol c, ∃c
 belongs to L(� \ {c}).
(11) Let �, �′, �′′ be types, with � finite and coinciding with �′ ∩ �′′. Let 
′ ∈ L(�′)

and 
′′ ∈ L(�′′). Suppose further ( |̀ �′� )
′ = Str(�) \ ( |̀ �′′� )
′′. Then ( |̀ �′� )
′

belongs to L(�).
(12) For � a cardinal and � a fixed but otherwise arbitrary type, suppose we are given

classes of structures {�α | α < �} ⊆ L(�). Let T be the topology on Str(�)
generated by the subbase {¬�α | α < �}. Then T is a [κ, κ]-compact topology
for each cardinal κ such that there is a κ-d. i. ultrafilter D ∈ Ω.

Proof. (1)–(7) are immediate consequences of the definition of L(�). (8) routinely
follows from (2), (3) and (5). (9) is trivial.

To prove (10), skipping all trivialities, assume c ∈ �. For some finite type 	0 ⊆ � and
class �0 ⊆ Str(	0) we can write 
 = ( |̀ �	0

)–1�0. Let 	 = 	0 ∪ {c} and � = ( |̀ 		0
)–1�0.

By (3) and (5), both � and ¬� are in L(	) and are closed under isomorphisms and
ultraproducts modulo D for all D ∈ Ω. Furthermore, 
 = ( |̀ �	)–1� (and c ∈ 	). Let
	′ = 	 \ {c} and �′ = � \ {c}.By making repeated use of (9) we get ∃c
 = ( |̀ �′

	′)
–1∃c�.

From the expansion theorem [4, Theorem 4.1.8] it follows that for all D ∈ Ω both
classes ∃c� and ¬∃c� are closed under ultraproducts modulo D. Both classes are
also closed under isomorphisms. Since 	′ is finite we conclude that ∃c
 belongs to
L(�′) = L(� \ {c}), which settles (10).

Next, (11) is easily proved using the expansion theorem and (3) and (4).
The special case of (12) when � is relational is taken care of by (3) and Proposition 2.6.
The general case for an arbitrary type � is a tedious but routine variant of the special
case, again using Proposition 2.6 together with (10).
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3.3. Second part of the proof of Theorem 3.1(i): The construction of L = LΩ. For
every structure M there is exactly one type � = �M such that M ∈ Str(�). For every
nonempty class 
 of structures of the same type there is exactly one � = �
 such that

 ⊆ Str(�).

Definition 3.3. Adopt the above notation and terminology concerning Ω and L = LΩ.
Given any type �, the family L(�) of sentences of type � in L = LΩ and its satisfaction
relation |=L are defined by:

(∗) 
 ∈ L(�) if either 
 is empty or 
 is a nonempty class of structures of the same
type �
, with �
 finite, �
 ⊆ �, and 
 ∈ L(�
).

(∗∗) M satisfies 
 in L, in symbols, M |=L 
, if �
 ⊆ �M and M |̀ �
 ∈ 
.

Since 
 is a sentence of L(�) for some �, the type �
 is well defined in (∗∗). Moreover, �

is finite and 
 is a member of L(�
).We use the notation

Mod�L 
 = {M ∈ Str(�) | M |=L 
}.

Recalling the definition at the outset of Section 3, we say that � ⊆ Str(�) is an elementary
class of type� in L, in symbols, � ∈ EC�L, if � = Mod�L 
 for some 
 ∈ L(�).

The proof of the following proposition is a main prerequisite to prove (in the
next subsection) that L = LΩ is a regular logic having all the properties stated in
Theorem 3.1.

Proposition 3.4. With the above notation we have:

(1) For every �, EC�L = L(�).
(2) (Monotonicity) If 	 ⊆ � then L(	) ⊆ L(�).
(3) (“Type” property) If M |=L 
 then 
 ∈ L(�M).
(4) (Isomorphism) If M |=L 
 and N ∼= M then N |=L 
.
(5) (Reduct) LetM ∈ Str(	),
 ∈ L(�), and � ⊆ 	. ThenM |=L 
 iffM |̀ � |=L 
.
(6) (Renaming) Let � be a renaming of � onto 	. (See Proposition 3.2(6).) Then

for every 
 ∈ L(�) there is � ∈ L(	) such that for all M ∈ Str(�), M |=L 
 iff
M� |=L �.

