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Abstract

In this paper we develop an asymptotic theory of aggregated linear processes, and
determine in particular the limit distribution of a large class of linear and nonlinear
functionals of such processes. Given a sample {Y (N)1 , . . . , Y

(N)
n } of the normalized

N -fold aggregated process, we describe the limiting behavior of statistics TN,n =
TN,n(Y

(N)
1 , . . . , Y

(N)
n ) in both of the cases n/N(n) → 0 and N(n)/n → 0, assuming

either a ‘limiting long- or short-memory’ condition on the underlying linear process.
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1. Introduction

Let {Xk, k ∈ Z} be a stationary process with mean 0 and finite variances, let {X(j)k , k ∈ Z},
j = 1, 2, . . . , be independent copies of {Xk, k ∈ Z}, and consider the process

Ȳ
(N)
k = X

(1)
k + · · · +X

(N)
k

N
, k ∈ Z. (1.1)

Such processes, called aggregated processes, appear in many problems of statistics, natural
sciences, and economics. For example, macroeconomical data obtained by averaging
production data from individual companies are normalized aggregated data. The fundamental
statistical problem of aggregation theory is to draw, given a sample {Ȳ (N)1 , . . . , Ȳ

(N)
n } of the

aggregated process for some large n and N , conclusions for the structure of the underlying
processes {X(j)k , k ∈ Z} (‘disaggregation’) and use these to describe the asymptotic behavior
of {Ȳ (N)k , k ∈ Z}. Besides its obvious importance for econometrics, aggregation has a crucial
importance from a purely probabilistic point of view as well. By a seminal paper of Granger
[22], aggregatingN random coefficient (autoregressive) AR(1) processes can lead, asN → ∞,
to fractionally integrated long-memory processes. Similar examples show that aggregated
processes can have a much richer structure and more complicated dynamics than their
elementary (‘micro-level’) components. This opens a new way to analyze complex processes
by constructing such processes from simple ‘building blocks’ via aggregation. In particular,
aggregated random parameter AR processes have been studied extensively in the literature;
see the important contributions by Celov et al. [10], Dacunha-Castelle and Fermín [13],
Dacunha-Castelle and Oppenheim [14], Horváth and Leipus [24], Oppenheim and Viano [36],
Puplinskaite and Surgailis [41], [42], Zaffaroni [51], and the references therein. Aggregation or
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superpositions in continuous time were discussed in [1], [2], [3], [6], [7], and [32]. For
aggregating ARCH-type processes, see [17], [20], [28], [30], [52], and [53]. A somewhat
related field are so-called superlinear processes (cf. [47] and the references therein), where
processes are instantaneously aggregated by nonrandom weights. Such processes have served
as a rich source of examples and counterexamples for the central limit theorem and weak
invariance principle for stationary processes. However, the substantial difference between
random and nonrandom weights means that different treatments are required.

Let

{Y (N)k , k ∈ Z} := {√NȲ (N)k , k ∈ Z}.
From the multivariate central limit theorem, it follows that the finite-dimensional distributions
of {Y (N)k , k ∈ Z} converge asN → ∞ to those of the associated Gaussian process {ξk, k ∈ Z},
whenever some model assumption on {Y (N)k , k ∈ Z} is made. In its simplest analytic form, the
disaggregation problem calls for determining the distribution of the process {Xk, k ∈ Z} if we
know the distribution (e.g. the covariances φk or spectral density) of the associated process. In
case of aggregated AR(1) processes with random parameter a, a simple explicit solution can
be given, but, for aggregated AR(p) processes with p random parameters a1, . . . , ap, p ≥ 2
(which are usually dependent due to stationarity and causality assumptions), this is a much
harder problem, leading to a Fredholm-type integral equation, which is known to be an ill-
posed problem. Equivalently, the moments E[alj ], 1 ≤ j ≤ p, l = 1, 2, . . . , satisfy an infinite
nonlinear system of equations, whose structure is so complicated that even numerical solutions
are difficult to obtain. In the case of p = 1, replacing φk with their estimators φ̂k,n,N based on
the sample {Y (N)1 , . . . , Y

(N)
n } leads to consistent estimators of the moments E[al] in terms of

{Y (N)1 , . . . , Y
(N)
n }. For example, in the random coefficient AR(1) case Horváth and Leipus [24]

gave the estimator

Zn,N =
∑n
k=2 Y

(N)
k Y

(N)
k−1 − ∑n

k=4 Y
(N)
k Y

(N)
k−3∑n

k=1(Y
(N)
k )2 − ∑n

k=3 Y
(N)
k Y

(N)
k−2

(1.2)

for E[a]; consistent estimators for the density of a were given in [11] and [31], and, for
parametric moment estimators, see [9]. Note that the least square estimator is not consistent in
the case of aggregated processes, due to the nonergodicity of {Y (N)k , k ∈ Z}. Determining the
asymptotic distribution of such estimators requires studying nonlinear functionals of the sample
{Y (N)1 , . . . , Y

(N)
n }, a delicate problem whose nature sensitively depends on the relative order

of the sample size n and aggregation number N , and whose solution is known only in special
cases. For example, for N = N(n) viewed as a function of n, asymptotic normality of the
moment estimators in the AR(1) case was proved in [24] in the case n/N(n) → ∞; analogous
results for the density estimator were given in [11] and [31] in the case N = ∞, i.e. when
the estimators are based on the associated process {ξk, k ∈ Z}. Similar problems arise when
considering panel data; see, e.g. Phillips and Moon [40], who discussed related phenomena in
the case n/N(n) → ∞.

Let d be a positive integer. The purpose of the present paper is to provide a weak
invariance principle for multivariate functions f (Y (N)k , . . . , Y

(N)
k−d+1) of aggregated linear

processes with an arbitrary (possibly infinite) number of random parameters. More precisely, we
will study the asymptotic behavior of

∑[nt]
k=1 f (Y

(N)
k , . . . , Y

(N)
k−d+1) as n,N → ∞, considering

all interesting cases for the orders of magnitude of n and N . Our results will cover processes
with short as well as long memory, naturally with a completely different class of admitted
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functionals f (Y (N)k , . . . , Y
(N)
k−d+1). For the random coefficients of the underlying process

Xk = ∑∞
j=1 αjεk−j , we will assume throughout the paper that

(B) supi∈N0
|αi | ≤ C almost surely (a.s.)

for some constant C > 0. Our basic assumption in the short memory case will be

(SM)
∑∞
j=1 ‖αj‖ < ∞,

where ‖ · ‖2 denotes the L2-norm. This implies that not only the process {Xk, k ∈ Z}, but also
the Gaussian process {ξk, k ∈ Z}, obtained as the limit of the normalized aggregated process
{Y (N)k , k ∈ Z} as N → ∞, has short memory. In the case of long memory, we require that
(SM) fails, but

(LM) max1≤h≤d
∑∞
i=0 ‖αi − αi+h‖ < ∞ and

∑∞
i=0 E[|αiαi+k|] = O(k−β), β > 0,

holds, where d is the dimension of the functional f we are studying. Condition (LM) allows
a slower decrease of the coefficients αj , as the degenerate example αj = 1/j shows; on the
other hand, the admissible class of functionals is much smaller in this case. We do not make
any assumption on the dependence of the random coefficients αj . Our main results will show
that, under either condition, the partial sums of finite-dimensional functionals of {Y (N)k , k ∈ Z}
satisfy a weak invariance principle, a fact from which the limit distribution of many important
statistics of aggregated processes can be deduced immediately.

The proofs of our results use martingale techniques, specifically, we will apply the
decomposition method of Gordin [21], a powerful technique leading to sharp results for large
classes of weakly dependent processes; see, e.g. [37] and [50] for recent contributions. The main
technical difficulties in our paper are connected with extending the martingale decomposition
method for the two-parameter situation provided by aggregation, and involve in particular the
handling of the nonergodic setting. As will be clear from the proofs, our method applies to a
large class of nonlinear processes as well, e.g. processes allowing a Volterra expansion with
sufficiently rapidly decreasing coefficients. This class includes, among others, many ARCH-
and GARCH-type processes. However, to keep our exposition at a reasonable length, in this
paper we deal only with linear processes. We note that some of the results of the present paper
were announced, without proof, in the conference proceedings [27].

Our paper is structured as follows. In Section 2 we introduce notation and prove some
preliminary results. The main results are presented in Section 3, along with some additional
remarks and comments. In Section 4 we apply the results to aggregated AR(1) sequences,
where we revisit and extend results from the literature. The proofs are split into two parts.
First, some necessary tools are presented in Section 5.1. Based on these tools, the proofs of the
main results are given in Section 5.2.

2. Preliminaries

Let

Xk =
∞∑
i=0

αiεk−i , k ∈ Z,

be a linear process with random coefficients αi subject to conditions (SM) or (LM). Assume
that {εk, k ∈ Z} are independent, identically distributed random variables with E[εk] = 0, 0 <
σ 2
ε = E[ε2

k ] < ∞, and that the random vectors (α0, α1, . . .) and (εk, k ∈ Z) are independent.
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Let

X
(j)
k =

∞∑
i=0

α
(j)
i ε

(j)
k−i , k ∈ Z, j = 1, 2, . . . ,

be independent copies of {Xk, k ∈ Z}, i.e. let ε(j)k , k ∈ Z, j = 1, 2, . . . , be independent
random variables distributed as the εk and let the arrays (α(j)0 , α

(j)
1 , . . .), j ∈ N, be independent,

distributed as (α0, α1, . . .) and also independent of the ε(j)k . Let {Y (N)k , k ∈ Z}be the normalized
aggregated process, i.e.

