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Abstract This paper deals with the problem of constructing multidimensional biorthogonal periodic
multiwavelets from a given pair of biorthogonal periodic multiresolutions. Biorthogonal polyphase splines
are introduced to reduce the problem to a matrix extension problem, and an algorithm for solving the
matrix extension problem is derived. Sufficient conditions for collections of periodic multiwavelets to
form a pair of biorthogonal Riesz bases of the entire function space are also obtained.
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1. Introduction

One of the important problems in wavelet analysis is the construction of biorthogonal
wavelets or multiwavelets from a given pair of biorthogonal multiresolutions. Here, we
consider this problem for the space L2([0,2n)s), s ^ 1, of 27r-periodic square-integrable
complex-valued functions over [0, 2TT)S.

For the space L2(R), it is well known that biorthogonal wavelets with dilation 2 can
be constructed from multiresolutions generated by biorthogonal scaling functions with
the use of simple alternating flip formulae. The problem of constructing biorthogonal
multiwavelets is much more complicated. The paper by Goh and Yap [9] contains an
algorithmic approach for the construction of biorthogonal multiwavelets with arbitrary
dilation from multiresolutions generated by several biorthogonal scaling functions. How-
ever, such an algorithm is unavailable for L2(KS), s > 1, with arbitrary dilation matrices.

This paper presents such an algorithm for the space L2([0, 2TT)S), S ^ 1. Periodic
wavelets and multiwavelets were studied in one or more dimensions in [1,2,4,8,11-13],
but there is still no work done in the biorthogonal setting. To fix notation, let M be an
s x s matrix with integer entries such that all its eigenvalues lie outside the unit circle.
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634 S. S. Goh and K. M. Teo

For fc ̂  0, let Ck denote a full collection of coset representatives of Zs/MkZs. Then

zs = (J

and, for any distinct £1,e2 e £fc, (̂ 1 + MfcZs) D (^2 + MfcZs) = 0. Similarly, we let Tlk

denote a full collection of coset representatives of Zs/DkZs, where D = MT.
For fc ̂  0, consider S(Mk)rxp, the class of periodic sequences of r x p complex matri-

ces of period Mk, t h a t is, Hk(£ + Mkp) = Hk(i) for all Hk 6 S(Mk)rxp, £,p e Zs. For

Hk S S(Mk)rXp, we define its finite Fourier transform by

Hk(j) = J2 Hk{l)e-V<2«M-kQ, j e Tlk.

Then Hk € S(Dk)rxp, and the sequence Hk can be recovered from Hk by

In addition,

where 5(Mfc) := 5 (M f c ) l x l .
We say that a sequence of subspaces {Vk : k ^ 0} of L2([0, 2TT)S) is a periodic mul-

tiresolution of L2([0,2TT)S) with multiplicity r and dilation matrix M if it satisfies the
following conditions.

(MR1) For fc = 0 , 1 , . . . , dimVfc = r\det(Mk)\, and there exist functions fy™ € Vk,
m — 1,2,...,r, such that {Tfy™ : rn = 1,2,..., r, (. € Ck} is a basis for Vfc,
where Te

kf := / (• - 2-nM~kl).

(MR2) Forfc = 0 , l , . . . , VfeCVfc+i.

(MR3) U > o ^ = £2([(

The functions 0JJ1, k ^ 0, m = 1,2,... ,r, are called scaling functions. Suppose that
{Vjt : fc ̂  0} is another periodic multiresolution of L2([0, 2TT)S) with multiplicity r and
dilation matrix M generated by scaling functions 4™, fc^0,m = l ,2 , . . . , r . The two mul-
tiresolutions {Vfe : fc ̂  0} and {Vk : fc ̂  0} are said to be biorihogonal if the collections
{T&f : m = 1,2,..., r, I € £fe} and {T^^1 : m = 1,2,..., r, i e Ck} are biorthogonal
for every fc ̂  0, that is,

