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Abstract

Background: SARS-CoV-2 has been found in the heart of COVID-19 patients. It is unclear how
the virus passes from the upper respiratory tract to the myocardium. We hypothesized that
SARS-CoV-2 is present in the blood of COVID-19 infected patients, spreading to other organs
such as heart.Methods:We targeted two viroporins, Orf3a and E, in SARS-CoV-2. Orf3a and E
form non-voltage-gated ion channels. A combined fluorescence potassium ion assay with three
channel modulators (4-aminopyridine, emodin-Orf3a channel blocker, and gliclazide-E
channel blocker) was developed to detect SARS-CoV-2 Orf3a/E channel activity. In blood sam-
ples, we subtracted the fluorescence signals in the absence and presence of emodin/gliclazide to
detect Orf3a and E channel activity. Results: In lentivirus-spiked samples, we detected signifi-
cant channel activity of Orf3a/E based on increase in fluorescence induced by 4-aminopyridine,
and this increase in fluorescence was inhibited by emodin and gliclazide. In 18 antigen/
PCR-positive samples, our test results found 15 are positive, demonstrating 83.3% concordance.
In 24 antigen/PCR-negative samples, our test results found 21 are negative, showing 87.5%
concordance.Conclusions:Wedeveloped a cell-free test that can detect Orf3a/E channel activity
of SARS-CoV-2 in blood samples from COVID-19-infected individuals, confirming a hypoth-
esis that the virus spreads to the heart via blood circulation.

Introduction

COVID-19 infection is caused by the SARS-CoV-2 virus. Various testing methods are used to
detect SARS-CoV-2 viral RNA, viral antigen, and antibodies formed in response to COVID-19
infection or vaccination [8-10]. COVID-19 infection is identified by highly sensitive PCR tests
that detect the presence of viral RNA in upper respiratory (e.g., nasal, nasopharyngeal, oral) and
saliva samples. Antigen test also identifies current infection by using antibodies specific to
SARS-CoV-2 viral proteins including spike and nucleocapsid proteins. Antibody tests
measure immune-reactive antibodies that develop following more recent (IgM isotype) or past
(IgG isotype) infection.

SARS-CoV-2 RNA has been detected by RT-PCR in up to 76% of blood or serum samples
collected from patients with COVID-19 infection [2]. SARS-CoV-2 has not been detected in
blood using antigen-based tests according to the CDC Interim Guidance for Antigen Testing
for SARS-CoV-2 [9]. To the best of our knowledge, SARS-CoV-2 viral proteins have not been
reported in blood samples of COVID-19 patients by three testing methods.

In addition to primary infection in the respiratory tract, SARS-CoV-2 can cause damage in
multiple organs including the heart. The initial hypothesis presumed that virus-mediated
inflammation was the primary cause of cardiac dysfunctions [4,15]. Recent reports provided
evidence for the presence of SARS-CoV-2 in the myocardium of COVID-19 patients [27]
and in heart tissues of COVID-19 autopsy cases [3,18]. Direct viral entry into cardiac myocytes
is the primary mechanism of myocardial infection [3]. This is not surprising since the SARS-
CoV-2 binding receptor, angiotensin-converting enzyme 2 (ACE2), was initially discovered in
[13,28] and highly expressed by the heart [11,19]. However, it is unclear how the virus passes
from the upper respiratory tract to the myocardium; one likely explanation is via blood
circulation.

SARS-CoV-2 contains two viroporins, Orf3a and E, both of which can form
non-voltage-gated cation channels [22,25,26]. We report here that the protein motifs that
determine the combined channel activity of Orf3a and E are conserved and specific to
SARS-CoV-1 and SARS-CoV-2. Combining a fluorescence ion assay with the channel modu-
lators, we developed a test that can detect channel activity of Orf3a/E in blood samples (whole
blood, plasma, serum) of COVID-19 patients in a high-throughput manner.

https://doi.org/10.1017/cts.2021.856 Published online by Cambridge University Press

https://www.cambridge.org/cts
https://doi.org/10.1017/cts.2021.856
mailto:hyu@hsc.wvu.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6838-8310
https://orcid.org/0000-0002-0586-9229
https://doi.org/10.1017/cts.2021.856


Methods

COVID-19 Patient Blood Samples

Use of blood samples from COVID-19 patients was approved by
the West Virginia University Institutional Review Board. Research
was discussed with each patient, and if the patient consented to the
research project, whole blood was drawn by standard venipuncture
into one tube, containing EDTA for anticoagulation. Plasma/sera
samples were stored in tube without EDTA. A total of 42 samples
were collected: 28 whole blood samples and 14 plasma/serum
samples.

