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ON INFINITESIMAL TEICHMÜLLER SPACE
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Abstract

Much research has been done on the geometry of Teichmüller space and Hamilton sequences of
extremal Beltrami differentials. This paper discusses some problems concerning infinitesimal Teichmüller
geodesic discs and Hamilton sequences of extremal Beltrami differentials in the tangent space of an
infinite-dimensional Teichmüller space.
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1. Introduction

Let R be a given Riemann surface of analytical infinite type. We denote by
M(R) the open unit ball in the space L∞(R) of all essentially bounded Beltrami
differentials on R. Let A(R) be the space of integrable quadratic differentials ϕ that
are holomorphic on R, and let A1(R) be the unit sphere of A(R). Two elements
µ, ν ∈ M(R) are infinitesimally equivalent, denoted by µ≈ ν, if

∫
R µφ =

∫
R νφ for

all φ ∈ A(R). This equivalence relation partitions M(R) into equivalence classes, and
the space of all equivalence classes is called infinitesimal Teichmüller space, denoted
by B(R). It is known that B(R) is the tangent space of Teichmüller space T (R) at the
basepoint. For some basic definitions and notation relating to Teichmüller space, we
refer the reader to the books [4, 5] and the paper [11].

Given µ ∈ M(R), we denote by [µ]B the set of all elements ν ∈ M(R) which are
infinitesimally equivalent to µ, and we set

‖µ‖ = inf{‖ν‖∞ : ν ∈ [µ]B}.

The infinitesimal Teichmüller distance between two points [µ]B and [ν]B is defined as

dB([µ]B, [ν]B)= inf
η∈[µ−ν]B

‖η‖∞.
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We say that µ is extremal in B(R) if ‖µ‖∞ = ‖µ‖. It is known that a Beltrami
differential µ is extremal in B(R) if and only if there is a sequence {ϕn} in A1(R)
such that

‖µ‖∞ = lim
n→∞

∣∣∣∣∫
R
µϕn

∣∣∣∣,
and we call such {ϕn} a Hamilton sequence for µ. For any µ ∈ M(R), we can define
the boundary seminorm b([µ]) by

b([µ])= inf{‖ν|R\F‖∞ : ν ≈ µ, F is a compact subset of R}.

An infinitesimal equivalent class [µ]B is called an infinitesimal Strebel point if
‖µ‖> b([µ]); otherwise it is called an infinitesimal non-Strebel point.

2. Infinitely many geodesic discs in B(R)

By definition, a geodesic disc in B(R) is the image of a map 0 : 4→ B(R)which is
isometric with respect to the Euclidean distance in4 and the infinitesimal Teichmüller
distance in B(R), where 4 denotes the unit disc of the complex plane.

For any point [µ]B 6= [0]B , there is at least one geodesic disc passing through [0]B
and [µ]B . In fact, any extremal Beltrami differential µ contained in [µ]B determines
a map

0µ : 4→ B(R), t 7→ [tµ/‖µ‖∞]B,

and 0µ is a holomorphic isometry with 0µ(0)= [0]B and 0µ(‖µ‖∞)= [µ]B (see [9]).
For a given point [µ]B in B(R), we want to know how many geodesic discs there

are which contain [0]B and [µ]B , as well as how many isometries 0 : 4→ B(R) there
are with 0µ(0)= [0]B and 0µ(‖µ‖∞)= [µ]B .

From [9], we know that if [µ]B contains an extremal differential µ such that |µ|
is not a constant, then there are infinitely many holomorphic isometries and geodesic
discs that possess the aforementioned properties. In this paper, we consider more
general cases and establish the following theorems.

THEOREM 2.1. Let [µ]B 6= [0]B be an infinitesimal non-Strebel point in B(R).
Then there are infinitely many isometries 0 : 4→ B(R) with 0(0)= [0]B and
0(‖µ‖∞)= [µ]B .

THEOREM 2.2. Let [µ]B 6= [0]B be an infinitesimal non-Strebel point in B(R). Then
there are infinitely many geodesic discs in B(R) containing [0]B and [µ]B .

REMARK 2.3. Theorems 2.1 and 2.2 correspond to the results in Teichmüller space
that were obtained by Li [8]. Recently, however, we proved in [2] that there being only
one geodesic joining [0]B and [ν]B in B(R) does not imply that there will be only one
geodesic joining the [0]T and [ν]T in T (R), and vice versa. Therefore, our theorems
cannot be deduced directly from the results in [8].
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Let [µ]B be an infinitesimal non-Strebel point as in Theorems 2.1 and 2.2. We
construct the isometries and geodesic discs as follows.