=6je6mii, fc>0, j,l£Ck, m,n = 1,2,... ,r. (1.2)
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The scaling functions <f>™ and $™, k > 0, m = 1,2,... ,r , satisfy the periodic matrix
refinement equations

cl>k= £ Hk+1(e)Ti+1<t>k+1, k = J2 Hk+l{l)Tt+l*k+i, (1.3)

where <£fc := (<£*,... ,<^) T , 4>k := (4>\,... ,4>r
k)

T, and Hk+1,Hk+1 G <S(Mfc+1)r*r, for
every A: > 0. Writing in terms of Fourier coefficients, (1.3) is equivalent to

4>k(n) = Hk+i{n)4>k+i{n), 4>k{n) = Hk+i{n)4>k+l{n),

for all n e Zs.
In this paper, we seek functions ^£ \ ^ € L2([0, 2TT)S), fc ̂  0, m = 1,2,..., r(d - 1),

where d = |det(M)|, called multiwavelets, satisfying the biorthogonality relation

= 6je6mil, (1.4)

for k > 0, m, /x = 1,2,..., r(d — 1), j, I 6 £fc, with the sets

W f c : = < { I ^ : m = l , 2 , . . . , r ( d - l ) , ^ € £fc}) (1.5)

and

Wk:=({T&k
n:m = l,2,...,r(d-l), eeCk}), (1.6)

satisfying the direct sums

Vfc+i^feffiWifc, Vk+1 = Vk®Wk, (1.7)

and the orthogonality properties

Wfe ± Vfc, T^fc JL %, (1.8)

for A; > 0. Since dimVfc = rdk, (1.7) will imply that each of the collections
m = 1,2,..., r ( d - 1), £ e £fc} and {T^jJ1 : m = 1,2,... ,r(d - 1), te Ck} is linearly
independent.

In [8], a polyphase spline approach was proposed for the study of multiresolutions and
multiwavelets in L2([0, 2TT)S) for the orthonormal and semi-orthogonal settings. Here, we
extend it to the biorthogonal setting. In § 2, we characterize the biorthogonality relation
(1.2) in terms of polyphase splines. In §3, this characterization is used to reduce the
biorthogonal multiwavelet construction problem to a matrix extension problem, and a
constructive solution is provided. The paper concludes in §4 with sufficient conditions
for collections of biorthogonal multiwavelets to form a pair of biorthogonal Riesz bases

OfL2([0,27T)S).
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2. Characterization of biorthogonality

For k > 0, let <%\ <££% m = 1,2,. . . ,r, be functions in L2([0,2TT)S). Consider the sets
Sk := {T&Z : m = 1,2,. . . . r , £ 6 Ck} and Sk := {Tf c% : m = 1,2,. . . , r , £ € Ck}.
Define polyphase splines v™. in L2([0,27r)s) by

p€Z»

for m = 1,2, . . . , r , j € TZk, where the ^(n) denote the Fourier coefficients of </>™.
Similarly, we define u£j using ^(n), the Fourier coefficients of 4>k

n.
The polyphase splines v™^ were first introduced in [8], and they were used to char-

acterize the linear independence of the set 5^. Here, we shall use the two collections of
polyphase splines {v£V : j € 7lk, m = 1,2,..., r} and {v™j : j G Tlk, m = 1,2,..., r} to
characterize the biorthogonality of Sk and 5^.

Theorem 2.1. For k ^ 0, the sets Sk and Sk are biorthogonal, that is,

if and only if

where Ir denotes the r x r identity matrix.

Proof. First, we note that it suffices to establish the theorem for any chosen collections
of coset representatives Lk and TZk. Thus, we shall select the particular collections of £k

and lZk described in [8, §3]. The procedure is as follows. Choose bases {e[,... ,e's}
and {e'{,..., e"} of the free abelian group Zs, and sets of generators {/{,-.., f's} and
{#i, • • • ,9'a} of MkZs and DkZs, respectively, such that

f'i=nie'i, g'i = nie", i = l,2,...,s.

Here, n\,..., ns are positive integers such that

dk = | det(M*)| = | det(£>fc)| = nm2 •••», .