(7) (Atoms) For every � and atomic first-order sentence � of type � there is
 ∈ L(�)
with Mod�L 
 = {N ∈ Str(�) | N |= �}.

(8) (Negation) For all � and 
 ∈ L(�) there is � ∈ L(�) with Mod�L � = Str(�) \
Mod�L 
.

(9) (Conjunction) For every type � and classes 
, φ ∈ L(�) there is � ∈ L(�) with
Mod�L � = Mod�L 
 ∩ Mod�L φ.

(10) (Quantification) For every �, constant symbol c, and 
 ∈ L(�) there is � ∈
L(� \ {c}) such that for all M ∈ Str(� \ {c}),

M |=L � iff 〈M, c/m〉 |=L 
 for some m ∈M,

with 〈M, c/m〉 as in Proposition 3.2(10).
(11) (Δ-closure) For all � ⊆ �′ ∩ �′′, 
′ ∈ EC�′L , and 
′′ ∈ EC�′′L , if ( |̀ �′� )
′ =

Str(�) \ ( |̀ �′′� )
′′, then ( |̀ �′� )
′ ∈ EC�L.
(12) If Ω contains a κ-descendingly incomplete ultrafilter, L is κ-relatively

compact.
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(13) (Finite Occurrence Property) For every sentence 
 ∈ L there is a smallest type
� such that 
 ∈ L(�). Furthermore, such � is finite.

(14) Let � be a finite relational type, R /∈ � a unary relation symbol, φ ∈ L(�) and
�+ = � ∪ {R}. Then there exists 
 ∈ L(�+) such that for all M ∈ Str(�+),

M |=L 
 iff (RM �= ∅ and (M |̀ �)IRM |=L φ).

Proof. (1) follows by definition from Proposition 3.2(1)–(5). Properties (2), (3) and
(5) are immediate consequences of Definition 3.3. (4) Follows from Proposition 3.2(3).
(6) follows from (1) and Proposition 3.2(6). By (1), conditions (7)–(10), respectively,
follow from Propositions 3.2(7), 3.2(2), 3.2(8) and 3.2(10) and (11).

To prove (11) we argue as follows: By the renaming property (6) we can safely
assume � = �′ ∩ �′′. By (1), 
′ ∈ L(�′) and 
′′ ∈ L(�′′). By Proposition 3.2(4), for
some finite 	′ ⊆ �′ and 	′′ ⊆ �′′ there are �′ ∈ L(	′) and �′′ ∈ L(	′′) such that


′ = ( |̀ �′	′)�′ and 
′′ = ( |̀ �′′	′′)�′′.

The finite type 	 = 	′ ∩ 	′′ is contained in �. Let

φ = ( |̀ �′� )
′ and ¬φ = Str(�) \ φ = ( |̀ �′′� )
′′.

Then

( |̀ 	′	 )�′ ∩ ( |̀ 	′′	 )�′′ = ∅.

A routine application of Proposition 3.2(3), (4), and (12) yields

( |̀ 	′	 )�′ ∪ ( |̀ 	′′	 )�′′ = Str(	).

From Proposition 3.2(2) and (11) we obtain

φ = ( |̀ �	)–1(( |̀ 	′	 )�′).

By (1), we finally obtain φ = ( |̀ �′� )
′ ∈ EC�L, which settles (11).
A proof of (12) can be obtained from (1) in combination with Proposition 3.2(12).

(13) is trivial. (14) follows from (1) together with Proposition 3.2(3) and (4), in
combination with Lemma 2.5.

3.4. Last part of the proof of Theorem 3.1(i): L has the desired properties. By
Proposition 3.4(1), L is uniquely determined by Ω up to equivalence.