Fluorescence Kþ Assay and Orf3a/E Channel Activity
Detection

A fluorescence-based potassium ion channel assay utilizes the abil-
ity of thallium (Tlþ) to permeate Kþ channels [30]. Once the Kþ

channels are open, Tlþ in the extracellular solution flows down its
concentration gradient into the cells via Kþ channels. Inside the
cells, Tlþ binds to and activates a fluorogenic indicator dye pre-
loaded into the cells, resulting in a dramatic increase in fluores-
cence signal. This technique allows rapid determination of
Kþ channel activity in a high-throughput manner [24]. We used
a commercial kit (FluxOR Potassium ion channel assay, cat#:
F10016, Thermo Fisher Scientific) according to the manufacturer’s
instructions to study fluorescence detection of Orf3a/E channel
activity.

Samples of 10 μL each were added to a 96-well plate. Each
sample was duplicated in two separate wells: the first replicate
contained only assay solution to establish the baseline signal and
the second contained both assay solution and Orf3a/E channel
blockers. Fluorescence of each sample was measured 3–6 times
using a BioTek Synergy H4 Hybrid Microplate Reader.

Ion Channel Modulators

Emodin, gliclazide, and 4-aminopyridine (4-AP) were purchased
from Sigma. Stock solution (50 mm) was prepared in DMSO.
Approximately 0.5 mm emodin and gliclazide were used in
~100 uL solution. DMSO at ~1–2% of test solution had no effects
on test results.

Lentivirus Containing Orf3a and E

Lentivirus containing SARS-CoV-2 Orf3a and lentivirus contain-
ing E were obtained from Addgene donated by Nevan Krogen
lab: pLVX-EF1alpha-SARS-CoV-2-orf3a-2xStrep-IRES-Puro was
a gift from Nevan Krogan (viral prep # 141383-LV; http://n2t.
net/addgene:141383-LV; RRID:Addgene_141383) [17]. pLVX-
EF1alpha-SARS-CoV-2-E-2xStrep-IRES-Puro was a gift from
Nevan Krogan (viral prep # 141385-LV; http://n2t.net/addgene:
141385-LV; RRID:Addgene_141385) [17]. We used 1 μL lentivirus
with the titer ≥ 1x106 TU/mL, containing ~1000 functional lenti-
viral particles in the experiments (TU: transduction unit).

Antigen Testing

Antigen testing was performed in the clinical laboratory using the
CareStart Rapid Diagnostic Test for the Detection of SARS-CoV-2
Antigen (Access Bio, Somerset, NJ). Briefly, the nasopharyngeal
swab is removed from pouch and the swab is introduced to the
nasal passage until it reaches the posterior nasopharynx. The swab
is rotated 3–5 times over the posterior nasopharynx and then
removed from the nostril with rotation to sample the anterior

nares. In the laboratory, the seal is removed from the extraction
vial containing the extraction buffer. The swab is placed in the
extraction vial and rotated vigorously 5 times. The extraction vial
is then squeezed while the swab is removed by rotating against the
sides of the extraction vial to remove any excess fluid from the
swab, and a cap is placed on the extraction vial. The sample is
mixed by tapping the bottom of the extraction tube, inverted,
and 3 drops are squeezed into the sample well. Results are read
at ten minutes.

A red control line will appear at top of well by the letter “C.”
If the test is positive, a blue line will appear below the red line
and across from the letter “T.” Positive result reveals red and blue
lines. Negative results reveal only a single red line. A result with a
blue line without a red line is invalid and test is repeated.

Data Analysis

Fluorescence data were collected using Gen5 2.0 microplate reader
software (BioTek), processed in Excel, and analyzed and plotted
using GraphPad Prism 8.

Results

Characterization of COVID-19 Blood Samples

Table 1 summarizes the characterization of blood samples from
COVID-19 patients. Antigen testing was performed for whole
blood samples at the clinic site to identify current infection of
the patients. PCR tests were performed for plasma/serum samples
to inform infection as current.

Conservation of E/Orf3a Motifs that form Ion Channels

Figure 1 shows E protein sequence alignment in bat SARS-CoV-1,
human SARS-CoV-1, human SARS-CoV-2, MERS, and other four
common coronaviruses (HCoV-229E, HCoV-NL63, HCoVOC43,
and HCoV-HKU1). There is 94.97% homology between SARS-
CoV-1 and SARS-CoV-2 E protein sequences. E contains a trans-
membrane domain between G10 and L37 (red arrows) that forms
an ion channel [20,29]. Amino acid residues from G10 to L37 are
conserved between SARS-CoV-1 and SARS-CoV-2.