Thus, if we set

£k = {miei H \-mse'g : 0 < rrii < m, i = l,2,...,s}

a n d

nk = {tue'l + •••+ nae'i : 0 < Mi < " i , i = 1 , 2 , . . . . a } ,

then Ck and TZk are sets of all coset representatives of Zs/MkZs and Zs/DkZs, respec-
tively. With this particular choice of Ck, we can order Ck as in [8], and let us denote

https://doi.org/10.1017/S0013091500021246 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021246


Multidimensional biorthogonal periodic multiwavelets 637

For each m, fi = 1,2, ...,r, consider the dk x dk matrix

which is a circulant of level s and type (nj.,... ,n3). By [7, Theorem 5.8.4],

E • • • E W ' ^*(- - 27rM-fe(7iei + • • • + 7.e/,))>/rW. (2.1)
i=O 7.=0 '

Here, F = F n i <8> • • • <8> Fns is the Kronecker product of the Fourier matrices FUu, v =
1,2,..., s (see [7] for the definitions), and J?7 = Q^\ <g> • • • <g> / ?£ , where

,wn i / ,w^, . . . ,u;^~1) , (*;„„ = exp(27ri/nI/).

As in [8, § 3], we deduce that the eigenvalues of #m/J can be written as

On the other hand, since

p€Z«

we have

*mM = **<<,•,«£,•>, i e ^ (2-2)

Now, if TO ̂  /i, then (T^(f>f,T^4>^) = 0 for all p,q £ Ck amounts to-#m/x = 0; and it
follows from (2.1) that £m M = 0 if and only if A^M = 0 for all j € ftfc. By (2.2), this is
equivalent to (v^j,^) = 0 for all j €TZk.

If m = fi, then (2.1) implies that

if and only if A^m = 1 for all j £ 7Zk (since F is unitary). By (2.2), this is equivalent to

which completes the proof of the theorem. D

3. Algorithm for multiwavelet construction

Let {4>f : k > 0, TO = 1 ,2, . . . , r} and {</>£* : k > 0, TO = 1,2,. . . , r} be two sets of scaling
functions that generate a pair of biorthogonal multiresolutions {Vk : k > 0} and {Vfc :
k ^ 0} of L2([0, 2TT)S) with multiplicity r and dilation matrix M. We shall find functions
^k

n,^k
n G L2([0,27r)s), k ^ 0, m = 1,2,...,r(d-1), satisfying the biorthogonality
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relation (1.4), with the sets Wk and Wk, k ^ 0, in (1.5) and (1.6) satisfying (1.7) and
(1.8). Our strategy is to construct appropriate polyphase splines in L2([0, 2TT)S) of the
form

uW := E TO+Dkp
pez'

«&(*): = E T O + r»fcp)
p6Z«

for m = 1,2,..., r(d — 1), j 6 IZk, and then define

w ••= E <v w ••= E

for m = 1,2,..., r(d - 1). Here, bf, b^ 6 ^2(ZS) are sequences such that

n

for some Gk+i,Gk+i e S(Dk+1)r(d~iy>Xr. This is equivalent to

where Vfc := (V'fe, • • •, V'fc(d~1))T, f̂c := $1, • • •, ̂ ( d ~ 1 ) ) T - Note that the sets Wk and Wk

in (1.5) and (1.6) can be expressed as

and

£.,. : m = 1,2,... ,r(d - 1), j

(See [8] for details on the above general approach of constructing multiwavelets via
polyphase splines.)

The desired polyphase splines, and, hence, multiwavelets, will be obtained by construct-
ing matrices Gk+i,Gk+i G <S(£)fc+1)r(d-1)XT" so that (1.4), (1.7) and (1.8) are satisfied.
For each k ^ 0, j G TZk, we define the following matrices:

= ( M M J » ; , I M = I , Mk{j) := ( ( ^ , ^
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By the arguments in [8], for j e TZk, we have

= E &*+& + DH)Mk+l{j + Dkt)Hk+1(j + DH)\ (3.1)

= £ dk+^ + &Wk+1{j + Dke)Gk+1(j + DH)\ (3.2)

as well as the corresponding identities for Mk(j) and Nk{j). Since {Vk : k ^ 0} and
{Vfc : fc > 0} satisfy (MR1), by [8, Propositions 3.1 and 3.2], we obtain

det(Mfc(j)) > 0, det(Mfc(j)) > 0, k^O, j eTZk. (3.3)

