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COMPLEX APPROXIMATION AND SIMULTANEOUS 
INTERPOLATION ON CLOSED SETS 

P. M. GAUTHIER AND W. HENGARTNER 

L e t / be a complex-valued function denned on a closed subset F of the finite 
complex plane C, and let {zn) be a sequence on F without limit points. We wish 
to find an analytic function g which simultaneously approximates / uniformly 
on F and interpolates/ at the points {zn\. 

Let E denote the set of entire functions, E\F the restriction of E to F, and 
Ë(F) the uniform closure of E\F. A(F) denotes, as usual the set of functions 
continuous on F and holomorphic on the interior F°. We denote b y ^ # the set 
of functions meromorphic on C and by^(F) the uniform limits on F of func
tions i n ~ # having no poles on F. Let C denote the closed plane C U {oo }. 
Arakeljan [1] has shown that Ë(F) = A (F) if and only if C\Fis connected and 
locally connected. The analogous problem for meromorphic approximation 
was solved by Nersesian [7] and Roth (9). On the other hand, by well known 
uniqueness theorems, further conditions must be imposed in order to simul
taneously interpolate on an infinite sequence \zn). The condition we shall im
pose is that {zn) "avoids" the interior of F. 

In this direction L. Hoischen [6] shows that if/ is infinitely differentiate on 
the real line, then one can simultaneously approximate / and finitely many 
derivatives, as well as interpolate them at a sequence {xn} without finite limit 
points. 

Our approach is somewhat different in that we shall not require differenti
ability of the function/ which is to be approximated. Nevertheless, we require 
that finitely many derivatives of the approximating function g have preassigned 
values at given points. In this respect, our results resemble more closely those 
of Rubel and Venkateswaran [10] rather than those of Hoischen. 

In seeking to specify the derivatives of the approximating function while 
the function to be approximated is not necessarily differentiate, we are re
minded of the well known phenomenon that on a closed interval an inter
polating sequence of polynomials may fail to converge, yet convergence can 
be achieved by specifying values for the derivatives of the polynomials at 
certain points. 

Our principal result is the following: 

THEOREM. Let F be a closed subset of C such that Ë(F) = A (F) and [zn] a 
sequence in F\(F°)~ without finite limit points. Then for each f Ç A(F), e > 0, 
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and arbitrarily given complex numbers wn
(v\ v = 1, 2, . . . , v(n) ; n = 1 , 2 , . . . , 

there is a g Ç E such that 

(1) 1/00 -g{z)\ < e, ze F} 

(2) g(zn) = /(*»), n= 1 , 2 , . . . , and 

(3) g^(zn) = «,n<», v = 1, 2, . . . , , («) , n = 1, 2, . . . . 

Rubel and Venkateswaran [10] obtain this result with the additional assump
tions that F° = 0 and v(n) is bounded. 

The proof we shall give of our theorem can be modified to yield many similar 
theorems on simultaneous approximation and interpolation. We list some of 
these without proof. 

1. Instead of considering entire functions one can consider meromorphic 
functions. That is, if ^(F) = A(F), similar conclusions hold where g of 
course is in^^. 

2. Instead of working with E a n d ^ # one can let F be a (relatively) closed 
subset of a plane domain G. Then one considers the possibility of simultaneous 
approximation and interpolation by functions holomorphic (meromorphic) on 
G. One obtains similar results. 

3. Roth [8] has considered the possibility of approximation within e by 
meromorphic functions, where e is a positive continuous function. Our tech
niques also allow simultaneous interpolation in this context. 

Before proving our theorem we state some lemmas. The well known Walsh 
lemma has been generalized by various authors. The following version is due 
to Deutsch [3]: 

LEMMA 1. Let Y be a dense linear subspace of a topological vector space X. 
Then for every x Ç X, neighbourhood U of x, and 7\, T2, . . . , Tn G X' (topologi
cal dual), there is a y (j Y such that: 

y G U and Tj(x) = Tj(y), j = 1, 2, . . . , n. 

Let e be a positive continuous function on F. We shall say that E\F is 
e-dense in A (F) provided that for each / £ A (F), there is a g G E such that: 

\m - g(*)l < *(*), z £ F. 

