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Abstract

Let k, r ≥ 2 be two integers. We prove an asymptotic formula for the number of k-free values of the r
variables polynomial t1 · · · tr − 1 over [1, x]r ∩ Zr.
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1. Introduction

Let k, r ≥ 2 be two integers. Given a multivariable polynomial P(t1, . . . , tr), a natural
problem is to investigate the number of its k-free values over [1, x]r ∩ Zr. This problem
being very hard, we can content ourselves with asking about the asymptotic behaviour
of this number as x grows to infinity.

Many authors have studied this problem for polynomials in few variables
(see [Bro11] for a recent overview) but there are no general results for multivariable
polynomials. However, using a result of Granville [Gra98] for polynomials in one
variable, Poonen [Poo03] has proved under the abc conjecture that the number of
squarefree values of any multivariable polynomial P(t1, . . . , tr) over the set [1, x]r ∩ Zr

divided by xr converges to a product of local densities. This proves conditionally that
the number of squarefree values of any polynomial behaves quite nicely.

The purpose of this short paper is to attack this problem for the polynomial
t1 · · · tr − 1 and to take advantage of its particular shape to investigate deeper the
asymptotic behaviour of the number Nk,r(x) of its k-free values over [1, x]r ∩ Zr.

In our investigation, a trichotomy appears depending on the value of r. For r = 2,
we will make use of Weil’s bound for Kloosterman sums and for r = 3, we will
use the work of Heath-Brown about the equidistribution of the values of the divisor
function τ3 := 1 ∗ 1 ∗ 1 in arithmetic progressions [HB86] (improving the earlier result
of Friedlander and Iwaniec [FI85]). Finally, for r ≥ 4, the most efficient way to tackle
the problem is to use a result of Shparlinski [Shp07, Theorem 9].
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Let γ2 = 4/3, γ3 = 8/5, γ4 = 2, γ5 = 40/19 and, for r ≥ 6,

γr = 3
(
1 −

3
r + 5

)
,

and let

δk,r =

(
1 −

1
k

)
γr.

Our main result is the following.

T 1.1. Let ε > 0 be fixed. As x tends to +∞, if δk,r ≤ 1 we have the estimate

Nk,r(x) = ck,r xr + O(xr−δk,r+ε),

where

ck,r =
∏

p

(
1 −

1
pk

(
1 −

1
p

)r−1)
,

and if 1 < δk,r ≤ 2 we have the estimate

Nk,r(x) = ck,r xr − θ(1)
k,r (x)xr−1 + O(xr−δk,r+ε),

where

θ(1)
k,r (x) = r

+∞∑
d=1

µ(d)
ϕ(dk)

(
ϕ(d)

d

)r−1 ∑
m|d

µ(m)
{ x

m

}
,

and, finally, if δk,r > 2 we have the estimate

Nk,r(x) = ck,r xr − θ(1)
k,r (x)xr−1 + θ(2)

k,r (x)xr−2 + O(xr−δk,r+ε),

where

θ(2)
k,r (x) =

r(r − 1)
2

+∞∑
d=1

µ(d)
ϕ(dk)

(
ϕ(d)

d

)r−2(∑
m|d

µ(m)
{ x

m

})2

.

The interest of Theorem 1.1 lies more in the quality of the error term coming from
the strength of the various results used rather than in the main term, which is no
surprise. Indeed, the constant ck,r has the following interpretation. For q ≥ 1, let us
denote by ρr(q) the number of solutions to the equation t1 · · · tr − 1 = 0 in (Z/qZ)r,
namely

ρr(q) = #{1 ≤ t1, . . . , tr ≤ n, t1 · · · tr − 1 ≡ 0 mod q}.

Clearly, ρr(q) = ϕ(q)r−1 and we thus have

ck,r =
∏

p

(
1 −

ρr(pk)
pkr

)
.

Therefore, ck,r is actually a product of local densities.
It is worth pointing out that δk,r ≤ 1 if and only if r = 2 and k = 2, 3, 4 or r = 3, 4

and k = 2. Note that for the hardest case, namely (k, r) = (2, 2), we obtain

N2,2(x) = c2,2x2 + O(x4/3+ε),
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which is the result forecast by Tolev in [Tol10, Section 2] where he proves a completely
similar result, that is to say with the same error term, for squarefree values of the
polynomial t2

1 + t2
2 + 1.