Analogous to (3.1) and (3.2), we can derive the following identities:

Mk(j) = E Hk+i(j + Dke)Mk+1(j + Dki)Hk+l{j + Dke)*, (3.4)

1(j + Dke)6k+1(j + Dkey. (3.5)

By Theorem 2.1, (1.2) is equivalent to

Mk(j) = (l/dk)Ir, fc^O, j€TZk. (3.6)

Therefore, (3.4) implies that

E tik+1(j + Dke)Hk+1(j + Dkey = <ur. (3.7)

By Theorem 2.1 again, we see that (1.4) is equivalent to

which, by (3.5) and (3.6), amounts to

k+1(j + Dk£)6k+1(j + Dkey = dlr{d_iy (3.8)

As for the direct sums in (1.7), note that it suffices to establish the linear independence
of the sets

« , , < , : m = l , 2 , . . . , r , /x = 1,2,... ,r(d - 1), j e TZk}

and

{«£,-,«*,,• : m = l , 2 , . . . , r , /x = 1,2,... ,r(d- 1), j € 7lk}.
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we claim that the desired linear independence is equivalent to

det
Mk(j)

\PkUY

Indeed, observe that

> 0, det
Mk(j)

PkUY

Mk{j)

(3.9)

. (3.10)

isjust the Gram matrix of Bj := {y^puf. • : m = l , 2 , . . . , r , fj, = l , 2 , . . . , r (d— 1)}.
Hence, (3.10) implies that Bj is linearly independent for each fixed j 6 TZk- As

for all m,m' = 1,2, . . . , r, fi, fj/ = 1 ,2 , . . . , r(d — 1) if j ^ £, we see that Bj is orthogonal
to Be if j i- £, j , ieTZk-lt follows that

( J Bj = {vk
n
J,u^j : m = l , 2 , . . . , r , / i = l , 2 , . . . , r ( d - l ) , j

is a linearly independent set. Similarly, we obtain the result for the other set of polyphase
splines.

As a consequence of the linear independence condition characterized by (3.10), each
of the collections {u£\, : m = 1,2 , . . . , r(d - 1), j € Tlk} and {u^ : m = 1,2,... ,r(d -
1), j € 7?*} is linearly independent. In this case, the orthogonality of Wk and Vfc trans-
lates into

which is equivalent to

<«£,•.«£,*> = 0 . m = l , 2 , . . . , r ( d - l ) , ^ = l , 2 , . . . ,

Proceeding as in [8], we deduce that (3.11) can be written as

U + Dke)Mk+1(j + Dk£)Ak+1(j + DH)

(3.11)

= 0 r ( d _ 1 ) x r ,

which, by (3.6), is equivalent to

U + Dke)Hk+1(j + oHy = or(d_1)xr. (3.12)
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Similarly, Wk being orthogonal to Vjt amounts to

4+i0" + D"t)Hk+1{j + DHy = 0r(d_1)xr. (3.13)

Hence, the multiwavelet construction problem can now be formulated as a problem of
constructing matrices Gk+i,Gk+i € ,S(£>*+iy(<i-i)xr satisfying (3.8), (3.10), (3.12) and
(3.13), under the assumptions of (3.1), (3.3) and (3.7). Our main theorem, Theorem 3.1,
shows that such matrices can always be constructed.

Theorem 3.1. Suppose that <t>™,<i>™ € L2([0,27r)s), k > 0, m = 1,2,... ,r, generate
a pair of biorthogonal multiresolutions of L2([0,2vr)s) with multiplicity r and dilation
matrix M, so that (3.1), (3.3) and (3.7) hold. Then there exist

such that (3.8), (3.10), (3.12) and (3.13) are satisfied.

Before we prove the theorem, let us establish a useful technical lemma.

Lemma 3.2. Suppose that A and A are r x n complex matrices, where r < n, satis-
fying

AA* = Ir. (3.14)

Then there exist n x n complex matrices C and C of the form

c
- ( « ) •

for some (n — r) x n complex matrices B and B such that

CC* = In.