Note that if E\F is e-dense in A(F) and t is a positive constant, then E\F is 
also t - e-dense in A(F). Let us now denote by Ae(F), the set of / Ç A(F) 
such that 

11/11. = sup |/(*)/«(s)| 
F 

is finite. Then Ae(F) is a normed space. Moreover, we endow A(F) with the 
compact open topology. The corresponding topological dual spaces are de
noted by A J (F) and A'(F) respectively. 
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LEMMA 2. Suppose Y is an e-dense subspace of A{F) and Tj £ A'{F), j = 
1,2, ... ,n. Then for eachf 6 A (F), there is a g £ Y such that: 

l/(s) - £ ( * ) l < *(*), * 6 ^ 

?Xf) = T,{g), j= i , 2 , . . . , » . 

Proof. There is an fe 6 F so that: j/(z) — h(z)\ < e(a), z £ F. Hence, 
/ - A € ^ ( / O . S i n c e ^ ' t / 7 ) C X / W , r , 6 ^ «'(F). Also 7 H 4,(70 is dense 
in A t(F). So by the Walsh Lemma 1, there is a go G F such that: 

|go(a) - /(a) + h(z)\ < e(a), a 6 F, and 
r,(go) = T,(f-h), j= 1,2, . . . , n . 

Thus g = go + ft has the required properties. 

In the following lemma, we denote by R(K), the uniform closure on K of 
rational functions having no poles on K. Of course, for K compact, R(K) and 
M(K) coincide. We recall that a Lyapunov domain is a domain whose boundary 
in finitely many Lyapunov arcs whose interiors are disjoint. For the definition 
of a Lyapunov arc see [11]. For the application of Lemmas 3 and 4 that we have 
in mind, it is sufficient to think of a Lyapunov arc as a circular arc. 

LEMMA 3. Let K be a compact subset of the extended plane and let D be a Lya
punov domain. Then, 

A {K) = R(K) =>A{K\JD) = R{K U D). 

Proof. Our proof is modeled on [4, p. 52]. Let r = r 1 \J T2 \J . . . \J Tn, 
be the boundary of D, where Tj are Lyapunov arcs with disjoint interiors. 

L e t / G A(KVJ D) and let e > 0. According to Vitushkin [11, Lemma 1, 
p. 185],/ can be approximated uniformly within e/n by a continuous function 
/ i which is holomorphic in K° VJ D \J IV, where IV is a neighbourhood of T1. 
Again by Vitushkin, / i may be approximated uniformly within e/n by a con
tinuous function /2 which is holomorphic in 

^ U D u r / u r£
2, 

where IV is a neighbourhood of T2. Repeating this argument finitely many 
times, we see t h a t / may be approximated uniformly within e by a continuous 
function fn which is holomorphic on 

^ U D U r / u . . ^ iv. 

Now by the Bishop localization theorem (see [4, p. 51]), 

fn\K\JD £ R{K\JD). 

We have used here the assumption that A (K) = R(K). Thus /may be approxi
mated uniformly on K U D within e by a rational function. This proves the 
lemma. 
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LEMMA 4. Let F be a closed subset of C and D a Lyapunov domain. Then 

A (F) = M(F) =>A(FKJD) = M(F U D). 

Proof. From the necessity part of the Nersesian-Roth theorem ([7] and [9]), 

(*)A(F) = M{F)^A{FC\K) = R(FH K) for each closed disc K. 

Now from the sufficiency of this same theorem, all we have to show is that 

A[(F\JD)C\K\ = R[(F\J D)r\K] 

for each closed disc K. Since 

(F\JD)r\K = (Fr\K) u (DnK), 

this follows from (*) and Lemma 3, since D C\ K is a Lyapunov domain. 

We now prove our theorem. Let pn be a polynomial with: 

(4) pn{zn) = f(zn) and 

(5) pnw(zn) = ™n
(v\ v = 1 , 2 , . . . , * ( » ) , 

for n = 1 , 2 , . . . , and let Kk, k = 1, 2, . . . be an exhaustion of C by closed 
discs: C = {JfKkj Kk Z) Kk+i, such that K\ and each dKk meet no zn and 
such that each point a 6 C\(F W i^+i) can be connected to oo by an arc 
c(a) in C\(F U i£A-)- This is possible by Arakeljan's theorem [1]. 

