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While previous experimental and numerical studies of dilute microswimmer suspensions
have focused on the behaviours of swimmers in the bulk flow and near boundaries, models
typically do not account for the interplay between bulk flow and the choice of boundary
conditions imposed in continuum models. In our work, we highlight the effect of boundary
conditions on the bulk flow distributions, such as through the development of boundary
layers or secondary peaks of cell accumulation in bulk-flow swimmer dynamics. For the
case of a dilute swimmer suspension in Poiseuille flow, we compare the distribution (in
physical and orientation space) obtained from individual-based stochastic models with
those from continuum models, and identify under what conditions it is mathematically
sensible to use specific continuum boundary conditions to capture different physical
scenarios (i.e. specular reflection, uniform random reflection and absorbing boundaries).
We identify that the spread of preferred cell orientations is dependent on the interplay
between rotation driven by the shear flow (Jeffery orbits) and rotational diffusion. We find
that in the absence of hydrodynamic wall interactions, swimmers preferentially approach
the walls perpendicular to the surface in the presence of high rotational diffusion, and that
the preferential approach of swimmers to the walls is shape-dependent at low rotational
diffusion (when suspensions tend towards a fully deterministic case). In the latter case, the
preferred orientations are nearly parallel to the surface for elongated swimmers and nearly
perpendicular to the surface for near-spherical swimmers. Furthermore, we highlight
the effects of swimmer geometries and shear throughout the bulk-flow on swimmer
trajectories and show how the full history of bulk-flow dynamics affects the orientation
distributions of microswimmer wall incidence.
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1. Introduction

Microorganisms are ubiquitous and can be found in disparate systems such as soils,
surfaces and fluids. While microorganisms are not all harmful, and some are important for
the daily processes of larger lifeforms, like gut bacteria in humans (Rinninella et al. 2019)
and microalgae in the marine food-chain (Arrigo 2005), there exist a number of pathogenic
or toxic microorganisms (Hallegraeff et al. 2004). Pathogenic bacteria are sources of
infections and infectious diseases, ranging from typhoid fever (Salmonella typhi), to
tuberculosis (Mycobacterium tuberculosis), pneumonia (Streptococcus, Pseudomonas)
and food illnesses (other Salmonella) (Bodey et al. 1983; Rowe, Ward & Threlfall 1997;
Hardy 1999; Ohl & Miller 2001; Cohen-Poradosu & Kasper 2007; Gordon & Parish
2018). Meanwhile, harmful algal blooms (Anderson et al. 2021) can produce highly potent
neurotoxins (e.g. Alexandrium catenella), block sunlight for aquatic plants, and lead to
hypoxic and anoxic water (Mohd-Din et al. 2020). A neurotoxin build-up can lead to
serious injury or death in marine animals, freshwater animals and humans. The motility
of many microorganisms (Jarrell & McBride 2008; Kearns 2010) makes them effective
pathogens (Ottemann & Miller 1997) especially when using medical equipment. For
example, biofilms can develop inside medical devices, such as catheters, and subsequent
upstream motility of the microorganisms can then lead to infection (Figueroa-Morales
et al. 2020). To develop improved insertion devices it is essential to understand the
behaviours of motile microorganism suspensions in sheared flows, especially as the
microorganisms approach surfaces. Harmful microorganisms can also contaminate water
transport infrastructure, and if not dealt with early on (or prevented from colonising
surfaces) can lead to illness, serious injury or death in local populations which consume
the water. The prevention of such contamination is important for population well-being and
also the associated industries which seek to meet governmental regulation targets. Since
motile microorganisms are exceedingly small and typically on the micron scale (Childress
1981), swimming microorganisms perceive the fluids through which they traverse as highly
viscous environments, and adapt their behaviour for motility in a regime with negligible
inertia (Stokes flow). For this traversal, some motile microorganisms have developed long,
slender appendages, known as flagella, which can create propulsion through various means
(Brennen & Winet 1977). Bacteria swim by bundling their appendages and rotating them
via specialised motors at flagellar bases; sperm pass waves along their tails (Lauga 2016);
and microalgae (Goldstein 2015) use different strokes (recovery and effective strokes)
to create asymmetry with various degrees of coordination (e.g. breaststroke motion in
Chlamydomonas or metachronal waves in Volvox).