We next prove that L is a regular logic.
By Proposition 3.4(2)–(10), L has the monotony, type, isomorphism, reduct, renaming
properties, and is closed under first-order atomic sentences, negation, conjunction
and existential quantification. The finite occurrence property holds by Proposition
3.4(13). By Proposition 3.4(11), L is Δ-closed. These properties, together with the
finite occurrence property, imply the substitution property [7, definition 1.2.3]. As a
consequence, L has elimination of function and constant symbols [7, definition 1.2.3
and p. 31]. To prove that L has the relativization property [7, definition 1.2.2], we
argue as follows: Given sentences φ, �, a relativization of φ to {c | �(c)} is obtained
by assuming φ ∈ L(�′), � ∈ L(�′′) for finite types �′, �′′, with �′ relational. This
assumption is made without loss of generality, because L has the finite occurrence
property and allows elimination of function and constant symbols. We next let
R /∈ �′ ∪ �′′ be a unary relation symbol. Then Proposition 3.4(14) yields a sentence
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̃ ∈ L(�′ ∪ {R}) providing the desired relativization. Replacing now Rc in 
̃ by
�(c) (which is allowed by the substitution property) we finally obtain a sentence

 ∈ L(�′ ∪ (�′′ \ {c})) yielding a relativization of φ to {c | �(c)}. Thus L is closed
under relativization.

The proof that L is a regular logic is now complete.
By Proposition 3.4(12), L is κ-r. c. whenever Ω contains a κ-d. i. ultrafilter.
To conclude the proof of Theorem 3.1(i), assume Ω to be a set, with the intent of

proving that its associated logic L = LΩ is not compact. Without loss of generality,
each D ∈ Ω is a uniform ultrafilter over some cardinal �D ≥ �. Let {�D | D ∈ Ω} be
the set of cardinals which are the index set of some ultrafilter in Ω. Let

� = sup{�D | D ∈ Ω} and �∗ = (2�)+.

We then have

|Πi∈I κi | ≤ (2�)�D ≤ (2�)� = 2� < (2�)+ = �∗.

As a consequence, each �D is small for �∗, in the sense that for any family 〈κi | i ∈ I 〉,
if |I | ≤ �d and κi < �∗ for all i ∈ I, then the cardinality of the cartesian product
Πi∈I κi is < �∗. Now let 
∗ ⊆ Str(∅) be defined by 
∗ = {M ∈ Str(∅) | |M | ≥ �∗}.
Thus 
∗ is the class of all structures in the pure identity language, whose universe
has at least �∗ elements. For every ultrafilter D ∈ Ω, say D over �D , and for every
set {Mα | α < �D} ⊆ ¬
∗, the ultraproduct ΠD〈Mα | α < �D〉 belongs to ¬
∗. As a
matter of fact, since �D is small for �∗,

|ΠD〈Mα | α < �d 〉| ≤ |Πα<�dMα | < �
∗.

Likewise, by [4, proposition 4.3.6(ii) and (iv)], for every {Nα | α < �D} ⊆ 
∗ we have
ΠD〈Nα | α < �D〉 ∈ 
∗.

Thus for every D ∈ Ω both classes 
∗ and ¬
∗ are closed under ultraproducts
modulo D. Trivially, both classes are also closed under isomorphisms. By Proposi-
tions 3.2(4) and 3.4(1),


∗ is a sentence in the pure identity language of L. (8)

One now routinely checks that L is not compact. Let � = {c |  < �∗}. Let Υ ⊆ L(�)
be defined by

Υ = {¬
∗} ∪ {cα �= c | α <  < �∗},

where cα �= c is an abbreviation of the class {N ∈ Str(�) | N |= cα �= c}. By
Proposition 3.2(5) and (7), Υ ⊆ L(�). Furthermore, every finite subfamily of Υ has a
model, but Υ has none. This proves that L is not compact. The proof of Theorem 3.1(i)
is now complete.

Proof of Theorem 3.1(ii). We prepare:

Proposition 3.5. Let κ be an infinite cardinal. Then a topological (not necessarily
Hausdorff ) space is [�, �]-compact for all regular � with � ≤ � ≤ κ iff every open cover
of cardinality ≤ κ has a finite subcover.