Y
(N)
k = X

(1)
k + · · · +X

(N)
k√

N
, k ∈ Z, (2.1)

and denote by Y
(N)
k = (Y

(N)
k , . . . , Y

(N)
k−d+1)

	 the d-dimensional aggregated vector. Define the
σ -algebras G(N)t , A(N), and F (N)

t by

G(N)t = σ(ε
(j)
k , k ≤ t, k ∈ Z, 1 ≤ j ≤ N),

A(N) = σ(α
(j)
k , k ∈ N0, 1 ≤ j ≤ N),

F (N)
t = σ(G(N)t ∪ A(N)).

When there is no danger of confusion, we will omit the superscript (N).We will frequently use
the abbreviation ‖ · ‖p = (E[| · |p])1/p, p < ∞; in particular, we denote the L2-norm with
‖ · ‖ := ‖ · ‖2.

Note that conditions σ 2
ε < ∞ and (SM) or (LM) imply that the aggregated process {Y (N)k }k∈Z

is stationary in the weak sense; in other words,

cov(Y (N)i , Y
(N)
j ) = cov(Y (N)1 , Y

(N)
j−i−1) =: φj−i for all N ∈ N,

and, in particular, that the covariances φh, h = 0, 1, 2, . . . , exist. For x ∈ R
d , let |x| denote

the usual Euclidean norm, and denote by ‘
w−→’ weak convergence and by ‘

fdd−−→’ convergence of

finite-dimensional distributions. In addition, by ‘
D[0,1]−−−→’ we denote weak convergence in the

space of the cádlág functions on the interval [0, 1] equipped with the Skorokhod topology.
Let ηk, k ∈ Z, be a stationary d-dimensional Gaussian sequence. For a Borel-measurable

function f : R
d �→ R, we formally define

(σ
f
η )

2 := E[(f (η1)− E[f (η1)])2]

+ 2
∞∑
k=1

E[(f (η1)− E[f (η1)])(f (ηk+1)− E[f (ηk+1)])]. (2.2)

Moreover, for fixed m ∈ N, by ξ (m) = {ξ (m)k , k ∈ Z} we denote the weak limit of the
m-dependent approximation Y

(N)
k − E[Y (N)k | G(N)k−m], i.e.

ξ
(m)
k := lim

N→∞ Y
(N)
k − E[Y (N)k | G(N)k−m].

In particular, we formally define

σ
f

ξ ,∗ := lim
m→∞ σ

f

ξ (m)
, (2.3)

where we point out that we do not demand σf
ξ ,∗ = σ

f

ξ ,
.
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3. Main results

As already mentioned, our main result is a functional central limit theorem for the normalized
aggregated process {Y (N)k }k∈Z. Note that if N is fixed and n → ∞, we are dealing with a
stationary sequence. There is a vast literature on functional central limit theorems dealing with
this particular case. For more recent results, see [15], [16], [34], [37], [38], and [50]; excellent
surveys can be found in [35] and [39]. On the other hand, we have seen that if n is fixed and

N tends to ∞, then {Y (N)k }k∈Z

fdd−−→ {ξk}k∈Z, which is a stationary ergodic Gaussian sequence.
Limit theorems for such processes have been established (among others) by Taqqu [45], [46],
Dobrushin and Major [18], Giraitis and Surgailis [19], and Arcones [4], [5]. So it is natural to
expect that, if N = N(n) is a function of n and dominates n strong enough in the sense that
limn n/N(n) → 0 fast enough, we will get similar results.

Let g(s), s ∈ [0, 1], be a Lipschitz continuous function, and set

�n = �(N)n := 1√
n

n∑
i=0

g

(
i

n

)
(f (Y

(N)
i )− E[f (Y (N)i ) | A(N)]),

where f is a map from R
d to R. Moreover, forL ≥ 1, we define the d-dimensional polynomials

Qi(x), 1 ≤ i ≤ L, x = (x1, . . . , xd) ∈ R
d , as

Qi(x) = (xj − xj+hi )qi Pi(x), 1 ≤ j, j + hi ≤ d, qi ≥ 0, (3.1)

wherePi(x) are d-dimensional polynomials. For convenience, we restate conditions (B), (SM),
and (LM).

(B) supi∈N0
|αi | ≤ C a.s.

(SM)
∑∞
i=0 ‖αi‖ < ∞.

(LM) max1≤h≤d
∑∞
i=0 ‖αi − αi+h‖ < ∞ and

∑∞
i=0 E[|αiαi+k|] = O(k−β), β > 0.

Remark 3.1. Note that (SM) implies that {Y (N)k }k∈Z is a short-memory process, since we have∑∞
h=0 |φh| < ∞. Contrarily, (LM) allows for long memory; see Section 4 for examples.

In the case where the aggregated process {Y (N)k }k∈Z exhibits short memory, the following
result is derived.

Theorem 3.1. Let ε be a copy of the random variables {ε(j)k }k∈Z, 1 ≤ j ≤ N , and let f be a
map from R

d to R, satisfying the condition

|f (x)− f (y)| ≤ C

L∑
i=1

|Qi(x)−Qi(y)|,

where the Qi(x) are as in (3.1) for some C > 0 and L ≥ 1. Let D = 4 max1≤i≤L deg(Qi). If
both n and N tend to ∞, and condition (SM) and E[εD] < ∞ are valid, then

�
(N)
[nt]

D[0,1]−−−→ σ
f

ξ

∫ t

0
g(s) dWs, 0 ≤ t ≤ 1, (3.2)

where Wt is a Brownian motion and σf
ξ

is as in (2.2), where ξ = {ξk, k ∈ Z} denotes the
associated Gaussian sequence of Y (N) = {Y (N)k , k ∈ Z}. If N is fixed and n → ∞, then it
suffices to require E[εD/2] < ∞, and instead of σf

ξ
, we have an A(N)-measurable random

variable (RV) σA(N) in (3.2), which is independent of {Wt }0≤t≤1.

https://doi.org/10.1239/aap/1370870128 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870128


Limit theorems for aggregated linear processes 525

The above result is quite general, and it seems to be very difficult to prove a corresponding
result where condition (LM) is valid but (SM) is not. However, by slightly narrowing the class
of functions satisfying (3.1), the following result is obtained.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 are valid, with the exception that
we only require condition (LM) instead of (SM). If, in addition, min1≤i≤L qi ≥ 1 in (3.1) then

�
(N)
[nt]

D[0,1]−−−→ σ
f

ξ ,∗
∫ t

0
g(s) dWs, 0 ≤ t ≤ 1, (3.3)

where Wt is a Brownian motion, and σf
ξ ,∗ is as in (2.3) and exists. If N is fixed and n → ∞,

then it suffices to require E[εD/2] < ∞, and instead of σf
ξ ,∗, we have an A(N)-measurable RV

σA(N) in (3.3), which is independent of {Wt }0≤t≤1.

Remark 3.2. Note that even though {Y (N)k }k∈Z may exhibit long memory, we still obtain a
Brownian motion as the limit distribution. This phenomena is related to the concept of the
Hermite rank of a function; see, e.g. [4], [5], and [18].

Remark 3.3. One may suspect that even if min1≤i≤L qi ≥ 1 then we also have the relation
σ
f

ξ ,∗ = σ
f

ξ
, despite the possible inclusion of long memory. This conjecture is fueled by [26,

Lemma 3.86] (and also Proposition 4.1 below). General computations for σf
ξ ,∗ can be found

in, e.g. [5]; however, these do not seem to lead to simpler expressions in the present context.

Remark 3.4. Note that if N is fixed and n → ∞, then A(N) is an invariant σ -algebra with
respect to the usual shift operators {θk}k∈Z that can be associated with the stationary process
{Y (N)k }k∈Z. In particular, σA(N) can then be represented as

lim
n→∞ E[(�(N)n )2 | A(N)] = σ 2

A(N)

∫ 1

0
g2(s) ds.

Note the presence of weights g(i/n) in (3.3). Weighted statistics have proven to be very
helpful in many fields, particularly in the case of weighted empirical processes (see, e.g. [29]
and [43]), which is addressed in Corollary 3.3 below. In addition, such weights can also be
used to account for additional seasonal or nonseasonal effects of the underlying process; see,
e.g. [25] and the references therein.

In practical applications, the conditional expectation E[f (Y (N)k ) | A(N)] may be difficult to
handle, and one would want to know when it could be replaced by E[f (Y (N)k )]. This question
essentially boils down to the relation between n and N , more precisely, if we write N = N(n)

as a function of n, whether limn→∞ n/N(n) = 0 or limn→∞N(n)/n = 0. Both cases have
economic backgrounds: Granger [22] argued that in many economical problems N is much
larger than n, whereas Beran et al. [8] gave examples of the opposite case. To clarify the
situation in the case that (SM) holds, we need a preliminary result. To this end, let

f (x1, . . . , xd) =
M∑
s=0

λsTs(x1, . . . , xd) =
M∑
s=0

2 | deg Ts

λsTs(x1, . . . , xd)+
M∑
s=0

2 | deg Ts

λsTs(x1, . . . , xd)

be a d-dimensional polynomial, where λs ∈ R,M < ∞, and Ts(x1, . . . , xd) = ∏d−1
i=0 x

q
(s)
i

i are
the corresponding monomials. For each 0 ≤ s ≤ M , we have the relation

E[Ts(ξk)] = gTs (φ0, . . . , φd−1),

https://doi.org/10.1239/aap/1370870128 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870128


526 M. JIRAK

where gTs (x1, . . . , xd) is a d-dimensional polynomial; see, e.g. [4] and [5]. In addition, set

a
(r)
h = E[ε2

1]
∞∑
i=0

α
(r)
i α

(r)
i+h, r = 1, 2, . . . , N, h = 0, 1, . . . , d − 1.