A field of much recent interest has been the study of microswimmers near walls, whether
these be hydrodynamic interactions, the mechanisms of reorientation or accumulation to
form biofilms. Experiments in confined environments have shown swimming cells to be
attracted to surfaces with some authors hypothesising that the hydrodynamic interaction
of the cells with the walls realigns bacteria parallel to the walls (Berke et al. 2008) whilst
puller-type algae (front actuated swimmers which pull in the fluid from the direction of
propulsion) approach walls at steep angles (Buchner et al. 2021). In microfluidic channels,
the phenomenon of upstream swimming has been observed for bacteria (Hill et al. 2007;
Kaya & Koser 2009) where E. coli swimming in a region below a critical flow speed
can reorient and swim against the direction of fluid flow. However, in the presence
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Bulk, boundaries and microswimmers

of strong flow, swimming is dominated by fluid advection, and cells are transported
downstream. In three dimensions, E. coli have also been observed to swim in clockwise
circles near rigid surfaces (Frymier et al. 1995; Vigeant & Ford 1997; Giacché, Ishikawa
& Yamaguchi 2010). Three-dimensional models for monotrichous bacteria near walls
(Park, Kim & Lim 2019), which account for hydrodynamic interactions via regularised
Stokeslets and the method of images, have also highlighted the importance of body
aspect ratios to the inclination angles near walls and the radii of circular trajectories
along walls, while finding that flagellar length affects whether bacteria can leave the
wall. Meanwhile, numerical models without hydrodynamic interactions propose that the
reorientation of swimmers interacting with walls can be explained purely mechanistically,
by hitting a wall, maintaining orientation for a finite time scale, rotating via Brownian
rotation and swimming away (Li & Tang 2009; Li et al. 2011; Costanzo et al. 2012;
Elgeti & Gompper 2013). In this paper, we will study microswimmer distributions and
microswimmer wall interactions for a dilute suspension via continuum modelling and
stochastic individual-based simulations. Here we do not account for intercellular nor
cell–wall hydrodynamic interactions, instead focusing on the impact of the bulk flow
and swimmer geometry on cell trajectories, and explore a range of simplified boundary
interactions. We can neglect the intercellular hydrodynamics as the suspensions are dilute.

We are interested in the relationship between the bulk flow and attachment dynamics,
that occur through swimmer–wall interactions. To study the bulk behaviours of
suspensions of microswimmers, continuum models have been developed to capture
collective dynamics. These are developed as an alternative to expensive individual-based
simulations. These types of models have been used to study several suspension phenomena
such as bioconvection (Pedley & Kessler 1992), downwelling gyrotactic swimming
(Fung, Bearon & Hwang 2020) or determining how sheared flow can lead to layer
formation below surface levels for gyrotactic swimmers (Maretvadakethope, Keaveny &
Hwang 2019). Early continuum-type models include advection–diffusion equations as
introduced by Kessler (1986) where deterministic, directional dynamics are captured via
advection terms, and diffusion terms act to capture the randomness of microswimmers.
For gyrotactic swimmers, Pedley & Kessler (1990) developed a model which allowed both
the directional swimming and the diffusion coefficient to be modified by the flow. It also
accounted for reorientation of non-spherical particles by incorporating the reorientation
of cells as described by Jeffery’s equation (Jeffery 1922; Hinch & Leal 1972). This
is particularly important due to the assumption that cells in a volume element swim
relative to the fluid in the direction of cell orientation. Another continuum model of
note is the Smoluchowski equation, which models active suspensions using continuum
kinetic theories, as reviewed in detail by Saintillan & Shelley (2013). The Smoluchowski
equation describes the cell distribution via a probability distribution function dependent
on time, physical space and orientational space. For three-dimensional physical space,
the problem has seven-dimensional dependence and is rarely solved in full generality due
to the computational cost. To reduce the problem the effective transport coefficients for
the advection and diffusivity can be estimated by only using the local flow dynamics,
and in generalised Taylor dispersion (GTD) the diffusivity is approximated from the
probability distribution function of a tracer particle in orientation and physical space
(Frankel & Brenner 1993; Hill & Bees 2002; Manela & Frankel 2003). Although the
GTD model is more accurate than the Pedley & Kessler (1990) model at high shear rates
(Croze et al. 2013; Croze, Bearon & Bees 2017; Fung et al. 2020), it can fail for straining
dominated flows. A recent new transport model (Fung, Bearon & Hwang 2022) combines
a transformation of the Smoluchowski equation into a transport equation with drift and
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dispersion terms approximated as functions of local flow fields, allowing it to be applied
for any global flow field. In our study of boundaries and bulk distributions we will consider
a two-dimensional physical space Smoluchowski equation which reduces the problem to
three-dimensional dependencies. The results from our study will have implications on
broadening the validity of models such as the doubly periodic Poiseuille flow models
(Vennamneni, Nambiar & Subramanian 2020), justifying their application in capturing
the dynamics and cell distributions for bounded domains.