Proof [22, theorem 2A].
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Proposition 3.6. L is κ-r. c. iff it has the following property:
For every set J, type � and family {
j | j ∈ J} ⊆ L(�) closed under complement (i.e.,

negation), closed under finite intersections, and containing EC�L�� , the class Str(�) is
[κ, κ]-compact with respect to the topology generated by the subbase {¬
j | j ∈ J}.

Proof. [18, theorem 1] which uses a different notation.

LetD ∈ Ω be a uniform ultrafilter over a regular (infinite) cardinal �. By [6, theorem
4.3 and remarks on pages 89–91], D is �-d. i. for all regular � with � ≤ � ≤ �. (Here
the authors of [6] make use of the hypotheses ¬L� or 0�.) By Proposition 3.4(12), L
is �-r. c. for all regular � with � ≤ � ≤ �. Let Ψ be a family of sentences of L(�) with
|Ψ| ≤ �. For each 
 ∈ Ψ let 
̇ = Mod�L 
. Next let us equip Str(�) with the topology
T generated by the subbase

EC�L�� ∪ {
̇ | 
 ∈ Ψ} ∪ {¬
̇ | 
 ∈ Ψ}.

Without loss of generality this subbase is closed under finite intersections. By
Proposition 3.5, every open cover of Str(�) of cardinality ≤ � has a finite subcover. By
Proposition 3.6, Str(�) is [�, �]-compact for all regular �with� ≤ � ≤ �. Thus, if every
finite subfamily of Ψ has a model, Ψ has a model. This proves the first statement in
Theorem 3.1(ii).

To prove the last statement we argue as follows: From the assumption that Ω be a
proper class with each D ∈ Ω a uniform ultrafilter over a regular cardinal it follows
that the class

{� | there is D ∈ Ω with D an ultrafilter over �}

is proper. The same argument in the first part of the proof now shows that every family
Ψ ⊆ L(�) with |Ψ| ≤ � satisfies the compactness theorem. Since � is an arbitrarily large
regular cardinal, L is compact.

Having thus proved Theorem 3.1(ii), the proof of Theorem 3.1 is complete.

Corollary 3.7. The logic L generated by the class Ω∗ of all uniform ultrafilters over
all infinite cardinals is (equivalent to) L��.

Proof. By Theorem 3.1(i), L is κ-r.c for every regular cardinal κ.By Propositions 3.5
and 3.6, L is compact. By Proposition 3.4(4)–(10), every elementary class of L��
is an elementary class of L. Thus L-equivalence ≡L is finer than L��-equivalence
≡. Conversely, let us assume A ≡ B. The proof of the Keisler–Shelah theorem
[4, Theorem 6.1.15] yields � ≥ � and a uniform ultrafilter D over � such that ΠDA ∼=
ΠDB. Since D ∈ Ω∗ and the elementary classes of L are closed under ultrapowers
and isomorphisms, Propositions 3.2(3) and 3.4(1) yield A ≡L ΠDA and B ≡L
ΠDB, whence A ≡L B. Therefore, ≡ is finer than (whence it coincides with) ≡L.
The compactness of L and L�� now routinely yields the desired conclusion.

§4. Applications and examples. Q is a cardinality quantifier if for some ordinal α

Q = Qα = the quantifier “there exist at least ℵα many.”

We say that L is generated by cardinality quantifiers if L = L(Qα)α∈W for some
nonempty class W of ordinals. We also say that L contains the quantifier Qα if
EC�L ⊇ EC�L(Q) for all �.
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Theorem 4.1. Let Ω be a class of uniform ultrafilters over infinite cardinals. Assume
that either Ω is a set or Ω contains a countably incomplete ultrafilter. Then the logic L
obtained from Ω via Theorem 3.1(i) is not generated by cardinality quantifiers.

Proof. The case when Ω is a set.
The final part of the proof of Theorem 3.1(i) yields a cardinal �∗ > � such that the

class 
∗ = {M ∈ Str(�) | |M | ≥ �∗} belongs to EC ∅
L. See (8). Since L is a Δ-closed

regular logic with the finite occurrence property then, by [7, theorem 4.1.3], L contains
the quantifier Q∗ “there are at least �∗ many.”