Proposition 3.1. Assume that (SM) is valid and that the additional conditions of Theorem 3.2
hold. If f is a d-dimensional polynomial then we have

√
N(E[f (Y (N)k ) | A(N)] − E[f (Y (N)k )]) w−→ N (0, σ 2),

where

σ 2 = var

(d−1∑
i=0

φ−1
i (a

(1)
i − φi)

M∑
s=0

2 | deg Ts

λsq
(s)
i gTs ,ξ (φ0, . . . , φd−1)

)
,

with the notation introduced above.

Note that σ 2 = 0 if the polynomial f consists of only monomials with odd degree.
Proposition 3.1 yields the following corollary.

Corollary 3.1. Let f be a d-dimensional polynomial. Assume that (SM) is valid and that the
additional conditions of Theorem 3.2 hold. Then

(i) if limn→∞ n/N(n) = 0, we can replace E[f (Y (N)k ) | A(N)] in Theorem 3.2 with
E[f (Y (N)k )],

(ii) if limn→∞N(n)/n = 0, we have
√
N

n

n∑
i=0

g

(
i

n

)
(f (Y

(N)
i,d )− E[f (Y (N)i,d )])

w−→
∫ 1

0
g(s) dsN (0, σ 2),

where σ 2 is as in Proposition 3.1.

Remark 3.5. With some additional (notational) effort, one may also cover the case where f
is a polynomial, as in Theorem 3.2 in the case that (LM) holds. A special case is treated in
Corollaries 4.1 and 4.2 below.

If the function f is not a polynomial, and/or only (LM) holds, we can still provide the
following result.

Corollary 3.2. Suppose that the assumptions of Theorem 3.2 hold and that

lim
n→∞

n√
N(n)

= 0.

Then we can replace E[f (Y (N)k ) | A(N)] in Theorem 3.2 with E[f (Y (N)k )] or E[f (ξk)].
By increasing the aggregation levelN with respect ton, we can partially extend Theorem 3.2.

Theorem 3.3. Let f be a map from R
d to R such that

sup
x

|f (x)|
1 + |x|p+1 < ∞ for some p > 0, |f (x)− f (y)| ≤ C(Q(x)−Q(y)),

for all x, y ∈ R
d up to a finite number of points, where C is a positive constant and Q(x) is a

d-dimensional polynomial. Suppose that limn→∞ n/
√
N(n) = 0, and that the assumptions of
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Theorem 3.1 hold, together with E[|ε|m] < ∞ for all m. Then

1√
n

[nt]∑
i=0

g

(
i

n

)
(f (Y

(N)
i,d )− E[f (Y (N)i,d )])

fdd−−→ σ
f

ξ

∫ t

0
g(s) dWs, 0 ≤ t ≤ 1,

where σf
ξ

is as in (2.2).

If f (x1, . . . , xd) = 1{x1≤t1,...,xd≤td } for fixed t1, . . . , td ∈ R, we obtain the following result
for the weighted empirical distribution function F (g)n (t1, . . . , td ).

Corollary 3.3. Under the conditions of Theorem 3.3, the weighted empirical distribution
function

F
(g)
n (t1, . . . , td ) = 1

n

n∑
k=1

g

(
k

n

)
1{Y (N)k ≤t1,...,Y (N)k+d−1≤td }

satisfies

√
n

(
F
(g)
n (t1, . . . , td )− n−1

n∑
k=1

g

(
k

n

)
P(ξ1 ≤ t1, . . . , ξd ≤ td )

)

w−→ σ 1
ξ

√∫ 1

0
g2(s) dsN (0, 1),

where {ξk}k∈Z denotes the associated process of {Y (N)k }k∈Z, and σ 1
ξ is as in (2.2) with f =

1{x1≤t1,...,xd≤td }.

Theorem 3.2 also allows us to give a weighted version of Theorem 2 of [4].

Corollary 3.4. Letg(s)be a continuous function on [0, 1], and letf be a Borel-measurable map
from R

d to R. Let {ξk}k∈Z be a zero-mean stationary Gaussian sequence with covariances φk =
E[ξ0ξk], k ∈ Z, satisfying lim supn n

−1 ∑n
k,l=1 |φ|k−l|| < ∞. Then, under E[f (ξ0,d )

2] < ∞,
we have

1√
n

[nt]∑
k=0

g

(
k

n

)
(f (ξk)− E[f (ξk)]) fdd−−→ σ

f

ξ

∫ t

0
g(s) dWs.

4. Aggregated AR(1) processes and long memory

In this short section we will briefly touch on the disaggregation problem if the micro-level
processes {X(j)k , k ∈ Z}j=1,...,N are AR(1) processes. In practice, it is often reasonable to
approximate individual data by simple time series models, such as, e.g.AR(1) and GARCH(1, 1)
(see [12], [33], and [51]). Very often, more complex models neither provide an advantage
in accuracy nor in efficiency of the estimates, and usually are difficult to study from the
theoretical point of view. Consider now the aggregated process defined by (1.1), where {X(j)k ,

k ∈ Z}j=1,...,N are independent, identically distributed random coefficient AR(1) processes.
That is, for any j = 1, . . . , N ,

X
(j)
k = a(j)X

(j)
k−1 + ε

(j)
k , k ∈ Z,

where ε(j)k , k ∈ Z, j = 1, 2, . . ., and the copies εk are independent, identically distributed RVs
with zero mean and variance σ 2 < ∞, and the a(j), j = 1, 2, . . ., are independent, identically
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distributed RVs. We assume that {ε(j)k , k ∈ Z, j = 1, 2, . . .} and {a(j), j = 1, 2, . . .} are
independent. Finally, let a be an independent RV having the same distribution as (a(j)),
j = 1, 2, . . . .

Most of the recent results dealing with the disaggregation problem considered aggregated
AR(1) processes; see, e.g. [8], [10], [11], [24], and [31]. For some insights on AR(2) processes,
we refer the reader to [27]. A profound discussion of these results is beyond the scope of the
present paper, and will be given together with some extensions elsewhere. Here and now, we
focus on a special function f , which is a key ingredient in the disaggregation problem:

f (Y
(N)
k , Y

(N)
k−2, Y

(N)
k−h, Y

(N)
k−h−2)

= Y
(N)
k (Y

(N)
k−h − Y

(N)
k−h−2 − E[ah]Y (N)k + E[ah]Y (N)k−2), h = 1, 2, . . . . (4.1)

The importance of this function stems from the fact that asymptotic results concerning moment
and density estimators associated to the RV a may be derived from results regarding this
particular function. In fact, we can show that (cf. [11] and [27])

E[a2n] = φ2n − φ2n+2

φ0 − φ2
, n ∈ N0,

E[a2n−1] = φ2n−1 − φ2n+1

φ0 − φ2
, n ≥ 1,

where σ 2 = E[ε2
1]. Hence, we can estimate the moments E[ah] via

Zn,N,h =
∑n
k=h+1 Y

(N)
k Y

(N)
k−h − ∑n

k=h+3 Y
(N)
k Y

(N)
k−h−2∑n

k=1(Y
(N)
k )2 − ∑n

k=3 Y
(N)
k Y

(N)
k−2

.

Note in particular that Zn,N,1 = Zn,N , where Zn,N is given in (1.2). Using Theorem 3.2, we
will derive the asymptotic distribution of Zn,N,h under quite general conditions, given below.

Assumption 4.1. Suppose that the following assertions hold.

(i) E[ε8
1] < ∞.

(ii) |a| ≤ 1 a.s.

(iii)
∑∞
j=0 ‖(1 − a2)aj‖ < ∞.

(iv) |E[ak/(1 − a2)]| < ∞.

We obtain the following result.

Proposition 4.1. If both n and N tend to ∞, we have, under Assumption 4.1,

1√
n

[nt]∑
i=0

g

(
i

n

)
(f (Y

(N)
i )− E[f (Y (N)i ) | A(N)]) w−→ σ

f

ξ

∫ t

0
g(s) dWs, 0 ≤ t ≤ 1,

in D[0, 1], where Wt is a Brownian motion and σf
ξ

is as in (2.2).

Note that Assumption 4.1(i), (ii), and (iv) allow for long memory, since cov(Y (N)k , Y
(N)
l ) =

E[ε2]E[ak−l (1 − a2)−1] for k ≥ l. Assumption 4.1(iii) can be investigated more easily by
introducing a density function, which is done in, e.g. [24] and [31] when discussing the
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disaggregation problem. In this context, the following type of density functions ϕ(x) are
commonly used:

ϕ(x) = (1 + x)1−d1(1 − x)1−d2ψ(x), x ∈ [−1, 1], d1, d2 < 1.

Here ψ(x) is continuous on [−1, 1] and does not vanish at −1 and 1. For simplicity, we will
consider the case where

ϕ(x) = (1 − x2)1−2dψ(x), x ∈ [−1, 1], d < 1
2 .