In addition, it is straightforward to check that θ(1)
k,r and θ(2)

k,r are bounded functions.
Furthermore, a short calculation yields

θ(1)
k,r (x) = r

+∞∑
m=1

(
|µ(m)|
ϕ(mk)

(
ϕ(m)

m

)r−1 ∏
p-m

(
1 −

1
pk

(
1 −

1
p

)r−2)){ x
m

}
,

and thus θ(1)
k,r is seen to be positive and, for instance, we have the bound

θ(1)
k,r (x) ≤ r

ζ(k)
ζ(2k)

.

It is a quite interesting fact to notice that the term −θ(1)
k,r (x)xr−1 is thus a correcting

term whose presence can be explained by the fact that if n is a positive integer then
the functionNk,r(x) is constant over the range [n, n + 1). However, this does not mean
that this term vanishes if we consider only integral values of x.

The following section is dedicated to the investigation of a quantity which will
naturally appear in the main term of Nk,r(x) in the proof of Theorem 1.1 and the last
section is devoted to the proof of the theorem properly.

Along the proof, ε is an arbitrary small positive number and, as a convention, the
implicit constants involved in the notations O and� are allowed to depend on k, r and
ε. In addition, ϕ denotes Euler’s totient function, µ the Möbius function and { } and b c
respectively the fractional part and the floor part functions.

2. Preliminary lemmas

Let r ≥ 2. For a, q ≥ 1 two coprime integers and x ≥ 1, we introduce the quantity

Sr(x; q, a) =
∑

1≤t1,...,tr≤x
t1···tr≡a mod q

1.

This section is devoted to giving several different estimates for Sr(x; q, a) which will
be used in the proof of Theorem 1.1 in the following section. These estimates consist in
proving that for fixed q ≥ 1 and for varying 1 ≤ a ≤ q − 1 coprime to q, the quantities
Sr(x; q, a) have a similar asymptotic behaviour. In other words, these estimates are
equidistribution results.

The first of these estimates is proved by making use of Kloosterman sums and will
actually be used only in the case r = 2. The second estimate deals with the case r = 3
and uses the work of Heath-Brown [HB86]. Finally, the third estimate is a result of
Shparlinski and is concerned only with the case r ≥ 4.

Even though we make use of the following estimate only in the case r = 2, we prove
it for any r ≥ 2 since this does not require much more effort.
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L 2.1. Let r ≥ 2 and ε > 0 be fixed. For a, q ≥ 1 two coprime integers and x ≥ 1,
we have the estimate

Sr(x; q, a) =
1

ϕ(q)

∑
1≤t1,...,tr≤x

gcd(t1···tr ,q)=1

1 + O(q(r−1)/2+ε).

P. We set eq(t) = e2iπt/q. We reduce the variables t1, . . . , tr to their residue classes
modulo q and we detect the congruences using sums of exponentials. We obtain

Sr(x; q, a) =
∑

1≤t1,...,tr≤x

q∑
α1,...,αr=1

α1···αr≡a mod q

r∏
i=1

1
q

q∑
`i=1

eq(`i(αi − ti))

=
1
qr

q∑
`1,...,`r=1

K(`1, . . . , `ra, q)Fq(x; `1, . . . , `r),

(2.1)

where K(`1, . . . , `ra, q) is the (r − 1)-dimensional Kloosterman sum given by

K(`1, . . . , `ra, q) =

q∑
α1,...,αr=1

α1···αr≡a mod q

eq(`1α1 + · · · + `rαr)

=

q∑
α1,...,αr−1=1

gcd(α1···αr−1,q)=1

eq(`1α1 + · · · + `r−1αr−1 + `raα
−1
1 · · · α

−1
r−1),

where α−1 denotes the inverse of α modulo q and where Fq(x; `1, . . . , `r) is
defined by

Fq(x; `1, . . . , `r) =

r∏
i=1

∑
1≤ti≤x

eq(−`iti).