By way of contradiction, assume L is generated by cardinality quantifiers, say,
L = L(Q∗, Qα)α∈W for some class W of ordinals. Let On be the class of all ordinals,
and L+ = L(Qα)α∈On. For any κ, � ≥ � let Aκ� = 〈A,E〉, where E is an equivalence
relation over A having exactly � distinct equivalence classes, each one of cardinality κ.
The back and forth argument of [3, proof of theorem 4.4, p. 93], combined the proof
of A�1

�1 ≡L(Q1) A
�1
� in [7, corollary 4.2.8] yields

Aκκ ≡L+ Aκ�, whence A
�∗

�∗ ≡L A�
∗
� . (9)

Let B = 〈A�
∗

�∗ , f〉, with the unary function f picking one element from every
equivalence class. Then L(E,f) contains a sentence 
 stating “the range of f has
≥ �∗ elements” with B |=L 
. Similarly, let D = 〈A�

∗
� , g〉, where g chooses a member

of every equivalence class. Then some sentence � ∈ L(E, g) stating “the range of g has
< �∗ elements” is satisfied by D in L. Since L contains all first-order sentences, L(E)
contains a sentence stating “E is an equivalence relation.” Therefore we can safely
assume that for every structure M of type {E} exactly one of the following alternatives
holds:

(i) either M can be expanded to a model of 
 of type {f,E},
(ii) or M can be expanded to a model of � of type {g,E}.

Upon setting


̇ = Mod{E,f}
L (
), and �̇ = Mod{E,g}

L (�),

by Proposition 3.4(1) we obtain
(
|̀ {E,f}{E}

)

̇ = Str(E) \

(
|̀ {E,g}{E}

)
�̇.

Since L is Δ-closed, Proposition 3.4(1) yields a sentence φ ∈ L(E) such that

A
�∗

�∗ |=L φ and A�
∗
� |=L ¬φ.

This contradicts (9), and settles the case when Ω is a set.
The case when Ω contains a countably incomplete ultrafilter D.
Proceeding as in the first case, by way of contradiction assume L is generated

by cardinality quantifiers, say, L = L(Q∗, Qα)α∈W for some nonempty class W of
ordinals. Assume D is an ultrafilter over �.

Claim. The quantifier Q0 saying “there are infinitely many” is not contained in L.
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As a matter of fact, by [4, lemma 4.2.3], our standing hypothesis about D amounts
to assuming the existence of a partition X̃ of � into <�1 components, none of which
belongs to D. Now X̃ has exactly � many components, say,

X̃ = {Xn | n ∈ �} with Xn �= ∅, Xn /∈ D,Xn ∩ Xm = ∅ for all n < m < �.

For each n < � let Mn ∈ Str(∅) be such thatMn has exactly n + 1 elements. For each
α < � let n(α) be the only n < � such that α ∈ Xn. Let

N = ΠD〈Mn(α) | α < �〉.
From Łoś theorem it follows that the universe N of N is infinite. Letting now


 = {M ∈ Str(∅) |M is infinite},
we have proved that¬
 is not closed under ultraproducts modulo D. From Propositions
3.2(3) and 3.4(1) it follows that 
 /∈ EC ∅

L, whence, a fortiori, L does not contain the
quantifier Q0. Our claim is thus settled.

Since 0 /∈W �= ∅, there exists an ordinal  > 0 such that L contains the quantifier
“there are at least ℵ many.” The argument in the proof of Case 1 yields a contradiction
also in the present case.

Remark 4.2. Theorem 4.1 shows that for any set Ω of uniform ultrafilters the expressive
power of the logic L generated by Ω goes beyond the crude cardinality properties of
universes of structures. Specifically, the proof of the first case gives examples of quantifiers,
such as equivalence quantifiers, contained in L, but not contained in any logic generated
by cardinality quantifiers. As an application, from the Δ-closure property of L it follows
that in the language � = (·,–1 , e) of groups one can express in L the fact that the center
of a group has ≥�∗ elements, where �∗ = (2�)+ and � = sup{�D | D ∈ Ω}. As another
application, L can express the fact that a boolean algebra has ≥�∗ atoms.