In this case, the condition E[1/(1 − |a|)3] < ∞ of Horváth and Leipus [24] implies that
d < − 1

2 , which is a short-memory condition. Evaluating Assumption 4.1(iii), we obtain

‖(1 − a2)aj‖2 = O
(
�[3 − 2d]�[ 1

2 + j
]
�−1[3 − 2d + 1

2 + j
]) = O(j−3+2d).

Hence, we require
∑∞
j=1 j

−3/2+d < ∞, which yields d < 1
2 . This is also the condition of Celov

et al. [11]. Note that this also implies that the aggregated process {Y (N)k }k≥1 exhibits a long-
memory behavior if 0 < d < 1

2 . Proposition 4.1 allows us to derive the following corollaries,
which extend the results presented in [24] and [27].

Corollary 4.1. Let N = N(n) be an increasing function in n, and assume that g(s) is a
Lipschitz continuous function on [0, 1] such that

∫ 1
0 g(s) ds �= 0. Then, under Assumption 4.1,

we have, for limn→∞N(n)/n = 0,

√
N

Zn,N,h − E[ah]√
Zn,N,2 − Z2

n,N,1

w−→ N (0, 1).

Note that the variance of the limit distribution does not depend on the choice of the function
g(s), which is rather unexpected. However, this feature is lost in the second case.

Corollary 4.2. Assume that g(s) is a Lipschitz continuous function on [0, 1] such that∫ 1
0 g(s) ds �= 0. Then, under Assumption 4.1, we have, for limn→∞ n/N(n) = 0,

√
n(Zn,N,h − E[ah]) w−→

√∫ 1
0 g(s)

2 ds∫ 1
0 g(s) ds

N (0, σ 2
f ), (4.2)

where σf = σ
f

ξ
, ξ = {ξk, k ∈ Z} denotes the associated Gaussian process, and σf

ξ
is as

in (2.2).

A distribution-free limit can be established by estimating σ 2
f with a Bartlett-type estimator;

we omit the details. Also, note that the variance of the limit distribution in (4.2) is greater than
or equal to σ 2

f by the Cauchy–Schwarz inequality, and we have equality if and only if g(s) is
a.s. constant. Thus, g(s) ≡ 1 yields the estimator with minimal variance.

5. Proofs

The main tool in our proofs will be martingale decomposition, and we will make essential
use of the ideas in [26] and [39]. To verify the conditions for the martingale approximation, we
will use a second main class of tools, namely approximation results related to the central limit
theorem for a stationary Gaussian process. Unless otherwise stated, in all proofs, C always
denotes a generic constant that may vary from one formula to another.
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5.1. Some tools

We postpone the proof of Theorem 3.2 to Section 5.2, and first establish the other results of
Section 3. Depending on assumptions (SM) and (LM), we will require one of the following
results.

Lemma 5.1. Let g be a bounded function on [0, 1], and let f be a map from R
d to R. Let

ξk = (ξ
(1)
k , . . . , ξ

(d)
k )	 be a zero-mean stationary Gaussian sequence in R

d with covariances

rp,q(k) = E[ξ (p)0 ξ
(q)
k ], 1 ≤ p, q ≤ d, satisfying lim supn n

−1 ∑n
k,l=1|rp,q(k−l)| < ∞. Then,

under E[f (ξk)2] < ∞, we have

∥∥∥∥ 1√
n

[nt]∑
k=0

g

(
k

n

)
(f (ξk)− E[f (ξk)])

∥∥∥∥ ≤ Cd
√
t‖f (ξ0)‖ for all n,

where the constant C depends only on the covariances.

Lemma 5.2. Let ξk = (ξ
(1)
k , . . . , ξ

(d)
k )	 be a stationary Gaussian sequence in R

d with

covariances rp,q(k) = E[ξ (p)0 , ξ
(q)
k ], 1 ≤ p, q ≤ d, satisfying lim supk k

β |rp,q(k)|/L(k) =
bp,q < ∞, 0 < β < 1, for each 1 ≤ p, q ≤ d, where L(k) is a slowly varying function.
Then, under E[f (ξk)2] < ∞, we have

∥∥∥∥a−1
n

[nt]∑
k=0

g

(
k

n

)
(f (ξk)− E[f (ξk)])

∥∥∥∥ ≤ dC
√
t‖f (ξ0)‖ for all n,

where an = n1−τβ/2 and τ is the rank of the function f .

For a detailed treatment of the rank of a function, we refer the reader to [4] or [18]. In
our case, we will always choose τ = 1, since we are only interested in an upper bound (see
Lemma 5.6 below).

Both lemmas are slightly changed versions of results in [4, Theorem 2, Theorem 6].

Proofs of Lemmas 5.1 and 5.2. Lemma 5.1 is obtained from [4, Lemma 1], following the
proof of [4, Theorem 2]. Lemma 5.2 is obtained similarly.

We set Y
(N)
k = (Y

(N)
k , . . . , Y

(N)
k+d−1)

	 and ξk = (ξk, . . . , ξk+d−1)
	, where {ξk}k∈Z is the

associated Gaussian sequence. In addition, we set

σ
f

n,ξ
=

∥∥∥∥ 1√
n

n∑
k=0

{f (ξk)− E[f (ξk)]}
∥∥∥∥, σ

f
n,Y =

∥∥∥∥ 1√
n

n∑
k=0

{f (Y (N)k )− E[f (Y (N)k )]}
∥∥∥∥.

For the purposes of the next lemma, let {Zk}k∈N be a sequence of independent random
vectors in R

d with zero mean and identity covariance matrix. Define

SN = 1√
N

N∑
k=1

Zk, δN = N−1/2
E[|Z1|3], ηN,p = N−(p−1)/2

E[|Z1|p+1].

Let PN denote the distribution of SN , and N the d-dimensional standard normal distribution.
For a Borel-measurable function f from R

d to R, we set

‖f ‖∗
p = sup

x

|f (x)|
1 + |x|p+1 .
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Note that if ‖f ‖∗
p < ∞ holds for some function f (x1, . . . , xd) then this remains true for g

with g(x1, . . . , xd) = f (A(x1, . . . , xd)
	), where A is a linear transformation.

The following result, stated here as a lemma, is due to Sweeting [44].

Lemma 5.3. Letp ≥ 3 be an integer, and let f be a Borel-measurable function on R
d such that

‖f ‖∗
p < ∞ holds. Assume that E[|Z1|p+1] < ∞. Then there exists a constant C(d, p) < ∞

such that, for all N ≥ 1, E[|SN |p+1] ≤ C(d, p)(1 + ηN,p). Moreover, we have∣∣∣∣
∫

Rd

f d(PN − N )

∣∣∣∣ ≤ C(d, p)

(
‖f ‖∗

p(δN + ηN,p)+
∫

Rd

ω
CδN
f dN

)
,

where C is an absolute constant and ωδf (x) = sup{|f (y1)− f (y2)| : |yi − x| < δ, i = 1, 2}.
Given f : R

d �→ R, define f̂ : R
2d �→ R by

f̂ (x1, . . . , x2d) = f (x1, . . . , xd)f (xd+1, . . . , x2d).

Proposition 5.1. Let Y (N)k = N−1/2 ∑N
j=1X

(j)
k be the aggregated process as in Definition 1.1,

and let f be a Borel-measurable function from R
d to R such that

|f (x)− f (y)| ≤ C|Q(x)−Q(y)| (5.1)

for all x, y ∈ R
d up to a finite number of points, where Q is a d-dimensional polynomial

with degree q. Assume that conditions (B) and either (SM) or (LM) hold, and that, for some
p ≥ max{3, q − 1

2 }, we have E[|X1|2p+1] < ∞. Then we have

∣∣∣∣E
[

1

n

[nt]∑
k,l=1

f (ξk)f (ξl,d )

]
− E

[
1

n

[nt]∑
k,l=1

f (Y
(N)
k )f (Y

(N)
l,d )

]∣∣∣∣ ≤ C1
C(2d, 2p)n√

N
(5.2)

and ∣∣∣∣E
[

1

n

[nt]∑
k=1

f (ξk)

]
− E

[
1

n

[nt]∑
k=1

f (Y
(N)
k )

]∣∣∣∣ ≤ C2
C(2d, 2p)√

N
, (5.3)

where C1 and C2 depend only on the covariance structure, and C(2d, 2p) is a constant
depending only on d and p.

Proof. It suffices to show (5.2) since the same argument applies to (5.3). Owing to (5.1),
we readily verify that ‖f ‖∗

p < ∞ for p ≥ max{3, q − 1
2 }. Moreover, for a d-dimensional

continuous function h satisfying (5.1), we have

sup{|h(y1)− h(y2)| : |yi − x| ≤ δ, i = 1, 2} ≤ δ sup
{|yi−x|≤δ, i=1,2}

|R(y1, y2)|, (5.4)

where R is a 2d-dimensional polynomial with finite degree. Note that either condition (SM) or
(LM) implies the existence of the covariance matrix �(k, 2d) of the vector (ξk, . . . , ξk+d−1,

ξ0, . . . , ξd−1)
	. To make Lemma 5.3 applicable, we define the functions f̂k(x) as f̂k(x) :=

f̂ (L(k, 2d)1/2x). Since E[ξ2
0 ] < ∞, the elements of L(k, 2d)1/2 are all bounded, one readily

verifies that there exists a constant C such that

‖f̂k‖∗
2p ≤ C for all k, (5.5)
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and a similar bound as in (5.4) is also obtained. Let (x1, . . . , xm) be the finite set of discontinuity
points of f̂k , and denote by Bδ(xi) the closed, 2d-dimensional δ-ball around xi, 1 ≤ i ≤ m.
Then, owing to (5.4) and (5.5),∣∣∣∣

∫
R2d

ω
CδN

f̂k
dN

∣∣∣∣ ≤
∣∣∣∣
∫

R2d\⋃m
i=1 Bδ(xi )

ω
CδN

f̂k
dN

∣∣∣∣ +
∣∣∣∣
∫

⋃m
i=1 Bδ(xi )

ω
CδN

f̂k
dN

∣∣∣∣
≤ CδN for all k.