Let µ be an extremal Beltrami differential contained in [µ]B , and let k0 = ‖µ‖∞;
then 0< k0 < 1. Suppose E is a compact subset of R, and define µt (z)with parameter
t ∈ 4 by

µt (z) := µ(z)/k0 for z ∈ R, |t | ≤ k0 (2.1)

and

µt (z)=

{
µ(z)/k0 for z ∈ R\E, |t |> k0,

µ(z)/|t | for z ∈ E, |t |> k0.
(2.2)

We then define the map

0 : 4→ B(R), t 7→ [tµt (z)]B .

LEMMA 2.4. The map 0 is an isometry.

PROOF. (1) Suppose |t1| ≤ k0 and |t2| ≤ k0. In this case, by the definition of µt (z),

dB([t1µt1]B, [t2µt2]B) = dB([t1µ/k0]B, [t2µ/k0]B)

= inf
η∈[((t1−t2)/k0)µ]B

‖η‖∞

=

∥∥∥∥ t1 − t2
k0

µ

∥∥∥∥
∞

= |t1 − t2|. (2.3)

(2) Suppose |t1| ≥ k0 and |t2| ≥ k0. In this case, by the definition of µt (z),

dB([t1µt1]B, [t2µt2]B)= inf
η∈[t1µt1−t2µt2 ]B

‖η‖∞, (2.4)

where

t1µt1 − t2µt2 =


t1 − t2

k0
µ(z) for z ∈ R\E,(

t1
|t1|
−

t2
|t2|

)
µ(z) for z ∈ E .

(2.5)

Let t1 = ρ1eiθ1 and t2 = ρ2eiθ2 , where ρ2 ≥ ρ1 ≥ k0. Set ρ = ρ2/ρ1 ≥ 1 and eiθ
=

eiθ2/eiθ1 . By a simple computation, we obtain

|t1 − t2|2

k2
0

≥ 1+ ρ2
− 2ρ cos θ, (2.6)∣∣∣∣ t1

|t1|
−

t2
|t2|

∣∣∣∣2 = 2− 2 cos θ (2.7)

and

1+ ρ2
− 2ρ cos θ − (2− 2 cos θ)= (ρ − 1)(ρ + 1− 2 cos θ)≥ 0. (2.8)
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As [µ]B is an infinitesimal non-Strebel point, ‖µ|R\E‖∞ = k0 ≥ ‖µ|E‖∞, so by
(2.5)–(2.8),

‖t1µt1 − t2µt2‖∞ =

∥∥∥∥ t1 − t2
k0

µ(z)|R\E

∥∥∥∥
∞

= |t1 − t2|. (2.9)

Also because [µ]B is an infinitesimal non-Strebel point, µ has a degenerate Hamilton
sequence {ϕn} ({ϕn} is called degenerate if ϕn→ 0 locally uniformly in R). Hence

lim
n→∞

∣∣∣∣∫
R
(t1µt1 − t2µt2)ϕn

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
R\E

t1 − t2
k0

µϕn +

∫
E

(
t1
|t1|
−

t2
|t2|

)
µϕn

∣∣∣∣
=

∣∣∣∣ t1 − t2
k0

∣∣∣∣ lim
n→∞

∣∣∣∣∫
R\E

µϕn

∣∣∣∣= |t1 − t2|. (2.10)

From (2.4), (2.5), (2.9) and (2.10), we conclude that

dB([t1µt1]B, [t2µt2]B)= |t1 − t2|. (2.11)

(3) Suppose |t1| ≤ k0 and |t2| ≥ k0 (the case |t1| ≥ k0 and |t2| ≤ k0 can be addressed
similarly). In this case, by the definition of µt (z),

dB([t1µt1]B, [t2µt2]B)= inf
η∈[t1µt1−t2µt2 ]B

‖η‖∞,

where

t1µt1 − t2µt2 =


t1 − t2

k0
µ(z) for z ∈ R\E,(

t1
k0
−

t2
|t2|

)
µ(z) for z ∈ E .

By a similar argument as in case (2), we can draw the conclusion that

dB([t1µt1]B, [t2µt2]B)= |t1 − t2|. (2.12)

So, by establishing (2.3), (2.11) and (2.12), we have completed the proof of the
lemma. 2

PROOFS OF THEOREMS 2.1 AND 2.2. We take a sequence {En : n = 1, 2, . . .} of
compact subsets of R, such that En ⊂ En+1 for each n = 1, 2, . . . and R =

⋃
∞

n=1 En .