Proof. Let vi,...,vr be the rows of A. Since A A* = Ir, it follows that the rank of
A is r. Thus, there exist (n — r) linearly independent vectors w\,..., wn-T that form a
basis of the orthogonal complement of the linear span of {vi,...,vr} in Cn. Define an
nxn complex matrix C by

where B is the {n — r) x n matrix formed by the vectors w\,..., wn-r.
We claim that the matrix C is invertible. Indeed, if

Q f l ^ l H h OLrVr + 0iWi H 1- f3n-rWn-r = 0 i x n

for some a i , . . . ,a r , /? i , . . . ,/?n-r € C, then, taking inner products with v\,... ,vr, respec-
tively, yields ai = • • • = a r = 0. Since {tDt,... ,u)n_r} is linearly independent, it follows
that /?! = •••= 0n-r = 0. Thus, {v\,... ,vr,w\,... ,wn-T} is linearly independent.
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Now, set Co := (C*)"1. Writing Co = (Ao/B), where AQ and B are rxn and (n-r)xn
matrices, respectively, the relation CQC* = /„ implies that

BA* = 0 ( n _ r ) x r , BB* = JB_P. (3.15)

Define C := (A/B). By (3.14), (3.15) and the fact that the rows of B form a basis of the
orthogonal complement of the linear span of the rows of A in Cn, we have CC* = /„.
(This also shows that C = {C*)~l = Co.) Hence, the proof of the lemma is complete. •

Proof of Theorem 3.1. Fix k
elements of TZi. Set

0, j € TZk, and let

MJ) := (l/Vd)(Hk+i(j +DH,) I ••

Then (3.7) is equivalent to
Ak(j)Ak(j)* = / r .

By Lemma 3.2, there exist rd x rd matrices Cfc(j) and Ck(j) of the form

,-• • Jd denote all the

(3-16)

for some r(d - 1) x rd matrices Bk(j) and BfcO) such that

(3.18)

Now, define r(d - 1) x r matrices Gk+i(j + Dk£), Gk+i(j + Dk£), £ e TZ1: by

Bk(j) := {l/s/d){Gk+1{j + Dk£l) | • • • | Gfc+it? + Dk£d)),

Bk{j) := (l /v^)(Gf e +i(j + Dk£1) | • • • | Gfc+1(j + L "

By (3.17) and (3.18), we have

(3.19)

Ak{j)Ak{JY

Bk{j)Ak{jY Bk(j)Bk(J)*

0'rxr(d-l)

Ir(d-l)

and it follows from (3.16) and (3.19) that the conditions (3.8), (3.12) and (3.13) are
satisfied.

It remains to show that (3.10) holds. Note that the matrix Pk(j) defined in (3.9) can
be written as

pk(j) = Dke)dk+1(j + Dkey.
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Then, by (3.1) and (3.2), we see that

Ck(j) diag(Mfe+i(j + Dk^),..., Mk+1(j + Dked))Ck(jy = - '
a

Since Ck(j) is invertible and (3.3) holds, the determinant of the product of matrices in
the above identity is a positive real number. Consequently, we have

A similar argument shows that

det
' Pk(jY

and this completes the proof of the theorem. D

The proof of Theorem 3.1 is constructive, and it gives an algorithm for the construction
of biorthogonal multiwavelets from a pair of biorthogonal mult iresolut ions.

Algorithm 3.3. For k ^ 0, suppose that Hk+i,Hk+i e S(Dk+1)TXr are the matrices
in the periodic matrix refinement equations (1.3).

Step 1. Fix j s TZk and form the r x rd matrices Ak(j) and Ak(j) as in (3.16).

Step 2. Find a (rd — r)xrd matrix Bk(j) whose rows formed a basis of the orthogonal
complement of the linear span of the rows of Ak(j) in Crd.

Step 3. Set Bk(j) to be the (rd — r)xrd matrix formed by the last (rd — r) rows of the
rd x rd matrix (Ak(j)*

Step 4. Define r(d - 1) x r matrices Gk+i{j + Dk£), Gk+i(j + Dk£), tenx,by (3.19).