An application of Lemma 5.3 yields

|E[f (ξk)f (ξl,d )] − E[f (Y (N)k )f (Y
(N)
l,d )]|

=
∣∣∣∣
∫

R2d
f̂k d(Pn − N )

∣∣∣∣
≤ C(2d, 2p)

(
‖f̂ ‖∗

2p(δN + ηN,2p)+
∫

R2d
ω

CδN

f̂k
dN

)
≤ C(2d, 2p)(‖f̂ ‖∗

2p(δN + ηN,2p)+ CδN).

Thus, we obtain ∣∣∣∣E
[

1

n

[nt]∑
k,l=1

f (Y
(N)
k )f (Y

(N)
l,d )

]
− E

[
1

n

[nt]∑
k,l=1

f (ξk)f (ξl,d )

]∣∣∣∣
≤ 1

n

[nt]∑
k,l=1

∣∣∣∣
∫

R2d
f̂k d(Pn − N )

∣∣∣∣
≤ nt2C(2d, 2p) sup

k

(‖f̂k‖∗
p(δN + η2p,N )+ CδN)

≤ C1
C(2d, 2p)n√

N
,

and, similarly,

∣∣∣∣1

n

[nt]∑
k,l=1

E[f (Y (N)k )]E[f (Y (N)l,d )] − 1

n

[nt]∑
k,l=1

E[f (ξk)]E[f (ξl,d )]
∣∣∣∣ ≤ C2

C(d, p)n√
N

;

hence, the claim follows.

Let us assume again that the conditions of Proposition 5.1 hold for a d-dimensional function
f , ‖f ‖∗

p < ∞ for 0 ≤ p < ∞. Let fq be a polynomial approximation of degree q of f , with
q ≥ p. Then we can write f = fq + f>q , and, by ‖f ‖∗

p < ∞, we have ‖f>q‖∗
q < ∞. Hence,

we obtain the following result.

Corollary 5.1. Let f be a d-dimensional function such that ‖f ‖∗
p < ∞, 0 ≤ p < ∞, and

assume that the conditions of Proposition 5.1 are satisfied together with (SM). Then

∥∥∥∥ 1√
n

[nt]∑
k=1

f>q(Y
(N)
k )

∥∥∥∥
2

≤ C
C(2d, 2q)n√

N
+ C‖f>q(ξ0,d )‖2,

where {ξk}k∈Z is the associated sequence of {Y (N)k }k∈Z.
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Proof. It follows from Proposition 5.1 that

∥∥∥∥ 1√
n

[nt]∑
k=1

f>q(Y
(N)
k )

∥∥∥∥
2

= C
C(d, q)n√

N
+

∥∥∥∥ 1√
n

[nt]∑
k=1

f>q(ξ
(N)
k )

∥∥∥∥
2

.

One readily verifies that (SM) implies that the associated sequence {ξk}k∈Z satisfies the covari-
ance condition of Lemma 5.1; hence, we obtain ‖n−1/2 ∑[nt]

k=1 f>q(ξ
(N)
k )‖2 ≤ C‖f>q(ξ0,d )‖2,

which completes the proof.

5.2. Proofs of the main theorems

This subsection is devoted to the proofs of Theorems 3.2 and 3.3, Proposition 3.1, and
Corollaries 3.1, 3.2, and 3.4. Unless otherwise stated, in all the proofs, C always denotes a
dynamic constant that may vary from one formulae to another. The proof of Theorem 3.2
consists of two steps. The first step provides a martingale representation, where we will rely
heavily on results presented in [39]. The second step is to verify conditions enabling us to use
martingale limit theorems, which will involve estimates for the square bracket of martingales.
Throughout this subsection, we will assume that the assumptions of Theorem 3.2 hold, and, for
all the proofs, we assume without loss of generality thatL = 1, i.e. |f (x)−f (y)| ≤ C|Q(x)−
Q(y)|, where Q(x) is a d-dimensional polynomial and C > 0. For notational convenience,
we will omit the superscript (N) in the notation Y (N)k = Yk for the aggregated process in this
subsection, except when we really want to emphasize the dependence onN = N(n). Let k ≥ t ,
write X(j)k as

X
(j)
k =

k−t−1∑
i=0

α
(j)
i ε

(j)
k−i + α

(j)
k−t ε

(j)
t +

∞∑
i=k−t+1

α
(j)
i ε

(j)
k−i = X

(j)
k,>t + α

(j)
k−t ε

(j)
t +X

(j)
k,<t ,

and observe that X(j)k,>t is independent of G(N)t . We introduce the notation

Y
(N)
k,>t = 1√

N

N∑
j=1

X
(j)
k,>t , Y

(N)
k,<t = 1√

N

N∑
j=1

X
(j)
k,<t ,

Y
(N)
k,≥t = 1√

N

N∑
j=1

X
(j)
k,>t + α

(j)
k−t ε

(j)
t , Y

(N)
k,=t = 1√

N

N∑
j=1

α
(j)
k−t ε

(j)
t ,

Y
(N)
k,≤t = 1√

N

N∑
j=1

X
(j)
k,<t + α

(j)
k−t ε

(j)
t .

For a process Ui , we define the projection operator Pk(Ui) = E[Ui | Fk] − E[Ui | Fk−1]. In
connection with the projection operator and the previous notation, we will use the coupling
method. This method has been used by Wu [48], [49] and Dedecker and Doukhan [15], among
others. The method consists of coupling a sequence of RVs with a special copy of that sequence,
and is particularly helpful when dealing with projections of the type of Pk(Ui). To this end,
given an innovation ε(j)k , define (ε(j)k )′ as another innovation with the same law, independent

of all ε(j)k , 1 ≤ j ≤ N , k ∈ Z. In this spirit, we also introduce Y (N),
′

k,>t , Y
(N),′
k,<t , . . ., which are

defined as before with the innovations (ε(j)k )′.
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Lemma 5.4. LetW(d)
k = K(Y

(N)
k , . . . , Y

(N)
k+d−1)− E[K(Y (N)k , . . . , Y

(N)
k+d−1) | A(N)], whereK

satisfies |K(y)−K(x)| ≤ C|Q(y)−Q(x)| with x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ R
d ,

such that
Q(x) = (xj − xj+h)qP (y), 1 ≤ j, h ≤ d, q ≥ 0,

where P(y) is a polynomial with degree D. Moreover, we assume that E[ε2D
1 ] < ∞. If, in

addition, (SM) holds if q ≥ 0 or (LM) holds if q ≥ 1, then

(i) E[W(d)
k | F (N)

−∞] = 0 for all N , where F (N)
−∞ := ⋂

i∈N
F (N)

−i ,

(ii)
∑∞
j=0 ‖Pk−j (W(d)

k )‖ < ∞ for all k.

Proof. We first verify (i). Owing to Kolmogorov’s zero–one law, it follows that G(N)−∞ :=⋂
i∈N

G(N)−i is the trivial σ -algebra {�,∅} for each N . Hence, we deduce that F (N)
−∞ = A(N),

and, thus, by the definition of W(d)
k , the claim follows.

To prove (ii), we note that

‖Pk−j (W(d)
k )‖ = ‖E[W(d)

k | Fk−j ] − E[W(d)
k | Fk−j−1]‖.

Hence, we will take a closer look at E[W(d)
k | Ft ] − E[W(d)

k | Ft−1], with t = k − j . We set

�k= (Y
(N)
k , . . . , Y

(N)
k+d−1)= (Y

(N)
k,>t +Y (N)k,=t +Y (N)k,<t , . . . , Y

(N)
k+d−1,>t +Y (N)k+d−1,=t +Y (N)k+d−1,<t )

and �tk
′ = (Y

(N)
k,>t + Y

(N),′
k,=t + Y

(N)
k,<t , . . . , Y

(N)
k+d−1,>t + Y

(N),′
k+d−1,=t + Y

(N)
k+d−1,<t ). Using the

coupling method, it follows that

|E[W(d)
k | Ft ] − E[W(d)

k | Ft−1]| = |E[K(�k) | Ft ] − E[K(�tk ′) | Ft−1]|
= |E[K(�k)−K(�tk

′
) | Ft ]|

≤ E[C|Q(�k)−Q(�tk
′
)| | Ft ].

Jensen’s inequality yields

‖E[C|Q(�k)−Q(�tk
′
)| | Ft ]‖2 ≤ (‖E[C2(Q(�k)−Q(�tk

′
))2 | Ft ]‖1)

1/2

= C(E[(Q(�k)−Q(�tk
′
))2])1/2. (5.6)

Now suppose that q ≥ 0 and (SM) holds. Then, owing to the structures of �k and �tk
′, all

the terms in (5.6) cancel, except for those which contain powers of Y (N)t,=k and Y (N),
′

t,=k . Hence,
we obtain

‖E[W(d)
k | Ft ] − E[W(d)

k | Ft−1]‖ ≤ C1 max
1≤h≤2D

‖|αj |h‖ ≤ C‖αj‖

for all k, j ,N , whereC1 > 0 is a fixed constant, independent of k, j , andN . The last inequality
follows from the fact that we have |αj |h ≤ Ch−1|αj | for j = 1, 2, . . . .