Given that the geometry of swimmers (particularly their aspect ratios) affect swimmer
orientations in the bulk flow, the orientation distributions for swimmers interacting with
walls are affected as well, thus prompting our study into determining how bulk flow and
cell shape play a role in how microswimmers approach walls. Furthermore, there is the
problem of determining appropriate boundary conditions to be used in continuum models,
such as in Bearon & Hazel (2015) and Ezhilan & Saintillan (2015). For the physical
scenario where cells are conserved in the flow and there is no absorption at the walls,
a natural boundary condition is a no-flux condition in physical space. This corresponds to
the integral of the flux terms over all orientations being zero at the wall. Meanwhile, for
the case of wall absorption, the flux at the wall is non-zero and time-dependent. A no-flux
condition by itself does not specify the probability density of orientation distributions
at the wall, and is not a sufficient condition to obtain a unique solution. In Bearon &
Hazel (2015) and Ezhilan & Saintillan (2015) a pointwise no-flux boundary condition
was proposed for a finite element solution, imposing that the flux in every direction must
be zero for all microscale orientations. However, this is not a sensible boundary condition
because the formulation of the two-dimensional equilibrium Smoluchowski equation leads
to unrealistic cell densities in a boundary layer. We note that while some continuum
models impose the additional constraint of perfect symmetry in azimuthal angles and
spatial changes in orientation at boundaries to satisfy no-flux (Jiang & Chen 2020), there
exist further implicitly and explicitly imposed boundary conditions of interest that satisfy
cell conservation. We also note that in individual-based dynamics, there exist various
boundary interactions for Brownian swimmers (Jakuszeit, Croze & Bell 2019), such as
specular reflection (Volpe, Gigan & Volpe 2014; Kumar et al. 2021), and different types of
surface sliding models (Sipos et al. 2015; Spagnolie et al. 2015; Zeitz, Wolff & Stark 2017).
Potential-free methods (Peng & Brady 2020; Kumar et al. 2021) have also been developed
to study suspension dynamics. In our study we consider suspensions in channels with
height W = 426 μm (see table 1) and typical bacterial lengths of 1–2 μm. The separation
of length scales allows us neglect particle size. We approximate surface interactions as
point-like (Saintillan & Shelley 2013; Ezhilan & Saintillan 2015) without concern about
swimmer exclusion areas at the wall, as required when studying swimmers in microfluidic
channels (Chen & Thiffeault 2021). We further ignore hydrodynamic interactions with
walls for simplicity, allowing us to study various pinball-like wall interactions.

In this paper, we develop and analyse dynamics captured by two types of mathematical
models (continuum models and stochastic individual-based models) to determine under
what conditions it is sensible to use different continuum model boundary conditions
to capture different types of physical wall-interactions. We also study the underlying
bulk-flow behaviours which lead to different distributions of wall interactions. We will
introduce governing equations (§ 2.1) and outline the numerical methods for solving these
(§ 2.2) via an individual-based stochastic method (§ 2.2.1) and continuum model (§ 2.2.2).
We will consider three types of particle–wall interactions (specular reflection, uniform
random reflection and wall absorption) using individual based stochastic models and
consider the validity of three continuum models to capture the corresponding dynamics.
We compare the relationships between specular reflection at wall boundaries with a

976 A13-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

89
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.897


Bulk, boundaries and microswimmers

Channel width W 425 μm
Centreline flow velocity U 1.25 mm s−1

Swimming velocity Vs 50–125 μm s−1

Rotational diffusion dr 6 × 10−4 s−1–6 s−1

Brownian translational diffusion DT 2 × 10−9 cm2 s−1

Rotational Péclet number Pe = 2U/Wdr 1–104

Translational Péclet number PeT = WU/2DT 106

Velocity ratio ν = Vs/U 0.04–0.1

Table 1. Scaled parameter variables, based on values reported by Berg (1993) and Rusconi et al. (2014) and
used by Bearon & Hazel (2015).

continuum doubly periodic Poiseuille flow model (§ 3.1.1); between randomised reflections
and continuum model with constant Dirichlet wall conditions (§ 3.1.2); and between
perfectly absorbing boundaries and a continuum model with zero Dirichlet constant wall
conditions (§ 3.1.3). Finally, we will also analyse the role of shape, shear and diffusion
dependent bulk flow dynamics on wall-interaction behaviour (§ 3.2) and develop a novel
accumulation index to quantify the importance of underlying deterministic trajectories on
wall interactions (§ 3.2.2).