The desired function g will be the limit of a sequence gR. £ - ^ which will be 
"constructed" inductively to satisfy, for k = 1, 2, . . . : gk has no poles on 
Kk„i and 

(6) \gk(z) - gk^(z) | < e • 2~\ z £ Kk_2, 

(7) i&oo -/(*)| <6 è 2-', *e F, 
l 

(8) g*fe) =/(*»), and 

(9) ^ ( s » ) = W \ 

for */ = 1 , 2 , . . . , v(n), and zw in Kk. 
In (6) we shall set K-i = K0 = 0 and go = gi, where gi is found as follows. 

By hypothesis, there is an entire function gu with \gi(z) — f(z)\ < e • 2 - 1 , 
z £ F and hence gi satisfies (7). The conditions (6), (8) and (9) are vacuously 
satisfied. Using Lemma 2, it is also easy to construct gi. 

Suppose gj meromorphic, for j = 1, . . . , k — 1, have been found satisfying 
(6), to (9). We shall now find gk. First we construct an auxiliary function </> 
(which depends on k): On Kk-i U (F°)~, set # = gk-\. Now about each zn in 
(Kk\Kk-i), we construct disjoint closed discs Dn, Dn C Kk\(Kk-i VJ (F°)~). 
These discs can be chosen so small by (4) that: \pn(z) — f(z)\ < e 2 Ï - 1 2""̂ , 
z £ F r\ Dn. Now set 0 = pn on such Z)w. Set ^ = <t> — f. By Tietze's theorem 
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we can extend \p and hence 0 so that 0 £ A(Fk), and |</>(s) —f(z)\ < e Xa_1 2~;, 
z £ F. where 

Fk = F U X t_! U U {Dn: zn e Kk\Kk-!}. 

From Lemma 4, it follows that there is a 7 £ ^ # (7 depends on k) for which: 

|<y(s) - 0 ( z ) | < e • 2-c*+i>, z 6 7v 

Moreover, by Lemma 2, where Y is the set of / £ ^ # with no poles on F and 
e(z) = e, we may assume that 

y(zn) = <j>{zn) and 
7 e 0 fe) = &v)(zn), v = 1, . . . , *(*0, for zn £ #*. 

From the way in which 0 was constructed, it follows that 7 satisfies 

(io) |7 w - g*-i(*) I < e • 2-(fc+1), s e Kk-l9 

(11) |7(s) - / ( a ) I < e [ ç 2-^ + 2" a + 1 ) ] , s 6 F, 

(12) TfeO = /(*»), and 

(13) y(v) (zn) = wn
iv\ v=l,2,...,v(n),iorZneKk. 

Now 7 has only finitely many poles cii, . . . , aM in Kk and they all lie in 
Kk\(Kk-i U T7). From our choice of the exhaustion {Kj}^, we may construct 
a path o-(a;) from aj to 00 which misses F \J Kk_2 and each zn. In fact we may 
construct disjoint, open, simply connected neighbourhoods Sj of a(aj) respec
tively which miss F U Kk_2 and whose closures miss each zn. Let r = rk be 
the principal part of 7 on Kk. Then there is an entire function h = hk such that 

\r-h\ <e2~(k+1\ z i U Sjt 

A(zn) = r(z„), and 

h{v\zn) = / % „ ) , 

for j/ = 1, . . . , v(n), and zn £ Kk. Now set ĝ  = 7 — r + A. Then gk satisfies 
(6), (7), (8), and (9). 

Thus {gk} is inductively ''constructed". From (6), and since gk has no poles 
on Kk-i, we see that gk converges to some g £ E, and from (7), (8) and (9) 
we see that g satisfies (1 ), (2), and (3). This completes the proof of the theorem. 

On open Riemann surfaces, the usual conditions for uniform approximation 
are still necessary, but they are not sufficient [5]. However if F° = 0, then 
the same conditions as in the planar case prevail and even allow tangential 
approximation. In the planar case this is a corollary of Arakeljan's theorem. 
However on Riemann surfaces, a direct proof is required (using the Bishop-
Mergelian theorem [2] for example.) In this context (F° = 0) Carleman 
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approximation and simultaneous interpolation is again possible, but of course 
(3) must be formulated in terms of charts. 
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