Step 5. Repeat steps 1-4 with all the elements j in TZk-

Step 6. Write fa = (tf£,..., ^ ( d " 1 ) ) T and fa = ( $ , . . . , $ ( d ~ 1 ) ) T , and set

fa(x) :=

fa(x) :=

to obtain the biorthogonal multiwavelets in L2([0,2TT)S).

In the following two examples on the special case of r = 1, different values of d are
considered.
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644 5. 5. Goh and K. M. Teo

Example 3.4. Let d = 2. Then

(a) s = 1, M = 2; and

are some examples of the cases included under this setting. Without loss of generality,
we may assume that £j = {0,92} and TZi = {O,^}-

For k^0,jenk, define

ti + DH2), I
DH2) = ^2M~ik+1^ J

As shown independently in [3] and [10], e" i < J '2 ' r M"1«3 = - 1 . This implies that the two
equations in (3.20) can be combined together as

i(j + DH2), j e nk+1. (3.21)

Now, for k ̂  0, j e Ilk, the matrix Ck(j) in (3.17) is given by

Then the matrix Cfc(j) = (^(j)*)"1 in (3.17) yields

Gfc+i(j) = - ( W 2 ) e - y ' 2 ' M " v )<l2Hk+1(j + Dk£2), jeTZk+1. (3.22)

Note that (3.21) and (3.22) are equivalent to

fc+U')=e -"fc+i(92-«•), Gk+i(t)=e 2 //fc+i(92-«),

for all £ € £*;+!• In the special case of s = 1 and M = 2, this becomes

for all £ = 0 , 1 , . . . , 2fc+1 — 1. These expressions are periodic analogues of the familiar
alternating flip formulae for the construction of wavelets in L2(R).

Example 3.5. Let d > 2, and fix k ^ 0, j £ TZk. Without loss of generality, suppose
that £\, £2,...,£d are all the elements of 1Z\ with

\Hk+1(j + D%)\ = max \Hk+1(j + Dk£)\.

Define the ( d - l ) x l matrices
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by

0, otherwise,

where m = 1,2,..., d - 1, v — 1,2,..., d. Then the matrix Ck(j) in (3.17) is given by

= ——- x

~' ~' 0 ••• 0

0

\-Hk+1{j + DHd) 0

and a direct calculation yields

det(CfcO)) = (^-) Hk+1(j + DH^^Ak+iiJ + Dkeu)Hk+1(j + DHV).

Consequently, it follows from (3.7) that

-d-2
det(Cfe(j)) = d}-WHk+l{j + DH{) ? 0,

since \Hk+1(j + Dkh)\ = maxK R l \Hk+l(j + Dk£)\ > 0.
The (d — 1) x 1 matrices Gk+\{j + Dk£), (. € 1Z\, are obtained from the matrix Ck(j)

in (3.17), which is given by

CM = (& w>-' = J a
where adj(C'fc(j)*) denotes the transpose of the matrix of cofactors of Ck{j)*-

4. Biorthogonal Riesz bases

For k > 0, suppose that {T^™ : m = 1,2,... ,r(d - 1), £ 6 £fc} and {Tfyp : m =
1,2,..., r(d — 1), ^ € £fe} form a pair of biorthogonal bases of Wk and Wfc, respectively.
Since L2([0,2n)s) has the direct sum decompositions

L2([0,27r)s) = Vo®Wo®W1®--- = Vo®Wo®Wl®---,

it is natural to ask whether the two collections of functions

^ * > 0 , m = 1,2 , . . . , r (d-1) , £ € £*} (4.1)
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and

{ifff : m = 1,2,..., r} U {Tfyj? : k ^ 0, m = 1,2,..., r(d - 1), £ G £fc} (4.2)

form a pair of biorthogonal Riesz bases of L2([0,2?r)s). In this connection, the following
theorem, which is a multidimensional periodic analogue of results in [3,5,6], on a general
sequence of functions ip™, k ̂  ko, m = 1,2,. . . , r(d — 1), is useful.