2. Methods

2.1. Governing equations

2.1.1. Conservation equation for ψ
We begin by considering the conservation equation for the probability distribution
of microswimmers ψ(x, p, t) that is dependent on swimmer position, x, swimmer
orientation, p, and time, t,

∂ψ

∂t
+ ∇x · (ẋψ)+ ∇p · (ṗψ) = 0, (2.1)

where ∇x and ∇p are the gradient operators in physical space and orientational space on
a unit sphere of orientations Ω , respectively. The translational flux, ẋ, and orientational
flux, ṗ, as given in Saintillan & Shelley (2013), are

ẋ = u + Vsp − DT∇x lnψ, (2.2)

ṗ = βp · E · (I − pp)+ 1
2
ω × p − dr∇p lnψ. (2.3)

The translational flux is dependent on the fluid velocity u, the cell swimming at speed
Vs in direction p and translational diffusion DT . The orientational flux for an asymmetric
swimmer with a shape factor (Bretherton constant) β, consists of the rotation characterised
by the rate-of-strain tensor E , background vorticity ω and Brownian rotational diffusion
dr. The shape factor β is restricted to 0 ≤ β < 1 for prolate shapes as in previous studies
(Bearon & Hazel 2015) where β = 0 corresponds to spherical swimmers. We do not
consider oblate swimmers as most microswimmers of interest are spherical or rod-shaped
(Dusenbery 1998).
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On integrating the conservation equation (2.1) over all orientations, we obtain

∂

∂t

∫
Ω

ψ(x, p, t) dp + ∇x · J = 0 (2.4)

with a corresponding flux term

J =
∫
Ω

((u + Vsp)ψ − DT∇xψ) dp. (2.5)

There is no flux through the walls in a confined geometry if the flux at the walls satisfies

J · n̂ = 0, (2.6)

where n̂ is normal to the wall. Due to the non-penetration of the fluid at the walls, this can
be simplified to [∫

Ω

(Vspψ − DT∇xψ) dp
]

· n̂ = 0. (2.7)

A no-flux condition is of interest for problems that require cell conservation such as when
individual cells undergo specular or random reflection at boundaries. Note, however, that
no-flux does not hold for absorbing boundaries.

2.1.2. Two-dimensional channel flow
To expand upon the study of two-dimensional channel flow as motivated by experiments
(Rusconi, Guasto & Stocker 2014) and numerical studies (Bearon & Hazel 2015;
Vennamneni et al. 2020), let us consider a horizontal channel of height W (as shown in
figure 1a), such that for a coordinate system (X, Y) with orthonormal base vectors i, j, the
channel walls are at positions Y = ±W/2. Suppose there is a parabolic flow through the
channel with velocity

u = U

(
1 − 4

(
Y
W

)2
)

i, (2.8)

where U is the centreline flow speed of the channel.
We also take the cell orientation to be constrained in the two-dimensional plane, so that

the direction of orientation p can be defined in terms of the angle θ measured from the
horizontal,

p = cos θ i + sin θ j. (2.9)

We non-dimensionalise the system with length and time scales L = W/2 and T =
W/2U, respectively, such that our coordinate system can be redefined as (x, y) =
(2X/W, 2Y/W), with boundaries located at y = ±1. Taking ψ to be independent of x,
this leads to the two-dimensional conservation equation

∂ψ

∂t
+ ν

∂

∂y
(sin θψ)− 1

PeT

∂2ψ

∂y2 + ∂

∂θ

(
y(1 − β cos 2θ)ψ − 1

Pe
∂ψ

∂θ

)
= 0. (2.10)

There is no flux at the boundaries if the following condition is satisfied:∫ 2π

0

(
ν sin θψ − 1

PeT

∂ψ

∂y

)
dθ

∣∣∣∣∣
y=±1

= 0. (2.11)