We use Weinstein’s version of the works of Weil [Wei48] and Deligne [Del74]
(see [Wei81, Theorems 1 and 2] and note that Smith has obtained similar results
in [Smi79]), namely

|K(`1, . . . , `ra, q)| ≤ tqrω(q)q(r−1)/2
r−1∏
j=1

gcd(` j, `r, q)1/2,

where tq = 1 if q is odd and tq = 2(r+1)/2 if q is even and where ω(q) denotes the
number of prime factors of q. Therefore, writing tqrω(q)� qε where, as explained
in the introduction, the constant involved is allowed to depend on r and ε, and noticing
that gcd(` j, `r, q)1/2 ≤ gcd(` j, q)1/2, we get

K(`1, . . . , `ra, q)� q(r−1)/2+ε
r−1∏
j=1

gcd(` j, q)1/2. (2.2)

We denote by ||x|| the distance from x to the set of integers. Note that if `i , q for all
i = 1, . . . , r then Fq(x; `1, . . . , `r) is a product of r geometric sums and thus we have
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the bound

Fq(x; `1, . . . , `r)�
r∏

i=1

∥∥∥∥∥`i

q

∥∥∥∥∥−1

. (2.3)

Let S∗r (x; q) be the sum of the terms of the expression (2.1) for which at least one of
the `i is equal to q. This quantity is easily seen to be independent of a. The bound (2.2)
for K(`1, . . . , `ra, q) together with the bound (2.3) for Fq(x; `1, . . . , `r) prove that

Sr(x; q, a) − S∗r (x; q) �
1
qr

q(r−1)/2+ε

q−1∑
`1,...,`r=1

r−1∏
j=1

gcd(` j, q)1/2
r∏

i=1

∥∥∥∥∥`i

q

∥∥∥∥∥−1

�
qε

q(r+1)/2

∑
0<|`1 |,...,|`r |≤q/2

r−1∏
j=1

gcd(` j, q)1/2
r∏

i=1

q
`i

� q(r−1)/2+ε
∑

d1,...,dr−1 |q

∑
0<|`1 |,...,|`r |≤q/2
d1 |`1,...,dr−1 |`r−1

r−1∏
j=1

d1/2
j

r∏
i=1

1
`i

� q(r−1)/2+ε log(q)r
∑

d1,...,dr−1 |q

r−1∏
j=1

d−1/2
j ,

and thus, after rescaling ε, we get

Sr(x; q, a) − S∗r (x; q)� q(r−1)/2+ε. (2.4)

Recall that S∗r (x; q) is independent of a. Averaging the estimate (2.4) over a coprime
to q therefore proves that

1
ϕ(q)

∑
1≤t1,...,tr≤x

gcd(t1···tr ,q)=1

1 − S∗r (x; q)� q(r−1)/2+ε,

which completes the proof. �

We now state the result which will be used in the case r = 3.

L 2.2. Let ε > 0 be fixed. For a, q ≥ 1 two coprime integers and x ≥ 1 such that
q ≤ x12/7, we have the estimate

S3(x; q, a) =
1

ϕ(q)

∑
1≤t1,t2,t3≤x

gcd(t1t2t3,q)=1

1 + O(q1/4x1+ε).

P. Let 0 < δ ≤ 1 and U1, U2 and U3 be variables running over the set {(1 + δ)n,
n ∈ Z≥−1}. Let us introduce the quantity

S (U1, U2, U3; q, a) = #
{

(t1, t2, t3) ∈ Z3,
Ui < ti ≤ (1 + δ)Ui, i ∈ {1, 2, 3}
t1t2t3 ≡ a mod q

}
.

By [HB86, Lemma 5], there exists a quantity M(U1, U2, U3; q) independent of a such
that, for U1, U2, U3 ≤ x,

S (U1, U2, U3; q, a) − M(U1, U2, U3; q)� xε(q5/6 + q1/4x + q1/2x1/2). (2.5)
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Let f = blog(x)/log(2)c and let us choose δ = x1/( f +1) − 1. We have the equality

S3(x; q, a) =
∑

U1,U2,U3≤x

S (U1, U2, U3; q, a).