Theorem 4.1. Suppose that there exist positive constants C\ and C2 such that
00 r(d-l)

fc=fc0 m = l

and

(4.3)

j G Uk, (4.4)

for some k0 ^ 0 and e > 0. Tien there exists a positive constant Bo such that, for every

(4.5)
00 r(d-l)

y y y\(f,T&k)\
fc=feo m = l ££Ck

Proof. First, fix k ^ fco- By Parseval's identity,
r(d-l) r(d-l)

m = l

Let

- V
m = l

r(d-l)

= E
7 7 1 = 1

E
nezs

, 7 m / \ in-(2

/ ( j + ^fcp)^ m ( j + £>fcp)eU-(21rAf-*«)

(4.6)

Then d^ G S(Dk), and its inverse finite Fourier transform aj? is a sequence in S{Mk).
Furthermore, dj? and a^1 satisfy the relation (1.1). Consequently, it follows from (4.6)
that

r(d-l) r(d-l)

771=1 E^C/fi 771=1 t€ jCfc

r(d-l)

- Zw i/Cfci 2 ^ |a*
7 7 1 = 1 eeck

r(d-l)

m=l
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This implies that, for e > 0,

r(d-l)

m=l

r(d-l)

^ f c E E ( E
r(d-l)

d I . 2 ^ 2 ^ \fv + D P) Wk (J + D P)\ >^ WkK3 + -
m = l 7"c

r(d-l)

E E E
where the assumption (4.4) is used in the last inequality.

Hence,

E E E K/.zftm2 < c2 f; "^ ^
fc=fc0 m = l «g£f c fc=fc0 r n = l

oo r(d-l)

Then (4.5) follows from the assumption (4.3). D

Theorem 4.2. For each of the collections of functions (4.1) and (4.2), suppose that
there exist positive constants C\ and C<i such that (4.3) and (4.4) are satisfied for some
fco ^ 0 and e > 0. Then (4.1) and (4.2) form a pair of biorthogonal Riesz bases of
L2([0,2irn

Proof. By a standard argument (see [5] or [14, pp. 32-36]), it suffices to establish
the existence of a positive constant B such that the inequality

m = l fc=0 m = l

holds for both collections (4.1) and (4.2). Indeed, it follows from the Cauchy-Schwarz
inequahty and Theorem 4.1 that, for the collection (4.1),

E K/OI '+E 'E E i</.E K/.OI+E
m = l fc=0 m = l

^ ( E W I I 2 + E E E ii^rn2 + -Bo)ii/ii2,

https://doi.org/10.1017/S0013091500021246 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021246


648 S. S. Goh and K. M. Teo

where the constant BQ is as in (4.5). Similarly, the collection (4.2) satisfies another such
inequality. Thus the proof of the theorem is complete. •

For the special case of r = 1 and d = 2 on the space L2(RS), the compactly supported
biorthogonal wavelets ip and ip in [5,6] satisfy the conditions

oo oo

sup Yl \ip(DkLj)\e < oo, sup Y, \4>(Dh")f<°o (4.7)
fc= — OO fc = — OO

and

sup y^ \ip(u> + 27rp)|2~£ < oo, sup Y^ \ip(cj + 2np)\2~l < oo, (4.8)

where e and e are positive constants. For k ^ 0, let f̂c and f̂c be biorthgonal wavelets
in £2([0, 2TT)S) obtained from periodizing ip and ip with the formulae:

Then it follows from the conditions (4.7) and (4.8) that ipk and ipk satisfy (4.3) and (4.4)
for some &o. On a related note, suppose that 4>k and </>fc, k ^ 0, are biorthogonal scaling
functions in L2([0,2n)s) obtained by periodizing the compactly supported biorthogonal
scaling functions of Z/2(RS) in [5,6]. Then the matrix extension procedure in Example 3.4
also yields the same biorthogonal wavelets ip/. and tpk, k ^ 0, which satisfy (4.3) and (4.4).

There are still many open problems in the topic of multidimensional biorthogonal
periodic multiwavelets. For instance, for the space L2(RS), the study of biorthogonal
scaling functions and multiwavelets can be formulated in terms of transition operators
and cascade algorithms. It would be interesting to derive such an approach for the space
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