Now suppose that q ≥ 1 and (LM) holds. Then, arguing in the same manner, we obtain

‖E[W(d)
k | Ft ] − E[W(d)

k | Ft−1]‖ ≤ C1 max
1≤q≤2D

max
1≤h≤d ‖|αj − αj+h|q‖

≤ C max
1≤h≤d ‖αj − αj+h‖

for all k, j , N , where C1 > 0 is a fixed constant, independent of k, j , and N . Hence, the claim
follows.
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Owing to Lemma 5.4, we obtain the following martingale difference decomposition for
W
(d)
k : W(d)

k = ∑∞
i=0 Pk−i (W(d)

k ). This allows us to use the machinery developed in [39]. Let
g(s) be a Lipschitz continuous function on [0, 1], and set

�k =
k+m−1∑
i=k

g

(
i

n

)
{E[W(d)

i | Fk] − E[W(d)
i | Fi−m]},

where m is an arbitrary positive integer (which tends to ∞ later; see [39, Lemma 2]). Define
the martingale

Mk =
k∑
i=1

(�i − E[�i | Fi−1]) and M
(n)
t = 1√

n
M[nt], 0 ≤ t ≤ 1, (5.7)

which is a martingale with respect to the filtration Ht := F[nt]. One readily deduces from
Lemma 5.3 that the sequence {Y (N)k }k∈Z is uniformly integrable; hence, owing to [39, Propo-
sition 8] (see also [39, Lemma 2]), the limiting behavior of

1√
n
S[nt] = 1√

n

[nt]∑
k=1

g

(
k

n

)
W
(d)
k

is governed by the martingale M(n)
t . Hence, it remains to verify and apply various martingale

limit theorems. We will do so in a series of lemmas. We first mention an identity, which is a
key result for the proofs. For simplicity, we only state it in the one-dimensional case.

Lemma 5.5. Let i ≥ k ≥ l > −∞ and j ≥ l. Then it holds that

E[f (Y (N)i ) | Fk]E[f (Y (N)j ) | Fl] = E[f (Y (N)i )f (Y
(N)
j≤l )+ f (Y

(N),′
j>l ) | Fk];

in particular, it holds that

E[f (Y (N)i ) | A(N)]E[f (Y (N)j ) | A(N)] = E[f (Y (N)i )f (Y
(N),′
j ) | A(N)].

Proof. Using the coupling argument, we have

E[f (Y (N)i ) | Fk]E[f (Y (N)j ) | Fl] = E[E[f (Y (N)j ) | Fl]f (Y (N)i ) | Fk]
= E[E[f (Y (N,′)j>l )+ f (Y

(N)
j≤l ) | Fi]f (Y (N)i ) | Fk]

= E[E[f (Y (N,′)j>l )+ f (Y
(N)
j≤l )f (Y

(N)
i ) | Fi] | Fk]

= E[f (Y (N)i )f (Y
(N,′)
j>l )+ f (Y

(N)
j≤l ) | Fk].

The second identity follows in the same manner.

Lemma 5.6. Let M(n)
t be the martingale defined by (5.7), and assume that g is a Lipschitz

continuous function on [0, 1]. Then the following statements hold.

(i) If N is fixed and n → ∞, then [M(n),M(n)]t P−→ σN,m
∫ t

0 g(s)
2 ds, where σN,m is an

A(N)-measurable random variable.

(ii) If both n and N tend to ∞, then [M(n),M(n)]t P−→ (σ
f

ξm
)2

∫ t
0 g(s)

2 ds, where (σ f
ξm
)2 ∈

R
+, depending only on m.
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Proof. We have [M(n),M(n)]t = [M,M][nt]n−1 = n−1(M2
0 + ∑[nt]

k=0(Mk+1 − Mk)
2);

hence, we need to take a closer look at �Mk := Mk − Mk−1 = �k − E[�k | Fk−1]. For
fixed n and N , we have

�Mk = g

(
k

n

)(k+m−1∑
i=k

E[W(d)
i | Fk] − E[W(d)

i | Fk−1]
)

+
k+m−1∑
i=k

(
g

(
i

n

)
− g

(
k

n

))
(E[W(d)

i | Fk] − E[W(d)
i | Fk−1])

=: An,k + Bn,k.

Owing to the Lipschitz continuity of g(s) and Lemma 5.4, we readily verify that ‖Bn,k‖ =
O(mn−1). Hence, we can replace (�Mk)

2 with An,k; thus,

n[M(n),M(n)]t = M2
0 +

[nt]∑
k=0

g

(
k

n

)2(k+m−1∑
i=k

E[W(d)
i | Fk] − E[W(d)

i | Fk−1]
)2

+ O(m).

(i) Put η̂2
k,m = {∑k+m−1

i=k E[W(d)
i | Fk] − E[W(d)

i | Fk−1]}2. It follows from the ergodic

theorem that n−1(M2
0 + ∑[nt]

k=0(η̂
2
k,m)) → tσN,m a.s. Hence, arguing as in [39, Theorem 9], the

claim follows.
(ii) The proof of (ii) is more involved. Using the results from Section 5.1 together with

Lemmas 5.1 and 5.5 we will show that ‖[M(n),M(n)]t − (σ
f

ξ ,m
)2

∫ t
0 g(s)

2 ds‖2 → 0, as both
n and N tend to ∞, which implies (ii). To this end, put

KA(N)

(Yk,≤t , . . . , Yk+d−1,≤t , Yk,<t , . . . , Yk+d−1,<t ) := E[W(d)
k | Ft ] − E[W(d)

k | Ft−1],
and note that

KA(N)

(x1, . . . , x2d) = E[K(Y (N)k,>t + x1, . . . , Y
(N)
k+d−1,>t + xd)

−K(Y
(N)
k,>t−1 + xd+1, . . . , Y

(N)
k+d−1,>t−1 + x2d) | A(N)].

Now let(k+m−1∑
i=k

E[W(d)
i | Fk] − E[W(d)

i | Fk−1]
)2

=
(k+m−1∑

i=k
KA(N)

(·)
)2

=: HA(N)

(Yk,≤k, . . . , Yk+d−1,≤k, Yk,<k, . . . , Yk+d−1,<k, Yk+1,≤k, . . . , Yk+d,≤k, . . .)

=: HA(N)

k ,

and note that HA(N)
(·) is a map from R

2dm → R for fixed (α(j)k , k ∈ N, 1 ≤ j ≤ N). More-
over, it holds that

I (n, t) := E

[( [nt]∑
k=1

g

(
k

n

)2

{η̂2
k,m − E[η̂2

k,m]}
)2]

=
[nt]∑
k,l=1

{
g

(
k

n

)
g

(
l

n

)
E[HA(N)

k HA(N)

l ] − E[HA(N)

k ]E[HA(N)

l ]
}
.
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By squaring out HA(N)

k and HA(N)

l , and applying Lemma 5.5 multiple times, we have

E[HA(N)

k HA(N)

l ] = E[HkHl], E[HA(N)

k ]E[HA(N)

l ] = E[Hk]E[Hl],
where Hk = H(Yk,≤k, . . .) and H is a map from R

6dm → R, independent of k and N .
Comparing this to the function HA(N)

, note that the dimension has tripled; however, the
unpleasant conditioning on the σ -algebra A(N) has disappeared. In addition, using the identity
a2 − b2 = (a − b)(a + b) and arguing similarly as in the proof of Lemma 5.4, we obtain

|H(x)−H(y)| ≤ |x − y||R(x, y)|, sup
x

|H(x)|
1 + |x|l < Cm2, x, y ∈ R

6dm,

for l = 2 degQ, where R(x, y) is a polynomial. Note, in particular, that we also have
| ∫

R2dm ω
CδN
H dN | ≤ Cm2δN . Thus, proceeding as in the proof of Proposition 5.1 we can

rewrite I (n, t) as

1

n2

n∑
k,l=1

g

(
k

n

)
g

(
l

n

)
{E[H(ξk)H(ξl )] − E[H(ξk)]E[H(ξl )]} + RN,m

= E

[(
1

n

[nt]∑
k=1

g

(
k

n

)
{H(ξk)− (σ

f

ξm
)2}

)2]
+ RN,m,

where E[H(ξ0)
2] ≤ Cm4, ξk = (ξ

(1)
k , . . . , ξ

(6dm)
k ) is a 6dm-dimensional stationary Gaussian

sequence with covariance matrix rk satisfying the conditions of Lemma 5.1 (or those of
Lemma 5.2, which are more general), σf

ξm
is defined as (σ f

ξ ,m
)2 = E(H(ξ0)), and RN,m =

O(N−1/2mD+3). It now follows from Lemma 5.1 (or Lemma 5.2) that

E

[(
1

n

[nt]∑
k=0

g

(
k

n

)2

{H(ξk)− (σ
f

ξm
)2}

)2]
≤ C(2dm)2

nβ/2
E[H(ξ0)

2] ≤ C

nβ/2
m6

for some β > 0, and, since n−1 ∑[nt]
k=0 g(k/n)

2 → ∫ t
0 g(s)

2 ds, the claim follows.