The expressibility of properties increasingly outside the scope of cardinality
quantifiers is the subject matter of the following result. We refer to [7, definition 4.1.2]
and [19, chapters 1.1 and 2.1] for the well ordering quantifier QWO, the Chang
quantifierQC , the cofinality� quantifierQcf� , the Härtig quantifier I, and the Henkin
quantifier QH .

Theorem 4.3. Let Ω be a class of uniform ultrafilters over infinite cardinals. Let L be the
logic generated by Ω via Theorem 3.1(i). We then have:

(i) If everyD ∈ Ω is�1-complete5 then L contains all quantifiersQ0, Q1, Q
WO and

Qcf� .
(ii) If some D ∈ Ω is countably incomplete,6 then L does not contain the following

quantifiers: QWO, I, QH , QC , and the quantifier “there are at least � many” for
every � satisfying � ≤ � ≤ 2�.

Proof. (i) Following [4, p. 231], let L�1 be the logic with countable conjunctions
and countable iterations of the universal quantifier, as specified in [4, definitions 4.1.9
and 4.1.10, p. 230]. By [4, theorem 4.2.11], for every D ∈ Ω and sentence 
 ∈ L�1

the class 
̇ of models of 
 of type � is closed under ultraproducts modulo D, and so

5 In the sense of [4, sec. 4.2, p. 227].
6 In the sense of [4, definition 4.3.1].

https://doi.org/10.1017/S1755020323000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000357


LOGICS FROM ULTRAFILTERS 15

is its complementary class ¬
̇ = Str(�) \ 
̇. When � is finite, by Propositions 3.2(4)
and 3.4(1) we may identify 
̇ with a sentence of L of type �. Now, Q0, Q1, Q

WO,Qcf�

are quantifiers of finite type and are contained in the logic L�1 . Furthermore, L is
Δ-closed. Then by [7, theorem 4.1.3] all these quantifiers are also contained in L.

(ii) We first show that for every� ≤ � ≤ 2� , L does not contain the quantifier “there
are at least � many.”

The proof of the second case in Theorem 4.1 shows that L does not contain Q0.
Next let Q be the quantifier “there are at least � many,” with �1 ≤ � ≤ 2�. By [4,
propositions 4.3.4 and 4.3.9], |ΠD�| ≥ 2� whenever D is countably incomplete. Since
� < � and |ΠD�| ≥ �, letting


 = {M ∈ Str(∅) | |M | ≥ �},

it follows that the class ¬
 is not closed under ultraproducts modulo D, whence, by
Propositions 3.2(3) and 3.4(1), 
 /∈ EC ∅

L, and Q is not contained in L.
It is not hard to see that L does not contain QWO. For otherwise (absurdum

hypothesis), let L′ = ΔL(QWO) be the smallest Δ-closed logic containing L(QWO).
Then all L′-elementary classes are in L, because also L is Δ-closed. Consequently, L′

contains Q0, because a set is finite iff it can be endowed with a well ordering R such
that the reverse ordering R← is also a well ordering, and a set is infinite iff it can be
equipped with a non-well-ordered linear ordering. It follows that L, too, contains Q0,
a contradiction.

One similarly shows that L does not contain QC , because ΔL(QC ) contains Q0.
Finally, L does not contain I and QH because ΔL(I ) contains QWO and ΔL(QH )
contains Q0. (See [7, sections 2.3 and 2.5] and [19].)

Corollary 4.4. Let Ω be a nonempty class of uniform ultrafilters over infinite
cardinals. Let L be the logic generated by Ω via Theorem 3.1(i). Then the following
conditions are equivalent:

(i) Each D ∈ Ω is �1-complete.
(ii) L contains Q0.
(iii)L contains Q1.
(iv) L contains QWO.
(v) L is not �-relatively compact.

Proof. Theorem 4.3 immediately yields the equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv).
One easily proves the implication (ii) ⇒ (v). Finally, to prove (v) ⇒ (i), let us suppose
that D ∈ Ω is not �1-complete. In other words, D is countably incomplete, in the
sense that there is a countable set E ⊆ D such that

⋂
E /∈ D. (See [4, definition 4.3.1,

p. 248].) Equivalently, D is �-d.i. To see this, recall [13, definition 0.1] and [4, exercise
4.3.10, p. 258]. By Theorem 3.1(i), L is �-r.c., whence (v) fails.

