SKY SURVEY OF FLARE STARS AND VARIABLE STARS - a SUMMARY OF TVELVE YEARS' COOPERATIVE OBSERVATION

Sun Yili Tong Jianhua
Beijing Astronomical Observatory, China

Abstract

S

We lave been observing in the Sco-Opla dark cloud region for 12 years. We have only reduced a small part of the plates. Nevertheless, 12 new flare stars and more than 40 new variables stars have been found. Besides, we have discovered a new subgroup of RR stars in the globular cluster M4.

TEXT

At present, it is well Known that compact IR sources, T Tan stars, flare stars and Orion popmation variables etc. are young stars. Observations have shown that they are always born in groups and have close relations with clusters, associations and the surrounding nebulosities where tyey were born. Both theory and observation have shown they are pre-main sequence stars and still in the process of gravitational contraction. So, it is meaningful to do a systematic survey for these stars. This is the observational approach to the problem of star formation and evolution.

In 1975, the Purple Mountain Observatory began to seaych for new flare stars and variable stars in the Sco-Oph region. Later, a cooperative group consisting of members from Shanghai, Beijing and Purple Mountain Observatories was formed. Using mainly the $60 / 90 \mathrm{~cm}$ Schnidt, the 40 cm double astrograph as well as other reflectors, we have been observing in the Sco-Oph, NGC 7000, W3 and Tan dark cloud regions for 12 years. By now more than 2000 plates have been obtained (the total exposure time >1200 hours). We have only reduced a small part of the plates owing to lack of an advanced measuring machine and a computer in the past. Nevertheless, 12 new flare stars and more than 40 new variable stars have been fomed. However, more new variable stars are waiting to be measured, and even more plates are waiting to be reduced. Besides, using the UK Schmidt, we have found 62 new H_{a} emission-line stars in the ρ Oph region. We have also observed the slit spectra of more than 30 known T Tau stars.

Owing to the fact that the globular cluster M4 was used by us as the calibration cluster, it was blinked and measured frequently. In this process, as a by-produc!, 5 new normal RR Lyrae variables were found. Even more Important, a new subgroup of low ann intude variable stars which are located around the horizontal branch (IIB) were discovered. Their amplitudes are less than $0^{m} .1$ and main period < $0.2 d$. According to their characteristics of light variation, we can classify them as RRd-a a new subgroup of RR Lyrae stars. Beside, some periodic variables which are located in the middle part of the red giant branch (RGB) and at the intersection of IIB and RGB were found. They are remarkable in having a 98 - minute period. It is very likely that all of them are indeed chaster members.

Table 1 New Flare Stars

	ZB No.	a 1050	$\delta 1950$	Amplitude	Date
Tan	7	$16^{h} 25^{m} 30^{5}$	-240 09! 4	$>6.5 \Delta m_{13}$	19750803
NGC 7000	12	3018	-25 42.3	$1.6 \Delta \mathrm{U}$	19760001
$\mathrm{Sco-O} \mathrm{P}^{\text {h }}$	13	2202	-2314.9	$3.2 \Delta \mathrm{U}$	19760003
	15	$30 \quad 54$	-2628.1	$>4.9 \Delta \mathrm{U}$	197704
	16	2.142	-26 05.0	$\sim 3.5 \Delta m_{13}$	19770619
	21	$15 \quad 37$	-24 05.5	>2.2	
	17	$\begin{array}{llll}20 & 55 & 30\end{array}$	+40 32.0	$>2.7 \Delta \mathrm{U}$	19770709
	45	5839	$\begin{array}{lll}+4.4 & 10.2\end{array}$	$>3.0 \Delta \mathrm{U}$	19770711
	46	$52 \quad 52$	+13 47.8	$>2.8 \Delta \mathrm{U}$	19780301
	$3 \cdot 1$	$0.421^{\prime \prime} 4$	+26 44	$\approx 3.9 \Delta m_{\mathrm{B}}$	19751231
	35	26.3	+24 57	$1.2 \Delta m_{B}$	09771205
	36	33.6	+22 56	$1.0 \Delta m_{B}$	19780103

Table 2 New Variable Stars

ZB No.	a 1950	$\delta 1950$	Ampl. nax. min	Epoch Period Type
1	$16^{h} 18^{\prime \prime \prime} \cdot 4 \cdot 4^{3}$	-25026 ' 59 "	$2^{\text {m }} 33$	UVn?
2	$18 \quad 47$	-25 2704	0.55	In?
3	2.111	-22 5115	1. 89	Ins
4	2.148	-22 4548	0.89	In?
5	$24 \quad 54$	-2.1 19 -10	0.82	In T
6	25 3-1	-25 0.150	0.54	In
8	$25 \quad 30$	-24 5850	0.68	In?
9	$25 \quad 59$	-24 4854	0.60	In?
10	$27 \quad 22$	-2.4.48.46	0.86	In
11	$30 \quad 15$	-2.1574	0.64	In
20	$13 \quad 59$	-26 16! -	15.716 .6	
22	1751	-23 55.4	14.416 .0	
23	$18 \quad 52$	--25 55. 9	$15.3>17.0$	JD 2443281: $190^{\text {d }}: \mathrm{M}$
24	1910	-2314.7	$14.0>15.6$	In T
25	$20 \quad 18$	-2555.8	$14.8 \quad 16.3$	JD 24.43251 $152^{\text {d }}$ M
26	$20 \quad 35$	-2059.0	13.214 .1	
27	$2 \cdot 10$	-2457.3	$16.0 \quad 17.0$	
23	$23 \quad 27$	-26 04. 0	$14.3>16.7$	JD 2443270 105 ${ }^{\text {d }}$
29	$28 \quad 29$	$\begin{array}{llll}-2.4 & 18.3\end{array}$	15.216 .2	In
30	3108	-20 37.5	15.316 .3	Ins
31	32 is	-25 01.2	$13.45 \quad 14.45$	JD 24.43252.29 0.114373 ${ }^{\text {d }} \mathrm{RRs}$
32	3419	-25 06. 2	$14.8>16$	JD 24.33-10 $108^{d} \mathrm{M}$