The estimate (2.5) therefore shows that there exists a quantity S∗3(x; q) independent of
a such that

S3(x; q, a) − S∗3(x; q)� xε(q5/6 + q1/4x + q1/2x1/2).

For q ≤ x12/7, the error term q1/4x1+ε dominates and since S∗3(x; q) is independent of a,
averaging this estimate over a coprime to q immediately concludes the proof. �

For r ≥ 4, we will use another estimate for Sr(x; q, a). This estimate is due to
Shparlinski [Shp07, Theorem 9] and essentially draws upon Burgess bounds for sums
of multiplicative characters (see [Bur63, Theorem 2] and [Bur86, Theorem A]). Note
that in [Shp07, Theorem 9], the result is stated with the condition x ≤ q but it is easy
to see that it remains true without this restriction.

L 2.3. Let r ≥ 4, s ∈ {2, 3} and ε > 0 be fixed. For a, q ≥ 1 two coprime integers
and x ≥ 1, we have the estimate

Sr(x; q, a) =
1

ϕ(q)

∑
1≤t1,...,tr≤x

gcd(t1···tr ,q)=1

1 + O(xαr,s q βr,s+ε),

where αr,s and βr,s are given by

αr,s = r −
r − 4 + 2s

s
,

and

βr,s =
(r − 4)(s + 1)

4s2
.

3. Proof of Theorem 1.1

Let k ≥ 2 be an integer. The Möbius function of order k is defined by setting
µk(1) = 1 and, for p a prime number and ` a positive integer,

µk(p`) =


1 if ` ≤ k − 2,

−1 if ` = k − 1,

0 otherwise,

with the value of µk at any integer defined by multiplicativity. Note that µ2 is the
usual Möbius function µ. By construction, |µk| is the characteristic function of the set
of k-free integers. The following elementary identity (see [Apo70, Lemma 5]) is the
starting point of our proof. For any integer n ≥ 1,

|µk(n)| =
∑
dk |n

µ(d).
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We thus obtain

Nk,r(x) =
∑

1≤t1,...,tr≤x
t1···tr,1

|µk(t1 · · · tr − 1)|

=
∑

1≤t1,...,tr≤x
t1···tr,1

∑
dk |t1···tr−1

µ(d)

=
∑

1≤d<xr/k

µ(d)
∑

1≤t1,...,tr≤x
t1···tr≡1 mod dk

t1···tr,1

1.

Let 1 ≤ y < xr/k be a parameter to be specified later. We write N ′k,r(x) and N ′′k,r(x)
respectively for the contributions coming from the sums over d for 1 ≤ d ≤ y and
y < d < xr/k. It turns out that the contribution of N ′′k,r(x) is negligible and we therefore
start by proving an upper bound for N ′′k,r(x). Denoting by τr the Dirichlet convolution
of the constant arithmetic function equal to 1 by itself r times and using the elementary
bound τr(n)� nε, we easily obtain

N ′′k,r(x) =
∑

y<d<xr/k

µ(d)
∑

1≤t1,...,tr≤x

t1···tr≡1 mod dk

t1···tr,1

1

≤
∑

y<d<xr/k

∑
1≤n≤xr

n≡1 mod dk

τr(n)

� xε
∑

y<d<xr/k

∑
1≤n≤xr

n≡1 mod dk

1.

Since d < xr/k, the inner sum is bounded by 2xr/dk. This yields

N ′′k,r(x)� xr+ε
∑

y<d<xr/k

1
dk
�

xr+ε

yk−1
. (3.1)

We now turn to the estimation of N ′k,r(x). Using Lemma 2.1, we get

N ′k,2(x) =
∑

1≤d≤y

µ(d)
ϕ(dk)

∑
1≤t1,t2≤x

gcd(t1t2,d)=1

1 + O
( ∑

1≤d≤y

dk/2+ε
)

=
∑

1≤d≤y

µ(d)
ϕ(dk)

∑
1≤t1,t2≤x

gcd(t1t2,d)=1

1 + O(xεyk/2+1).
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Using Lemma 2.2, we get, for y ≤ x12/7k,

N ′k,3(x) =
∑

1≤d≤y

µ(d)
ϕ(dk)

∑
1≤t1,t2,t3≤x

gcd(t1t2t3,d)=1

1 + O
(
x1+ε

∑
1≤d≤y

dk/4
)

=
∑

1≤d≤y

µ(d)
ϕ(dk)

∑
1≤t1,t2,t3≤x

gcd(t1t2t3,d)=1

1 + O(x1+εyk/4+1).