For each n, we define a Beltrami differential µ(n)t by (2.1) and (2.2). Let 0n : 4→

B(R) be the map t 7→ [tµ(n)t ]B . Then, from Lemma 2.4, we know that 0n is an
isometry with

0n(0)= [0]B and 0n(‖µ‖∞)= [µ]B for n = 1, 2, . . . .

Now we construct a subsequence {0n j } of {0n} such that 0n j (4) 6= 0nk (4)

whenever n j 6= nk . We start with 01 as 0n1 and fix a real number t0 ∈ (k0, 1). For
n > n1, by definition,

dB(01(t0), 0n(t0))= inf
η∈[t0µ

(1)
t0
−t0µ

(n)
t0
]B

‖η‖∞, (2.13)
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where

t0µ
(1)
t0 (z)− t0µ

(n)
t0 (z)=


0 for z ∈ R\En,

0 for z ∈ E1,(
t0
k0
−

t0
|t0|

)
µ(z) for z ∈ En\E1.

(2.14)

Set ε = (k0/4) > 0. As {ϕn} is a degenerate Hamilton sequence of µ, we can choose
ϕm ∈ {ϕn} such that ∫

E1

|ϕm |<
1
4

(2.15)

and ∣∣∣∣∫
R
µϕm

∣∣∣∣> k0 − ε. (2.16)

Since R =
⋃
∞

n=1 En , for the given ϕm there is a number n2 such that for any n ≥ n2,∫
R\En

|ϕm |<
1
4
. (2.17)

By (2.15)–(2.17), when n ≥ n2,∣∣∣∣∫
R
(t0µ

(1)
t0 − t0µ

(n)
t0 )ϕm

∣∣∣∣ = ∣∣∣∣∫
En\E1

(
t0
k0
−

t0
|t0|

)
µϕm

∣∣∣∣
≥

(
t0
k0
−

t0
|t0|

)[∣∣∣∣∫
R
µϕm

∣∣∣∣− ∣∣∣∣∫
E1

µϕm

∣∣∣∣− ∣∣∣∣∫
R\En

µϕm

∣∣∣∣]
≥

(
t0
k0
−

t0
|t0|

)[
k0 − ε −

k0

4
−

k0

4

]
=

(
t0
k0
−

t0
|t0|

)
k0

4
> 0. (2.18)

Now, (2.13) and (2.18) imply that dB(0n1
(t0), 0n(t0)) > 0 when n ≥ n2, so we have

found n2 such that 0n(t0) 6= 0n1(t0) whenever n ≥ n2. A similar discussion yields
a number n3 > n2 such that 0n(t0) 6= 0n2(t0) whenever n ≥ n3. Repeating the same
argument, we obtain a sequence n j such that 0n j (t0) 6= 0nk (t0) whenever n j 6= nk .

On the other hand, 0n(4)= 0m(4) implies 0n(t0)= 0m(t0). If t̃0 is a point in 4
such that 0n(t0)= 0m(t̃0), then for each t ≤ k0 the isometric property of 0 and (2.1)
give

|t0 − t | = dB(0n(t0), 0n(t))

= dB(0m(t̃0), 0n(t))= dB(0m(t̃0), 0m(t))

= |t̃0 − t |.

Since |t0 − t | = |t̃0 − t | for every t ≤ k0, we have t0 = t̃0.
Thus we have constructed a subsequence {0n j } such that 0n j (4) 6= 0nk (4)

whenever n j 6= nk . This completes the proof. 2
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3. Hamilton sequences for extremal Beltrami differentials

First we recall the following known result.

THEOREM A. Suppose that µ ∈ M(R) is extremal in Teichmüller space T(R) and that
{ϕn} is a sequence in A1(R). If, for some sequence {kn}, [kn(ϕn/|ϕn|)] converges in
the Teichmüller metric to [µ], then {ϕn} is a Hamilton sequence for µ.

Theorem A was proved by Gardiner [3] (see also [6, 7]). In this note, we shall
consider the corresponding problem in infinitesimal Teichmüller space and prove the
following result.

THEOREM 3.1. Suppose thatµ ∈ M(R) is extremal in infinitesimal Teichmüller space
B(R) and that {ϕn} is a sequence in A1(R). If, for some sequence {kn}, [kn(ϕn/|ϕn|)]B
converges in the infinitesimal Teichmüller metric to [µ]B , then {ϕn} is a Hamilton
sequence for µ.

REMARK 3.2. Since the condition that [µn]B be convergent in the infinitesimal
Teichmüller metric to [µ]B does not imply that [µn] will converge in the Teichmüller
metric to [µ], and vice versa, Theorem 3.1 cannot be directly deduced from
Theorem A. Shen [10] gave a counterexample which shows that the converse of
Theorem A is not true. It is easy to see that the counterexample in [10] is also suitable
for showing that the converse of Theorem 3.1 does not hold.