Note that (2.11) is not suitable to use as a boundary condition on its own due to the
non-uniqueness of its solutions (Bearon & Hazel 2015). Here, ν = Vs/U is the ratio of the
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Bulk, boundaries and microswimmers

(a)

(c)

(b)

j

i Y = ± W
2
—

0 200 400

x

y

600
–1.0

–0.5

0

0.5

1.0

S

R

A

θ

θ

Figure 1. (a) Schematic of two-dimensional Poiseuille flow and individual swimmer trajectories. Swimmers
are not drawn to scale. (b) Schematic of specular reflection S , uniform random reflection R and absorbing
boundary A effects. (c) Sample trajectories computed by the individual-based method (IBM) model in a
dimensionless channel, in the absence of translational diffusion effects, for β = 0.99, ν = 0.04 and initial
positions x0 = 0, y0 = 0, 0.6. Dotted lines correspond to fully deterministic trajectories and solid lines
correspond to trajectories with rotational effects, Pe = 104.

swimming speed to the centreline velocity, Pe = 2U/Wdr is the rotational Péclet number
and PeT = WU/2DT is the translational Péclet number. The parameters used are given in
table 1. We also introduce the cell concentration distribution

n( y, t) =
∫ 2π

0
ψ(θ, y, t) dθ. (2.12)

For the steady state problem, with ψ independent of time, the time-independent cell
concentration distribution is

n( y) =
∫ 2π

0
ψ(θ, y) dθ. (2.13)

2.2. Numerical methods

2.2.1. Stochastic differential equations
The conservation equations in § 2.1 can be transformed to an individual-based
stochastic model, as there exists an established complete equivalence between forward
Fokker–Planck equations and diffusion processes with a drift coefficient μ(X t, t) and
diffusion coefficient D(X t, t) (Gardiner 2009). Hence, Fokker–Planck equations of the
form

∂ψ

∂t
(x, t) = −

n∑
i=1

∂

∂xi
[μi(x, t)ψ(x, t)] +

n∑
i,j=1

∂2

∂xi∂xj

[
Dij(x, t)ψ(x, t)

]
(2.14)
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have an equivalency to Itô stochastic differential equations (SDEs) of the form

dX t = μ(X t, t) dt + σ (X t, t) dW t, (2.15)

where X t = ( y(t), θ(t)) is the position and orientation vector, dt is the time step, dW t
is the Wiener process, μ(X t, t) is a drift term, and the diffusion effects are captured in
σ (X t, t) via the relation

D(X t, t) = σ (X t, t)σ (X t, t)T

2
. (2.16)

As the two-dimensional channel flow equation (2.10) is of the form of (2.14), this allows
for the transformation to Itô SDEs with drift and diffusion terms

μ(θ, y, t) =
(

ν sin θ
y(1 − β cos 2θ)

)
, (2.17a)

σ (θ, y, t) =

⎛
⎜⎜⎝
√

2
PeT

0

0

√
2
Pe

⎞
⎟⎟⎠ . (2.17b)

Taking the limits of PeT ,Pe → ∞ we can extract the case of a purely deterministic system
without diffusion. Computationally, this is implemented by replacing the diagonal entries
of the matrix with zeros. The effect of rotational diffusion in x–y space is illustrated in
figure 1(c), where the IBM is augmented with an x-direction advection term (details given
in Appendix A).

For the SDE, we consider boundary conditions for three types of physical boundary
interactions at walls y = ±1: specular reflection; uniform random reflection; and an
absorbing boundary (see figure 1b). In the case of specular reflection (boundary condition
S), swimmers with angles of incidence θi instantaneously reorient to θr = 2π − θi such
that θi, θr ∈ [0, 2π). For uniform random reflection (boundary condition R)

θr =
{

π + π · U(0, 1), if θi ∈ [0,π] at y = 1,
π · U(0, 1), if θi ∈ [π, 2π] at y = −1,

(2.18)

where U(0, 1) is a uniformly distributed random number in the interval (0, 1). Meanwhile,
for a perfectly absorbing boundary (boundary condition A) trajectories terminate upon
impact with a wall.