The following proposition shows that Theorem 3.1(ii) no longer holds without the
special hypotheses ¬0� or ¬L�. It also shows that, assuming the existence of a proper
class of measurable cardinals, not all proper classes of uniform ultrafilters over regular
cardinals generate L�� . By Theorem 3.1(i), no non-proper class generates L�� .

Corollary 4.5. If there is a proper class of measurable cardinals then some proper
class of uniform ultrafilters over regular cardinals generates a noncompact logic.
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Proof. Let {�i | j ∈W } be a proper class of measurable cardinals. Let Ω = {Dj |
j ∈W } be a class where each Dj is a �j-complete nonprincipal ultrafilter over
�j . By [4, theorem 4.2.14(i)], for each j ∈W the ultrafilter Dj is uniform and �1-
complete, and �j is regular. By Corollary 4.4(i)⇒(ii), the logic L generated by Ω is not
compact.

Remark 4.6. By Corollary 3.7, L�� is generated (via Theorem 3.1(i)) by some proper
class of all uniform ultrafilters over regular cardinals. LetA be short hand for the following
statement:

“Every proper class of uniform ultrafilters over regular cardinals generates L��.”
Next let B stand for “Every uniform ultrafilter is regular.” The existence of a measurable
cardinal entails ¬B.7 On the other hand, Donder [5] proved that B is consistent relative
to ZFC. Finally, let C be an abbreviation of Conjecture 18 in [4, p. 599], which reads:

“Let A, B ∈ Str(�) with A ≡ B, and |A|, |B |, |�|, � ≤ κ.
Then ΠDA ∼= ΠDB, for every regular ultrafilter D over κ.”

Theorem 4.7. B&C ⇒ A ⇒ “there is no proper class of measurable cardinals.”

Proof. The second implication follows from Corollary 4.5. For the first implication,
assume B and C to hold. For Ω an arbitrary proper class of uniform ultrafilters over
regular cardinals, let L be the logic generated by Ω via Theorem 3.1(i). Since all
elementary classes of L�� are in L, then for all structures A,B of type �,

A ≡L B ⇒ A ≡ B, i.e., ≡L is finer than elementary equivalence ≡ .
Conversely, we claim that ≡ is finer than ≡L .As a matter of fact, assume A ≡ B. Since
Ω is a proper class there is D ∈ Ω and κ ≥ � such that D is a uniform ultrafilter over
κ, and |A|, |B |, |�| ≤ κ. Assumption B ensures that D is regular. Assumption C yields
ΠDA ∼= ΠDB. By Propositions 3.2(3) and 3.4(1), every elementary class of L is closed
under isomorphisms and ultrapowers. Therefore,

A ≡L ΠDA ≡L ΠDB ≡L B,

whence ≡ is finer than ≡L, as required to settle our claim. Having thus proved

≡ = ≡L, (10)

there remains to prove that L is equivalent to L��. Trivially, L cannot contain the
quantifier Q0. For otherwise, some sentence in the pure identity language of L could
distinguish between finite and infinite sets, against (10). By Corollary 4.4(v)⇒(ii), L is
�-relatively compact. As a consequence, every countable set of sentences of L has the
compactness property. In other words, L is [�,�]-compact. From (10) it follows that
L has the Löwenheim property [7, 1.2.4(vii)], stating that every sentence
 of L having
an infinite model has a countable model. By Lindström’s characterization theorem
([14] or [9, theorem 2.1.4]), first-order logic is the only [�,�]-compact logic having the
Löwenheim property, in the sense that every sentence 
 of L having an infinite model
has a countable model. Thus L is equivalent to L�� , as desired.

Corollary 4.8. In the core model, C implies A.

7 See, e.g., [4, exercise 6.5.9, and remarks on page 601 about conjectures 14 and 15].
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Proof. In the core model, every uniform ultrafilter is regular [5, sec. 4]. Now apply
Theorem 4.7.
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