Finally, using Lemma 2.3, we get, for any r ≥ 4 and s ∈ {2, 3},

N ′k,r(x) =
∑

1≤d≤y

µ(d)
ϕ(dk)

∑
1≤t1,...,tr≤x

gcd(t1···tr ,d)=1

1 + O
(
xαr,s

∑
1≤d≤y

dkβr,s+ε
)

=
∑

1≤d≤y

µ(d)
ϕ(dk)

∑
1≤t1,...,tr≤x

gcd(t1···tr ,d)=1

1 + O(xαr,s+εykβr,s+1).

In addition, a Möbius inversion yields∑
1≤t≤x

gcd(t,d)=1

1 =
∑
m|d

µ(m)
⌊ x
m

⌋
=
ϕ(d)

d
x −

∑
m|d

µ(m)
{ x

m

}
.

This equality plainly gives∑
1≤t1,...,tr≤x

gcd(t1···tr ,d)=1

1 =

(
ϕ(d)

d

)r

xr − r
(
ϕ(d)

d

)r−1(∑
m|d

µ(m)
{ x

m

})
xr−1

+
r(r − 1)

2

(
ϕ(d)

d

)r−2(∑
m|d

µ(m)
{ x

m

})2

xr−2 + O(dεxr−3).

Furthermore,

xr
∑

1≤d≤y

µ(d)
ϕ(dk)

(
ϕ(d)

d

)r

= xr
+∞∑
d=1

µ(d)
ϕ(dk)

(
ϕ(d)

d

)r

+ O
( xr

yk−1

)
= ck,r xr + O

( xr

yk−1

)
.

Doing the same thing for the second and the third terms and setting

Mk,r(x) = ck,r xr − θ(1)
k,r (x)xr−1 + θ(2)

k,r (x)xr−2,

we easily find that∑
1≤d≤y

µ(d)
ϕ(dk)

∑
1≤t1,...,tr≤x

gcd(t1···tr ,d)=1

1 −Mk,r(x)� xr−3 +
xr

yk−1
.
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Our investigation has led us to the conclusion that

N ′k,2(x) −Mk,2(x)� xεyk/2+1 +
x2

yk−1
,

and, for y ≤ x12/7k,

N ′k,3(x) −Mk,3(x)� x1+εyk/4+1 +
x3

yk−1
,

and, for any r ≥ 4 and s ∈ {2, 3},

N ′k,r(x) −Mk,r(x)� xαr,s+εykβr,s+1 + xr−3 +
xr

yk−1
.

Recalling that Nk,r(x) =N ′k,r(x) +N ′′k,r(x) and the bound (3.1) for N ′′k,r(x), we finally
get

Nk,2(x) −Mk,2(x)� xεyk/2+1 +
x2+ε

yk−1
,

and, for y ≤ x12/7k,

Nk,3(x) −Mk,3(x)� x1+εyk/4+1 +
x3+ε

yk−1
,

and, for any r ≥ 4 and s ∈ {2, 3},

Nk,r(x) −Mk,r(x)� xαr,s+εykβr,s+1 + xr−3 +
xr+ε

yk−1
.

We can now choose y to our best advantage. We instantly see that for r = 2 the optimal
value is y = x4/3k and for r = 3 the best choice is y = x8/5k, which satisfies y ≤ x12/7k.
Furthermore, for r ≥ 4 the optimal value is y = x8r/k(3r+4) if s = 2 and y = x3(r+2)/k(r+5)

if s = 3. It is easy to see that if r = 4 or r = 6 then the two choices for s yield the same
result, for r = 5 it is better to choose s = 2 and for r > 6 it is better to choose s = 3.
Finally, we can immediately check that in each case we obtain the result claimed.
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