To prove Theorem 3.1, the following ‘infinitesimal main inequality’ is needed.

THEOREM B [1]. Suppose µ, ν ∈ M(R) and µ≈ ν; then∫
R
|ϕ|(1− |µ|2) ≤

∫
R
|ϕ|

∣∣∣∣1− µ ϕ

|ϕ|

∣∣∣∣2(∣∣∣∣1+ ν ϕ|ϕ| 1− µ(ϕ/|ϕ|)1− µ(ϕ/|ϕ|)

∣∣∣∣2)(1− |ν|2)−1,

for all ϕ ∈ A(R). (3.1)

LEMMA 3.3. Let µ ∈ M(R); then

− ‖µ‖ ≤

∫
R |µ|

2
|ϕ| − Re

∫
R µϕ

1− Re
∫

R µϕ
. (3.2)

PROOF. For any ν ≈ µ,∣∣∣∣1+ ν ϕ|ϕ| 1− µ(ϕ/|ϕ|)1− µ(ϕ/|ϕ|)

∣∣∣∣2(1− |ν|2)−1
≤
(1+ |ν|)2

1− |ν|2
. (3.3)

From (3.1) and (3.3),

1+ ‖µ‖
1− ‖µ‖

≥

∫
R |ϕ|(1− |µ|

2)∫
R |ϕ|

∣∣1− µ(ϕ/|ϕ|)∣∣2 , (3.4)

and then (3.2) can be easily deduced from (3.4). 2
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LEMMA 3.4. Let [µ]B and [ν]B be two points in B(R), and let t > 0 be a given
number. Then

dB([µ]B, [ν]B)= tdB

([
µ

t

]
B
,

[
ν

t

]
B

)
. (3.5)

PROOF. If η ∈ [µ− ν]B and η is extremal, it is easy to show that (η/t) ∈ [(µ− ν)/t]B
and that (η/t) is extremal. Then (3.5) can be derived from the definition of the
infinitesimal Teichmüller distance. 2

PROOF OF THEOREM 3.1. We write k = ‖µ‖. Since dB([kn(ϕn/|ϕn|)]B, [µ]B)→ 0,
we have kn→ k. By Lemma 3.4, without loss of generality we can assume k < 1

2
and kn <

1
2 . Under these assumptions, we use Lemma 3.3 with kn(ϕn/|ϕn|)− µ and

ϕ = ϕn to get

−

∥∥∥∥kn
ϕn

|ϕn|
− µ

∥∥∥∥ ≤
∫

R |kn(ϕn/|ϕn|)− µ|
2
|ϕn| − Re

∫
R(kn(ϕn/|ϕn|)− µ)ϕn

1− Re
∫

R(kn(ϕn/|ϕn|)− µ)ϕn

=
k2

n − kn + Re
∫

R[|µ|
2
|ϕn| + (1− 2kn)µϕn]

1− kn + Re
∫

R µϕn

= −kn +
Re
∫

R[|µ|
2
|ϕn| + (1− kn)µϕn]

1− kn + Re
∫

R µϕn
. (3.6)

From dB([0]B, [knϕn/|ϕn|]B)= kn and

dB

(
[µ]B,

[
kn
ϕn

|ϕn|

]
B

)
=

∥∥∥∥kn
ϕn

|ϕn|
− µ

∥∥∥∥
it follows that

dB

(
[0]B,

[
kn
ϕn

|ϕn|

]
B

)
− dB

(
[µ]B,

[
kn
ϕn

|ϕn|

]
B

)
≤

Re
∫

R[|µ|
2
|ϕn| + (1− kn)µϕn]

1− kn + Re
∫

R µϕn
. (3.7)

Now we prove that

Re
∫

R
µϕn→‖µ‖ = k. (3.8)

Suppose (3.8) is not true; then there must be a subsequence of {ϕn}, which we also
denote by {ϕn}, such that

Re
∫

R
µϕn→ k̃ < k <

1
2
. (3.9)

Because dB([0]B, [knϕn/|ϕn|]B)= kn→ k and dB([µ]B, [knϕn/|ϕn|]B)→ 0 upon
taking n→∞, by (3.7) we conclude that

k ≤
k2
+ (1− k )̃k

1− k + k̃
.
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By direct computation, we find that

(2k − 1)̃k ≤ (2k − 1)k.

Since k < 1
2 , it follows that k̃ ≥ k, which contradicts (3.9). Therefore (3.7) holds and

{ϕn} is a Hamilton sequence for µ. This completes the proof. 2
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