Figure 2 shows Orf3a protein sequence alignment in bat SARS-
CoV-1, human SARS-CoV-1, human SARS-CoV-2, and other two
coronaviruses (229E, NL63). There is 73% homology between
SARS-CoV-1 and SARS-CoV-2 Orf3a protein sequences. Orf3a
contains three transmembrane domains (TD). TD2 and TD3 are
required for non-voltage-gated ion channel activity [7]. Three
amino acid residues (red arrows), Y91, H93, and Y109, are essential
for Kþ permeability [7] and are conserved in SARS.

Detection of Orf3a/E Channel Activity in Lentivirus
Containing Orf3a and E

Figure 3 shows a proof-of-concept experiment in a cell-free
preparation. Lentivirus containing Orf3a exhibited an increasing
fluorescence signal (blue, Fig. 3A) induced by 4-AP (1 mM).
In contrast, 4-AP failed to trigger an increase in fluorescence signal
in the presence of Orf3a channel blocker, emodin (0.5 mM) (red,
Fig. 3A) [25]. Normal blood (NB) from healthy humans did not
show a change in fluorescence after 4-AP addition and was used
as a negative control (black dot, Fig. 3A).

In lentivirus containing E, 4-AP (1 mM) induced an increase in
fluorescence (blue dots, Fig. 3B), which was reduced by 0.5 mM
E channel blocker (Glic, gliclazide) [26] (red, Fig. 3B). When both
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Table 1. Characterization of COVID-19 blood samples

Whole blood

Patient # Antigen test Our test Note

1* Positive Positive Onset

1* Negative Negative Recovered

2 Negative Negative

3 Negative Negative

4 Negative Negative

5 Positive Positive

6 Positive Positive

7 Negative Negative

8 Negative Negative

9 Positive Positive

10 Negative Negative

11** Positive Negative PCR negative (so, deemed negative)

12 Negative Negative

13 Positive Positive

14** positive negative PCR result unavailable

15 Positive Positive

16 Positive Positive

17 Positive Positive

18 positive negative PCR result unavailable

19 Negative Negative

20 Negative Negative

21 Negative Negative

22 Negative Negative

23 Negative Negative

24 Negative Negative

25 positive negative PCR result unavailable

26 Negative Negative

27 positive negative PCR result unavailable

28 Negative Negative

*from same patient with mild symptoms.
**discrepancy between antigen and our tests. Prevalence of COVID-19-positive cases collected in the point-of-care clinic: 14/29 = 48.3%.

Plasma/serum samples

Patient# PCR (swab) Our test Notes

1* Positive Positive
p

2 Negative Negative
p

3 Positive Positive
p

4 Negative Negative
p

5** Negative Positive X

6** Negative Positive X

7 Positive Positive
p

8 Positive Positive
p

9 Negative Negative
p

10 Positive Positive
p

(Continued)
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Orf3a and E were used, a significantly larger increasing fluores-
cence (blue, Fig. 3C) was induced by 4-AP, and this increase
was reduced by a combination of 0.5 mM emodin and 0.5 mM
gliclazide (red, Fig. 3C). In Fig. 3C, the fluorescence signal intensity
is nearly doubled compared to that in Fig. 3A and B, indicating
channel activities of both Orf3a and E are additive.

Detection of Orf3a/E Channel Activity in Blood Samples of
COVID-19 Patients

Figure 4A shows the representative results in a whole blood sample
from a COVID-19 antigen test-positive patient. A small volume
(5 μL) of sample was used. Fluorescence was induced by 4-AP
(black arrow) and caused an increase (red dots), indicating the
presence of SARS-CoV-2 virus. This increase in fluorescence
was reduced by 0.5 mM emodin and 0.5 mM gliclazide (blue
triangle) and blocked by 1 mM emodin and 1mM gliclazide
(blue circle). 4-AP failed to induce an increase in fluorescence
in a whole blood sample from a COVID-19 antigen test-negative
patient (gray circle) and in normal blood used as a negative control
(black triangle).

Figure 4B shows the representative results in a serum sample
from a COVID-19 PCR test-positive patient. Fluorescence was

induced by 4-AP (black arrow) and caused an increase (red dots),
indicating the presence of SARS-CoV-2 virus. This increase in
fluorescence was reduced by 0.5 mM emodin and 0.5 mM glicla-
zide (blue triangle) and blocked by 1 mM emodin and 1 mM
gliclazide (blue circle). 4-AP failed to induce an increase in fluores-
cence in a serum sample from a COVID-19 PCR test-negative
patient (gray circle) and in normal plasma used as a negative con-
trol (black triangle).

We have tested a total of 42 blood samples. In 18 antigen/
PCR-positive samples, our test results found 15 are positive,
demonstrating an 83% concordance. In 24 negative antigen/PCR
samples, our test results found 21 are negative, showing an
87.5% concordance.

Discussion

Among the three testing methods, both PCR and antigen tests
inform current infection. PCR has extremely high sensitivity
(99%) and specificity (97%) [16], serving as an accepted method
in diagnostic testing laboratories. The most recent report showed
that by targeting three viral genes (Nsp10, NSP12, N), the PCR
assays can provide 100% accuracy of test results, based on
23 COVID-19-positive samples and 5 COVID-19-negative

Table 1. (Continued )

Plasma/serum samples

Patient# PCR (swab) Our test Notes

11 Positive Positive
p

12 Negative Negative
p

13** Negative Positive X

14 Positive Positive
p

*plasma, #2-#14 are sera.
**discrepancy. Prevalence of COVID-19-positive cases collected in the hospital: 7/14 = 50%.

Fig. 1. E channel protein sequence alignment in SARS-CoV-2, SARS-CoV, bat SARS-CoV, MERS, 229E, NL63, OC43, and HKU1 coronaviruses. Red arrows mark the beginning
(G10) and ending (L37) of the transmembrane domain that forms the channel.
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Fig. 2. Orf3a channel protein sequence alignment in SARS-CoV-2, SARS-CoV, bat SARS-CoV, HCoV-229E, and HCoV-NL63 coronaviruses. Red arrows label three amino acid
residues critical for Kþ permeation of the channel.

Fig. 3. Detection of E/Orf3a channel activity in lentivirus that contain E and Orf3a channels. A: lentivirus that contains Orf3a protein. B: lentivirus that contains E protein.
C: lentivirus that contains both Orf3a and E protein. Arrow: time when 4-AP was applied. Emo – emodin; Glic – gliclazide; NB – normal blood sample.

Fig. 4. Detection of E/Orf3a channel activity in COVID-19 blood. A: whole blood samples. Pos – COVID-19-positive blood; NB – normal blood; Neg – COVID-19-negative blood.
B: serum sample. Pos – COVID-19-positive serum; NP – normal plasma; Neg – COVID-19-negative serum. Vertical line: time when 4-AP was applied. RFU, relative fluorescence unit.
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samples [5]. Variants that increase the transmission occur mostly
in the spike proteins [1]. While a main concern for these variants is
the reduced efficacy of vaccine [21] due to decreasing neutralizing
activity and immune escape [1,12], there is also a risk that some
variants may not be detected by current PCR- and antigen-based
testing. Most recently, a new variant B.1.616 has been identified in
which only 15% of patients infected with this variant were detected
by RT-PCR [14], probably due to nine mutations and one deletion
on the spike protein [14]. Antigen test has a higher sensitivity in
symptomatic patients (80%) than in asymptomatic patients
(41.2%), while its specificity is high (>98%) independent of disease
phenotype [23]. Both RT-PCR and antigen tests have not been
reported to detect viral proteins in blood.

Recently, a mass-spectrometry-based high-throughput test that
targeted proteomics (targeting nuvleoprotein peptides) from
“nasopharyngeal and oropharyngeal swabs” was reported [6].
Combined with automation in sample process, this new method
has the potential to test large numbers of clinical samples.
However, it is unknown whether this method can be applied to
blood samples.

In this exploratory research, we targeted Orf3a and E channels
for several reasons. First, Orf3a is present only in SARS-CoV-1 and
SARS-CoV-2; therefore, a combination of Orf3a and E channel
activity is highly selective. Second, highly sensitive detection meth-
ods based on fluorescence are used to detect channel activity.
Third, utilization of Orf3a and E channel blockers allows us to
detect signals only from Orf3a/E while eliminating background
fluorescence in blood by subtracting the fluorescence signals in
samples without channel blockers. Fourth, protein sequence motifs
that control channel activity of Orf3a/E are highly conserved.
Thus, detecting the conserved channel activity of Orf3a/E may
serve as a valuable tool as viral variants proliferate worldwide.
Other interpretations of these preliminary findings are possible.

Limitations of the Work

The sample size is not large in this work, and samples were col-
lected when disease prevalence was high (approximately up to
50%) in the point-of-care clinic. A larger sample size is needed
to test our method for detecting functional viral proteins in blood
at lower disease prevalence.

Conclusions

Our new testing method for SARS-CoV-2 may complement
present testing by identifying functional virus in blood samples
in a 96-well plate with a total experimental time of around 2 hours.
The method can be easily expanded to 384-well plate, and the
experimental time can be shortened to less than 1 hour with auto-
mation. In addition, our test targets conserved motifs in the Orf3a/
E proteins, which are not affected by virus variants. This focus on
virally conserved components could alleviate concerns regarding
the accuracy of molecular-based methodologies as new variants
spread through the community. Finally, detection of the SARS-
CoV-2 in blood provides a reasonable explanation as to how the
virus spreads from the point of entry in the respiratory tract to
other organs including the heart.
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