Lemma 5.7. If g is a Lipschitz continuous function on [0, 1] then, under the same assumptions
as in Theorem 3.2, we have

E

[ ∑
k≤T n

(n−1/2�Mk)
21{|n−1/2�Mk |>ε}

]
→ 0 as n → ∞ for all fixed ε > 0, T ≥ 0.

Proof. For fixed n and N , we have, from the Lipschitz continuity of g,

|�Mk| ≤
k+m−1∑
i=k

(∣∣∣∣g
(
k

n

)∣∣∣∣ + C|i − k|
n

)
|E[W(d)

i | Fk] − E[W(d)
i | Fk−1]|

≤ C

k+m−1∑
i=k

|E[W(d)
i | Fk] − E[W(d)

i | Fk−1]|

=: �k,m.
Note that �k,m is stationary for fixed m and N , and that E[�4

k,m] ≤ Cm for all N , since
we have E[εD] < ∞. We define V (δ)T = ∑T

i=0�
2
i,m1{|�i,m|>δ}, T ∈ N, which is an
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additive process in T for fixed m and N , so E[V (δ)T ] = TE[V (δ)1] for T ∈ N. We have,
for δ = ε

√
n, n−1

E[∑i≤T n(�i,m)21{|�i,m|>δ}] = n−1
E[V (ε√n)T n] = TE[V (ε√n)1]. The

Cauchy–Schwarz inequality together with the Markov inequality gives

E[V (ε√n)1] ≤ (ε2n)−1
T∑
i=0

E[�4
i,m] = T

ε2n
E[�4

i,m].

Hence, it follows that V (ε
√
n)T n → 0 as n → ∞, and, since �k,m ≥ �Mk , we conclude that

E[∑k≤T n(n−1/2�Mk)
2 1{n−1/2|�Mk |>ε}] → 0 as n → ∞ for all ε > 0.

Lemma 5.8. Let f : R
d �→ R be a continuous function. Then there exists a sequence N =

N(n) with limn n/N(n) = 0 such that

1√
n

n∑
k=1

{f (Y (N)k , . . . , Y
(N)
k+d−1)− E[f (Y (N)k , . . . , Y

(N)
k+d−1)]}

d−→ N(0, σ 2),

where σ = σ
f

ξ
and σf

ξ
is defined in (2.2).

Proof. Let L(·, ·) denote the Lévy distance, i.e.

L(X, Y ) = inf{ε > 0 : F(x) ≤ G(x + ε)+ ε and G(x) ≤ F(x + ε)+ ε for all x},
where F and G are distribution functions of the RVs X and Y . Define fk,N = f (Y

(N)
k , . . . ,

Y
(N)
k+d−1)− E[f (Y (N)k , . . . , Y

(N)
k+d−1)], and let fk,ξ be the corresponding associated Gaussian

version. Then we have, owing to [4, Theorem 2], for some σ 2 ≥ 0, L[n−1/2 ∑n
k=1 fk,ξ ,

N (0, σ 2)] ≤ εn, with limn εn → 0. For each n, according to the multivariate central limit
theorem, we can choose anN(n) such that L[n−1/2 ∑n

k=1 fk,N , n
−1/2 ∑n

k=1 fk,ξ ] ≤ εNn , with
lim εN(n) → 0, and limn n/N(n) = 0. Since

L

[
1√
n

n∑
k=1

fk,N ,N (0, σ 2)

]

≤ L

[
1√
n

n∑
k=1

fk,ξ ,N (0, σ 2)

]
+ L

[
1√
n

n∑
k=1

fk,N ,
1√
n

n∑
k=1

fk,ξ

]
,

the claim follows.

Proof of Theorem 3.2. Owing to Lemmas 5.6 and 5.7, we can apply [26, Theorem VIII.5.9]

(see also [26, Lemma 3.86]) to the martingale Mn
t , which gives Mn

t

w−→ σm,N
∫ t

0 g(s) dWs in

D[0, 1] (for fixed N and n → ∞), and Mn
t

w−→ σ
f

ξm

∫ t
0 g(s) dWs in D[0, 1] (if both n and N

tend to ∞) for allm = 1, 2, 3, . . . , where σf
ξm

is defined as in Lemma 5.6. Now [39, Lemma 2]

yields n−1/2S[nt]
w−→ σm

∫ t
0 g(s) dWs for fixed N and n → ∞, and n−1/2S[nt]

w−→σ
f

ξ ,∗
∫ t

0 g(s)

dWs if both n and N tend to ∞.

Proof of Theorem 3.1. We can proceed exactly as in the proof of Theorem 3.2, with the
exception that we need to compute σf

ξ
in this particular case. However, owing to Lemma 5.6,

it suffices to compute the value of σf
ξ

for a special sequence N0(n). Let N(n) be such that

limn n/N(n)
2 = 0. Then according to Corollary 3.2, we can replace the conditional expectation

E[f (Y (N)k ) | A(N)] with the expectation E[f (Y (N)k )], and now, from Lemma 5.8 in connection
with [4, Theorem 2], it holds that, for some sequence N0(n), σ

f

ξ
is as in Definition 2.2.
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Proof of Proposition 3.1. We only prove the claim in a simple case, the general case can be
handled in the same manner, but involves spacious computations. Let deg(f ) be the degree of
the one-dimensional polynomial f (x) = xdeg(f ), and putm = �deg(f )/2�. Let us first assume
that deg(f ) is even. Then it follows that

E[f (Y (N)k ) | A(N)]
= N−m(2m− 1)!!

∑
1≤j1 �=j2 �=···�=jm≤N

E[(X(j1)
k )2(X

(j2)
k )2 · · · (X(jm)k )2 | A(N)]

+Op(N
−1)

= N−m(2m− 1)!!
∑

1≤j1 �=j2 �=···�=jm≤N
a
(j1)
0 a

(j2)
0 · · · a(jm)0 +Op(N

−1),

where a(r)h = E[ε2
1] ∑∞

i=0 α
(r)
i α

(r)
i+h, r = 1, 2, . . ., h = 0, 1, . . . , d − 1. Hence, we obtain

√
N(E[f (Y (N)k ) | A(N)] − E[f (Y (N)k )]) = √

N(m− 1)!!UN +Op(N
−1/2),

where

UN = 1(
N
m

) ∑
1≤j1<j2<···<jm≤N

a
(j1)
0 · · · a(jm)0 − E[a(j1)

0 · · · a(jm)0 ],

which is an example of aU -statistic. The theory ofU -statistics (see, e.g. [23]) yields
√
NUN

w−→
N (0, σ 2) with σ 2 = m2

E
2m−2[a1

0] var[a1
0]. On the other hand, by appropriately adding and

subtracting E[a(ji )0 ] = E[a(1)0 ], 1 ≤ i ≤ m, we obtain

N−m ∑
1≤j1 �=j2 �=···�=jm≤N

m∏
i=1

(a
(ji )
0 − E[a(ji )0 ] + E[a(ji )0 ])

= N−1m

N∑
j=1

(a
(j)
0 − E[a(j)0 ])Em−1[a(1)0 ] + E

m[a(1)0 ] +Op(N
−1).

The central limit theorem now also yields the claim. Now consider the case where deg(f ) is
odd. Then it follows that

E[f (Y (N)k ) | A(N)] −Op(N
−1)

= N−m−1/22m(2m− 2) · · ·
∑

1≤j1 �=j2 �=···�=jm≤N,
j1=jm+1,...,jm=jm+1

a
(j1,jm+1)

0 a
(j2,jm+1)

0 · · · a(jm,jm+1)

0 ,

where a(r,s)0 = E(ε2
1)

∑∞
i=0(α

(r)
i )

2 if r �= s and a(r,s)0 = a
(r,r)
0 = E(ε3

1)
∑∞
i=0(α

(r)
i )

3 if r = s.
Arguing as in the even case, we obtain

√
N(E[f (Y (N)k ) | A(N)] − E[f (Y (N)k )]) = Op(N

−1/2),

which completes the proof.
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Proof of Corollary 3.1. Statement (i) follows immediately from limn→∞ n/N(n) = 0 and√
N(E[f (Y (N)k ) | A(N)] − E[f (Y (N)k )]) w−→ N (0, σ 2). To prove (ii), observe that

√
N

n

[nt]∑
i=0

g

(
i

n

)
(f (Y

(N)
k )− E[f (Y (N)k )])

=
√
N

n
Ant,N + √

N(E[f (Y (N)0,d ) | A(N)] − E[f (Y (N)0,d )])
1

n

[nt]∑
i=0

g

(
i

n

)
,

where

Ant,N = n−1/2
[nt]∑
i=0

g

(
i

n

)
(f (Y

(N)
k )− E[f (Y (N)k ) | A(N)]) w−→ σ

f

ξ

∫ t

0
g(s) dWs.

Hence, it follows that
√
N/nAnt,N

P−→ 0, and, thus, the limiting behavior is determined by√
N(E[f (Y (N)0,d ) | A(N)] − E[f (Y (N)0,d )])n−1 ∑[nt]

i=0 g(i/n). In view of n−1 ∑[nt]
i=0 g(i/n) →∫ t

0 g(s) ds, the claim follows.

