A FINITELY GENERATED MODULAR ORTHOLATTICE

BY
CHRISTIAN HERRMANN

By an ortholattice we mean a lattice with 0 and 1 and a complementation operation which is an involutorial antiautomorphism. The free modular ortholattice on two generators has 96 elements-cf. J. Kotas [8]. But

There exists a modular ortholattice with 3 generators containing an infinite independent sequence of nonzero pairwise perspective (and orthogonal) elements.

Due to Kaplansky [6] and Amemiya-Halperin [1] such a lattice cannot be embedded into a countably complete modular ortholattice. Also, this answers a question raised by G. Burns and W. Poguntke: There is a complemented modular lattice of infinite length which (as a lattice) is subdirectly irreducible and finitely generated. One just has to take a subdirectly irreducible ortholattice factor in which at least one (whence all) elements in the sequence stay different from zero. By orthomodularity this will be subdirectly irreducible as a lattice, too, and generated by six elements.

Actually, we construct the above lattice generators a, c, and d such that a is perspective to a^{\prime} via d and a^{\prime} is perspective in $\left[0, a^{\prime}+c\right]$ to $a\left(a^{\prime}+c\right)<a$ via c. Even, $0,1, a, a^{\prime}, c, d$ form a partial lattice J_{1}^{4} as defined in Day, Herrmann, and Wille [3]. Then, defining $a_{0}=a$ and, recursively, $a_{n+1}=\left(\left(a_{n}+d\right) a^{\prime}+c\right) a$ the sequence $a_{n} a_{n+1}^{\prime}(n \geq 0)$ will have the properties asked for-as is very well known cf. [7].

For lattice theory we refer to [1, 2, 7] for model theory to [9].
Outline of construction. Let V_{n} be a $2 n$-dimensional rational vector space with basis $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$ and L_{n} its lattice of subspaces. Consider the following four subspaces of V_{n} given by sets of generators: $A_{n}=\left\langle f_{1}, \ldots, f_{n}\right\rangle$, $B_{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle, C_{n}=\left\langle\left(e_{2}+f_{1}\right), \ldots,\left(e_{n}+f_{n}\right)\right\rangle, D_{n}=\left\langle\left(e_{1}+f_{1}\right), \ldots,\left(e_{n}+f_{n}\right)\right\rangle$. In the terminology of Gelfand and Ponomorev [4] this is a quadruple $S_{3}(2 n,-1)$ of defect -1 over the rationals. Inspection yields that there is an orthocomplementation on L_{n} with $A_{n}^{\prime}=B_{n}$. For a nontrivial ultraproduct L with constants A, B, C, D of the ortholattices L_{n} with constants $A_{n}, B_{n}, C_{n}, D_{n}$ let U be the subortholattice generated by A, C, D. As a lattice U is generated by $\mathscr{E}=$ $\left\{A, B, C, D, C^{\prime}, D^{\prime}\right\}$.

[^0]Then, we embed L (as a lattice) in the lattice of subspaces of a suitable vector space in which there exist complementary subspaces E and F such that $X=X \cap E+X \cap F$ for all X in \mathscr{E}. By Lemma 1.2 in Poguntke [10] we obtain that $\alpha X=X \cap E$ defines a lattice homomorphism on U. Due to modularity $(\alpha X)^{*}=\alpha\left(X^{\prime}\right)$ is well defined and $M=\alpha(U)$ becomes with $1_{M}=E, 0_{M}=0$, and the operation ${ }^{*}$ an ortholattice homomorphic image of U. In particular, it is generated by A, C, D.

From the $L_{n} M$ inherits the following relations:

$$
\begin{aligned}
\alpha B & =\alpha A^{*}, \quad \alpha A+\alpha D=\alpha B+\alpha D=1 \\
\alpha A \alpha C & =\alpha A \alpha D=\alpha B \alpha C=\alpha B \alpha D=\alpha C \alpha D=0 .
\end{aligned}
$$

Moreover, we choose E such that in addition

$$
\alpha A+\alpha C=\alpha D+\alpha C=1 \quad \text { and } \quad \alpha B+\alpha C<1
$$

For that, we have to find a vector space representation of L in which the elements of \mathscr{E} can be described, effectively. This is achieved by an axiomatic correspondence in the sense of Mal'cev [9] between lattices with distinguished elements, vector spaces, and coordinate descriptions. The same idea has been applied in [5].