To calculate the probability distribution ψ from the stochastic IBM in bounded domains
we run simulations for 106 stochastic swimmers which are uniformly initialised over the
domain (θ, y) ∈ [0, 2π)× [−1, 1] with sampling step size dt = 0.1 with 20 subintervals
each (which are then calculated to approximate the continuous process better). For the
case of specular reflection S and random uniform reflection R we impose a normalisation
condition

∫ 2π

0

∫ 1
−1 ψ(θ, y) dy dθ = 4π for ease of comparison of θ distributions at the wall

(§§ 3.1.1 and 3.1.2). Similarly, for the absorbing boundary case A (§ 3.1.3), we introduce
an initial normalization condition

∫ 2π

0

∫ 1
−1 ψ(θ, y, 0) dy dθ = 4π. Time step convergence

is checked by comparing the concentration distributions obtained with sampling step
size dt = 0.025. For any simulation where we want distributions at runtime Tsim the
probability distribution is calculated from trajectory end-states. The runtime for endstate
convergence (i.e. when doubling the runtime does not change the macroscopic properties
of the probability distribution such as local cell densities) is shape dependent, and adjusted
accordingly.
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(a)

3.0

2.5

2.0

1.5

1.0y

y

0.5

0

–0.5

–1.0

3.5
1

0

–1

0

θ

2π

2π

3.0

2.5

2.0

1.5

1.0

0.5

0

3

1

–10

(b)

(c)

y

u

ψ
π

θ
π

Figure 2. A comparison of the bulk dynamics in a continuum double Poiseuille model, with a stochastic
simulation with wall-bounded specular reflection for Pe = 101, β = 0.99, ν = 0.04 and PeT = 106. (a) Finite
element continuum simulation for (nθ = 100, ny = 500) double Poiseuille bivariate ψ distribution for flow
with periodic boundaries DP . (b) The IBM stochastic bivariate ψ distribution for single Poiseuille flow with
specular reflection S at y = ±1. Example cell trajectories of cells swimming in sheared flow are overlaid in
θ–y phase space (white lines), with snapshots in time given by dots along each trajectory (black to white in
time). (c) Flow profile for double Poiseuille flow in (a). In (a,b) the colourmap (blue to yellow) indicates the
probability distribution of cells in the phase space.

For comparison with the specular reflection problem and verification against continuum
models we also develop a double Poiseuille flow model. For this, we extend the flow
domain to allow for a doubly periodic flow profile as shown in figure 2(c). The background
fluid flow, u, for domain y ∈ [−1, 3], becomes

u =
{

−(1 − ( y − 2)2)i for y > 1,
(1 − y2)i for y < 1,

(2.19)

such that the background flow for y ∈ [−1, 1] is identical to the background flow for a
simple Poiseuille flow in the channel.

We implement periodic boundaries in y, such that for incident positions yi

y =
{

yi − 4 if yi > 3,
yi + 4 if yi < −1,

(2.20)

and impose a normalisation condition
∫ 2π

0

∫ 2
−2 ψ(θ, y) dy dθ = 8π.

2.2.2. Continuum model
To solve the two-dimensional continuum model for the probability distribution ψ , we
use a Galerkin finite element method, as in Bearon & Hazel (2015), implemented in the
C++ library oomph-lib (Heil & Hazel 2006). We solve for the continuum solution
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by multiplying (2.10) by a y-and-θ -dependent test function N(θ, y), integrating over the
domain, and integrating by parts, to obtain the weak form∫ 2π

0

∫ 1

−1

∂ψ

∂t
N −

[
ν sin θψ − 1

PeT

∂ψ

∂y

]
∂N
∂y

−
[

y(1 − β cos 2θ)ψ − 1
Pe
∂ψ

∂θ

]
∂N
∂θ

dy dθ

+
∫ 2π

0

[(
ν sin θψ − 1

PeT

∂ψ

∂y

)
N
]1

−1
dθ

+
∫ 1

−1

[(
y(1 − β cos 2θ)ψ − 1

Pe
∂ψ

∂θ

)
N
]2π

0
dy = 0. (2.21)

The equations are discretised using finite elements on a grid nθ × ny, with nθ and
ny varying dependent on the boundary condition type and Péclet number of interest.
Across all models, simple periodic boundary conditions are applied in the θ -direction
to ensure the angles of orientation wrap around, i.e. ψ(0, y) = ψ(2π, y) for all y. Three
different boundary conditions will be applied for the continuum problem: a doubly
periodic Poiseuille flow model DP ; a pinned non-zero Dirichlet constraint DC; and a
pinned zero Dirichlet constraint D0. