Canad. Math. Bull. Vol. 24 (2), 1981

A FINITELY GENERATED MODULAR ORTHOLATTICE

BY CHRISTIAN HERRMANN

By an ortholattice we mean a lattice with 0 and 1 and a complementation operation which is an involutorial antiautomorphism. The free modular ortholattice on two generators has 96 elements—cf. J. Kotas [8]. But

There exists a modular ortholattice with 3 generators containing an infinite independent sequence of nonzero pairwise perspective (and orthogonal) elements.

Due to Kaplansky [6] and Amemiya-Halperin [1] such a lattice cannot be embedded into a countably complete modular ortholattice. Also, this answers a question raised by G. Burns and W. Poguntke: There is a complemented modular lattice of infinite length which (as a lattice) is subdirectly irreducible and finitely generated. One just has to take a subdirectly irreducible ortholattice factor in which at least one (whence all) elements in the sequence stay different from zero. By orthomodularity this will be subdirectly irreducible as a lattice, too, and generated by six elements.

Actually, we construct the above lattice generators a, c, and d such that a is perspective to a' via d and a' is perspective in [0, a'+c] to a(a'+c) < a via c. Even, 0, 1, a, a', c, d form a partial lattice J_1^4 as defined in Day, Herrmann, and Wille [3]. Then, defining $a_0 = a$ and, recursively, $a_{n+1} = ((a_n + d)a' + c)a$ the sequence $a_n a'_{n+1}$ ($n \ge 0$) will have the properties asked for—as is very well known cf. [7].

For lattice theory we refer to [1, 2, 7] for model theory to [9].

Outline of construction. Let V_n be a 2n-dimensional rational vector space with basis $e_1, \ldots, e_n, f_1, \ldots, f_n$ and L_n its lattice of subspaces. Consider the following four subspaces of V_n given by sets of generators: $A_n = \langle f_1, \ldots, f_n \rangle$, $B_n = \langle e_1, \ldots, e_n \rangle$, $C_n = \langle (e_2 + f_1), \ldots, (e_n + f_n) \rangle$, $D_n = \langle (e_1 + f_1), \ldots, (e_n + f_n) \rangle$. In the terminology of Gelfand and Ponomorev [4] this is a quadruple $S_3(2n, -1)$ of defect -1 over the rationals. Inspection yields that there is an orthocomplementation on L_n with $A'_n = B_n$. For a nontrivial ultraproduct L with constants A, B, C, D of the ortholattices L_n with constants A_n, B_n, C_n, D_n let U be the subortholattice generated by A, C, D. As a lattice U is generated by $\mathscr{C} =$ $\{A, B, C, D, C', D'\}$.

Received by the editors June 6, 1979 and in revised form February 21, 1980.

C. HERRMANN

Then, we embed L (as a lattice) in the lattice of subspaces of a suitable vector space in which there exist complementary subspaces E and F such that $X = X \cap E + X \cap F$ for all X in \mathscr{C} . By Lemma 1.2 in Poguntke [10] we obtain that $\alpha X = X \cap E$ defines a lattice homomorphism on U. Due to modularity $(\alpha X)^* = \alpha(X')$ is well defined and $M = \alpha(U)$ becomes with $1_M = E$, $0_M = 0$, and the operation * an ortholattice homomorphic image of U. In particular, it is generated by A, C, D.

From the L_n M inherits the following relations:

 $\alpha B = \alpha A^*, \qquad \alpha A + \alpha D = \alpha B + \alpha D = 1$ $\alpha A \alpha C = \alpha A \alpha D = \alpha B \alpha C = \alpha B \alpha D = \alpha C \alpha D = 0.$

Moreover, we choose E such that in addition

$$\alpha A + \alpha C = \alpha D + \alpha C = 1$$
 and $\alpha B + \alpha C < 1$.

For that, we have to find a vector space representation of L in which the elements of \mathscr{C} can be described, effectively. This is achieved by an axiomatic correspondence in the sense of Mal'cev [9] between lattices with distinguished elements, vector spaces, and coordinate descriptions. The same idea has been applied in [5].