An axiomatic correspondence. Let I_{n} be the set of nonzero integers z with $-n \leq z \leq n$ equipped with the constants 1 and n, the relation \leq, the operation $z \mapsto-z$, and the partial operation $z \mapsto z+1$ defined for $1 \leq z<n$. Let \mathbf{Q} denote the field of all rational numbers and V_{n} the \mathbf{Q}-vector space of all maps from (the set) I_{n} into \mathbf{Q}. Let $\kappa_{n}: V_{n} \times I_{n} \rightarrow \mathbf{Q}$ be the function which picks the coordinates: $\kappa_{n}(f, i)=f(i)$. Finally, let L_{n} be the lattice of all subspaces of V_{n} with the euclidean orthocomplementation ' and ϕ_{n} the relation describing subspaces: $f \phi_{n} U$ iff $f \in U$. Now, consider the subspaces of V_{n} given as follows:
$f \phi_{n} A_{n} \quad$ iff $\quad \kappa_{n}(f, i)=0$ for $i \leq-1$
$f \phi_{n} B_{n} \quad$ iff $\quad \kappa_{n}(f, i)=0 \quad$ for $\quad i \geq 1$
$f \phi_{n} D_{n} \quad$ iff $\quad \kappa_{n}(f, 1)=\kappa_{n}(f,-i)$ for all i
$f \phi_{n} C_{n} \quad$ iff $\quad \kappa_{n}(f, 1)=\kappa_{n}(f,-n)=0 \quad$ and $\quad \kappa_{n}(f,-i)=\kappa_{n}(f, i+1) \quad$ for $\quad 1 \leq i<n$.
Clearly, $A_{n}^{\prime}=B_{n}$ and

$$
\begin{array}{lll}
f \phi_{n} D_{n}^{\prime} & \text { iff } & \kappa_{n}(f, i)=-\kappa_{n}(f,-i) \text { for all } i \\
f \phi_{n} C_{n}^{\prime} & \text { iff } & \kappa_{n}(f,-i)=-\kappa_{n}(f, i+1) \text { for } 1 \leq i<n .
\end{array}
$$

Let ($V, L, A, B, C, D, \phi, I, K, \kappa$) be a nontrivial ultraproduct of the multibase structures $\left(V_{n}, L_{n}, A_{n}, B_{n}, C_{n}, D_{n}, \phi_{n}, I_{n}, \mathbf{Q}, \kappa_{n}\right)$. Due to the Theorem of Łos a first order statement holds in the ultraproduct if it holds in all but finitely many factors. Therefore, we may consider V as a K-subspace of K^{I} with κ yielding the components and L as a sublattice of the subspace lattice of V with
$U=\{f \mid f \phi U\}$. Also, the X in \mathscr{E} are described the same way the X_{n} are. Now, let J be the subset of I which is generated by 1 under the operators $i \mapsto-i$ and $i \mapsto i+1(i \geq 1)$-this can be though of as the nonzero integers. Let E and F be the subspaces of K^{I} consisting of all maps which vanish outside J and inside J, respectively. Then $E \oplus F=K^{I}$ and $X=X \cap E+X \cap F$ for X in \mathscr{E} are immediate and so is $A \cap E+C \cap E=E$. Also $E \neq B \cap E+C \cap E$ since $f(1)=0$ for all f herein. Finally, to show $E=C \cap E+D \cap E$ define for given f in E

$$
d(1)=d(-1)=f(1), \quad c(1)=0, \quad c(-1)=f(-1)-f(1)
$$

and, recursively,

$$
\begin{gathered}
c(i+1)=c(-i), \quad d(i+1)=d(-i-1)=f(i+1)-c(i+1), \\
c(-i-1)=f(i+1)-d(i+1)
\end{gathered}
$$

for i in J and $c(i)=d(i)=0$, else. Then $c \in C \cap E, d \in D \cap E$, and $f=c+d$.

References

1. I. Amemiya and I. Halperin, Completed modular lattices, Canad. J. Math 11 (1959), 481-520.
2. G. Birkoff, Lattice Theory, Providence 1967.
3. A. Day, C. Herrman, and R. Wille, On modular lattices with four generators, Algebra Universalis 2 (1972), 317-323.
4. I. M. Gel'fand and V. A. Ponomarev, Problems of linear algebra and classification of quadruples of subspaces in a finite dimensional vector space, Coll. Math. J. Bolyai, 5, Hilbert Space Operators, Tihany 1970; B.Sz.-Nagy (ed), North-Holland, Amsterdam, 1972, 163-237.
5. C. Herrmann, On the equational theory of submodule lattices, Proc. Univ. of Huston Lattice Theory Conf. 1973, 105-108.
6. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. 61 (1955), 524-541.
7. G. Kalmbach, Orthomodular lattices, Lecture Notes, to appear.
8. J. Kotas, An axiom system for the modular logic. Studia logica XXI (1967), 17-38.
9. A. I. Mal'cev, The metamathematics of algebraic systems, Amsterdam 1971.
10. W. Poguntke, Zerlegung von S-Verbänden, Math. Z. 142 (1975), 47-65.

Fachbereich Mathematik,
Technische Hochschule
D61 Dapmstadt,
W. Germany

[^0]: Received by the editors June 6, 1979 and in revised form February 21, 1980.