Proof of Corollary 3.2. Owing to Lemma 5.3, we have
√
n|E[f (Y (N)k )] − E[f (ξk)]| ≤

C
√
n/N ; hence, it suffices to establish the claim for E[f (Y (N)k )]. Since g(s) is bounded,

the Minkowski and Jensen inequalities yield

E

∣∣∣∣
[nt]∑
k=0

g

(
i

n

)
[E[f (Y (N)k )] − E[f (Y (N)k ) | A(N)]]

∣∣∣∣
≤ C

[nt]∑
i=0

‖E[f (Y (N)k )] − E[f (Y (N)k ) | A(N)]‖.

We will now again use a coupling argument. Let {ζ (j)k }k≥1 be an independent copy of
{ε(j)k }k≥1, and define Y

(N),∗
k = (Y

(N),∗
k , . . . , Y

(N),∗
k+d−1)

	 by replacing ε(j)k with ζ (j)k in Y
(N)
k =

(Y
(N)
k , . . . , Y

(N)
k+d−1)

	 (the α(j)i s remain the same). Then we have

E[E2[f (Y (N)k ) | A]] = E[E[f (Y (N)k )E[f (Y (N)k ) | A(N)] | A(N)]]
= E[E[f (Y (N)k )f (Y

(N),∗
k ) | A]]

= E[f (Y (N)k )f (Y
(N),∗
k )].

Let {ξk, ξ∗
k }k≥1 be the (two-dimensional) associated processes of {Y (N)k , Y

(N),∗
k }k≥1, and put

ξk = (ξk, . . . , ξk+d−1)
	 and ξ∗

k = (ξ∗
k , . . . , ξ

∗
k+d−1)

	. The conditions of Theorem 3.2 imply
that the assumptions of Lemma 5.3 are met; hence, arguing similarly as in Proposition 5.1, we
obtain |E[f (Y (N)k )f (Y

(N),∗
k )] − E[f (ξk)f (ξ∗

k )]| ≤ C/
√
N , whereC2 does not depend onn. In

addition, since E[Y (N)k Y
(N),∗
k ] = 0 for all k ∈ Z, we can assume that ξk and ξ∗

k are independent,
and, thus, it holds that

E[f (ξk)f (ξ∗
k )] = E[f (ξk)]E[f (ξ∗

k )] = E
2[f (ξk)].

In the same manner, we obtain |E2[f (Y (N)k )] − E
2[f (ξk)]| ≤ C/

√
N . Putting everything

together, we obtain ‖E[f (Y (N)k )] − E[f (Y (N)k ) | A(N)]‖2 ≤ CN−1/4, and, hence, it follows
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that n−1/2 ∑[nt]
k=1 ‖E[f (Y (N)k )] − E[f (Y (N)k ) | A]‖2 = O(

√
n/N1/4), which completes the

proof.

Proof of Theorem 3.3. Owing to ‖f ‖∗
p < ∞, we have E[f (ξ0,d )

2] < ∞ and, thus, f can
be represented as an infinite sum of Hermite polynomials. Let fp be the sum of the first p
polynomials. Then we have, after dropping the variables of f , fp, and f>p for the simplicity
of the formulae,

1√
n

[nt]∑
k=0

g

(
k

n

)
(f − E[f ])

= 1√
n

[nt]∑
k=0

g

(
k

n

)
(fp − E[fp])+ 1√

n

[nt]∑
k=0

g

(
k

n

)
(f>p − E[f>p])

= Ap,n(t)+ A>p,n(t).

Since fp is a polynomial, it follows from Theorem 3.2 together with Corollary 3.1 that

1√
n

[nt]∑
k=0

g

(
k

n

)
(fp − E[fp]) w−→ σ

fp
ξ

∫ t

0
g(s) dWs.

Moreover, Corollary 5.1 (which remains valid since g is bounded) yields

‖Ap,n(t)− A∞,n(t)‖2 = ‖A>p,n(t)‖2 ≤ ε(1)p + ε
(2)
N,n,p,

where ε(1)p → 0 and ε(2)N,n,p → 0 if C(2d, 2p)n/
√
N → 0, and C(2d, 2p) is as in Proposi-

tion 5.1. Thus, by Slutsky’s lemma, it suffices to treat Ap,n(t). It follows from [4, Theorem 2]

that σ
fp
ξ

→ σ
f

ξ
, where σ

fp
ξ

and σf
ξ

are defined in (2.2). Now let h be a continuous, bounded
function. Then the dominated convergence theorem implies that∣∣∣∣E

[
h

(
σ
fp
ξ

∫ t

0
g(s) dWs

)]
− E

[
h

(
σ
f

ξ

∫ t

0
g(s) dWs

)]∣∣∣∣ ≤ ε(2)p ,

with ε(2)p → 0. Thus, it follows from the Minkowski inequality and Theorem 3.2 that∣∣∣∣E[h(Ap,n)] − E

[
h

(
σ
f

ξ

∫ t

0
g(s) dWs

)]∣∣∣∣
≤

∣∣∣∣E
[
h

(
σ
fp
ξ

∫ t

0
g(s) dWs

)]
− E

[
h

(
σ
f

ξ

∫ t

0
g(s) dWs

)]∣∣∣∣
+

∣∣∣∣E[h(Ap,n)] − E

[
h

(
σ
fp
ξ

∫ t

0
g(s) dWs

)]∣∣∣∣
≤ ε(2)p + ε

(3)
N,n,p + ε(4)n,p,

where limn ε
(4)
n,p → 0 for each p. In view of n/

√
N → 0 we can choose a sequence p → ∞

such that C(2d, 2p)n/
√
N → 0, which establishes the claim in dimension one. The general

case follows in the same manner in connection with the Cramér–Wold device.

Proof of Corollary 3.4. In order to establish the convergence of the finite-dimensional
distributions, we can repeat the proof of Theorem 3.3 verbatim. However, since we no
longer require any approximation results for aggregated processes, we only need E[f (ξ0)

2] <
∞ instead of E[f (ξ0)

4] < ∞; this is especially the case in Theorem 3.2, in particular in
Lemmas 5.6 and 5.7.
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5.3. Proofs of Section 4

Proof of Proposition 4.1. For the proof, it suffices to verify the conditions of Theorem 3.2.
We have deg(f ) = 2; hence, we obtain D = 8. Since |a| ≤ 1 a.s. per Assumption 4.1, we
obtain

∞∑
i=0

‖αi − αi+2‖ ≤ C1 sup
h∈N0

∞∑
i=0

‖ai+h(1 − a2)‖ ≤ C2

∞∑
i=0

‖ai(1 − a2)‖,

which is finite due to Assumption 4.1. Finally, it is obvious that f may be written as in (3.1)
with L = 2 and min1≤i≤L qi = 1.

Remark 5.1. If the function f is as in (4.1), we may extend Proposition 3.1 (by mimicking
the proof) to the case where (LM) is valid instead of (ii).

Proof of Corollary 4.1. Proceeding as in the proof of Corollary 3.1, we obtain, due to
Remark 5.1, √

N(Zn,N,h − E[ah]) d−→ N (0, var(a)).

This implies in particular that
√
Zn,N,2 − Z2

n,N,1 is a consistent estimator for var(a); hence,
the claim follows from Slutzky’s lemma.

Proof of Corollary 4.2. As in the proof of Corollary 4.1, we may proceed as in the proof of
Corollary 3.1, using Remark 5.1.
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[28] Kazakevičius, V., Leipus, R. and Viano, M.-C. (2004). Stability of random coefficient ARCH models and

aggregation schemes. J. Econometrics 120, 139–158.
[29] Koul, H. L. (1992). Weighted Empiricals and Linear Models (IMS Lecture Notes Monogr. Ser. 21). Institute of

Mathematical Statistics, Hayward, CA.
[30] Leipus, R. and Viano, M.-C. (2002). Aggregation in ARCH models. Liet. Mat. Rink. 42, 68–89.
[31] Leipus, R., Oppenheim, G., Philippe, A. and Viano, M.-C. (2006). Orthogonal series density estimation in a

disaggregation scheme. J. Statist. Planning Inf. 136, 2547–2571.
[32] Leonenko, N. N. and Taufer, E. (2005). Convergence of integrated superpositions of Ornstein-Uhlenbeck

processes to fractional Brownian motion. Stochastics 77, 477–499.
[33] Lewbel, A. (1994). Aggregation and simple dynamics. Amer. Econom. Rev. 84, 905–918.
[34] Maxwell, M. and Woodroofe, M. (2000). Central limit theorems for additive functionals of Markov chains.

Ann. Prob. 28, 713–724.
[35] Merlevède, F., Peligrad, M. and Utev, S. (2006). Recent advances in invariance principles for stationary

sequences. Prob. Surveys 3, 1–36.
[36] Oppenheim, G. and Viano, M.-C. (2004). Aggregation of random parameters Ornstein-Uhlenbeck or AR

processes: some convergence results. J. Time Ser. Anal. 25, 335–350.
[37] Peligrad, M. and Utev, S. (2005).A new maximal inequality and invariance principle for stationary sequences.

Ann. Prob. 33, 798–815.
[38] Peligrad, M. and Utev, S. (2006). Central limit theorem for stationary linear processes. Ann. Prob. 34, 1608–

1622.
[39] Peligrad, M. and Utev, S. (2006). Invariance principle for stochastic processes with short memory. In High

Dimensional Probability (IMS Lecture Notes Monogr. Ser. 51), Institute of Mathematical Statistics, Beachwood,
OH, pp. 18–32.

[40] Phillips, P. C. B. and Moon, H. R. (1999). Linear regression limit theory for nonstationary panel data.
Econometrica 67, 1057–1111.
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