An axiomatic correspondence. Let I_n be the set of nonzero integers z with $-n \le z \le n$ equipped with the constants 1 and n, the relation \le , the operation $z \mapsto -z$, and the partial operation $z \mapsto z+1$ defined for $1 \le z < n$. Let \mathbf{Q} denote the field of all rational numbers and V_n the \mathbf{Q} -vector space of all maps from (the set) I_n into \mathbf{Q} . Let $\kappa_n : V_n \times I_n \to \mathbf{Q}$ be the function which picks the coordinates: $\kappa_n(f, i) = f(i)$. Finally, let L_n be the lattice of all subspaces of V_n with the euclidean orthocomplementation ' and ϕ_n the relation describing subspaces: $f\phi_n U$ iff $f \in U$. Now, consider the subspaces of V_n given as follows:

$$\begin{split} &f\phi_n A_n \quad \text{iff} \quad \kappa_n(f,i) = 0 \quad \text{for} \quad i \leq -1 \\ &f\phi_n B_n \quad \text{iff} \quad \kappa_n(f,i) = 0 \quad \text{for} \quad i \geq 1 \\ &f\phi_n D_n \quad \text{iff} \quad \kappa_n(f,1) = \kappa_n(f,-i) \quad \text{for all } i \\ &f\phi_n C_n \quad \text{iff} \quad \kappa_n(f,1) = \kappa_n(f,-n) = 0 \quad \text{and} \quad \kappa_n(f,-i) = \kappa_n(f,i+1) \quad \text{for} \quad 1 \leq i < n. \\ &\text{Clearly, } A'_n = B_n \text{ and} \end{split}$$

$$\begin{aligned} f\phi_n D'_n & \text{iff} \quad \kappa_n(f,i) = -\kappa_n(f,-i) \quad \text{for all } i \\ f\phi_n C'_n & \text{iff} \quad \kappa_n(f,-i) = -\kappa_n(f,i+1) \quad \text{for} \quad 1 \le i < n. \end{aligned}$$

Let $(V, L, A, B, C, D, \phi, I, K, \kappa)$ be a nontrivial ultraproduct of the multibase structures $(V_n, L_n, A_n, B_n, C_n, D_n, \phi_n, I_n, \mathbf{Q}, \kappa_n)$. Due to the Theorem of Łos a first order statement holds in the ultraproduct if it holds in all but finitely many factors. Therefore, we may consider V as a K-subspace of K^1 with κ yielding the components and L as a sublattice of the subspace lattice of V with

242

[June

 $U = \{f \mid f\phi U\}$. Also, the X in \mathscr{C} are described the same way the X_n are. Now, let J be the subset of I which is generated by 1 under the operators $i \mapsto -i$ and $i \mapsto i+1$ $(i \ge 1)$ —this can be though of as the nonzero integers. Let E and F be the subspaces of K^I consisting of all maps which vanish outside J and inside J, respectively. Then $E \oplus F = K^I$ and $X = X \cap E + X \cap F$ for X in \mathscr{C} are immediate and so is $A \cap E + C \cap E = E$. Also $E \neq B \cap E + C \cap E$ since f(1) = 0 for all f herein. Finally, to show $E = C \cap E + D \cap E$ define for given f in E

$$d(1) = d(-1) = f(1),$$
 $c(1) = 0,$ $c(-1) = f(-1) - f(1)$

and, recursively,

$$c(i+1) = c(-i),$$
 $d(i+1) = d(-i-1) = f(i+1) - c(i+1),$
 $c(-i-1) = f(i+1) - d(i+1)$

for i in J and c(i) = d(i) = 0, else. Then $c \in C \cap E$, $d \in D \cap E$, and f = c + d.

REFERENCES

1. I. Amemiya and I. Halperin, Completed modular lattices, Canad. J. Math 11 (1959), 481-520.

2. G. Birkoff, Lattice Theory, Providence 1967.

3. A. Day, C. Herrman, and R. Wille, On modular lattices with four generators, Algebra Universalis 2 (1972), 317-323.

4. I. M. Gel'fand and V. A. Ponomarev, Problems of linear algebra and classification of quadruples of subspaces in a finite dimensional vector space, Coll. Math. J. Bolyai, 5, Hilbert Space Operators, Tihany 1970; B.Sz.-Nagy (ed), North-Holland, Amsterdam, 1972, 163–237.

5. C. Herrmann, On the equational theory of submodule lattices, Proc. Univ. of Huston Lattice Theory Conf. 1973, 105-108.

6. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. **61** (1955), 524–541.

7. G. Kalmbach, Orthomodular lattices, Lecture Notes, to appear.

8. J. Kotas, An axiom system for the modular logic. Studia logica XXI (1967), 17-38.

9. A. I. Mal'cev, The metamathematics of algebraic systems, Amsterdam 1971.

10. W. Poguntke, Zerlegung von S-Verbänden, Math. Z. 142 (1975), 47-65.

Fachbereich Mathematik, Technische Hochschule D61 Darmstadt, W. Germany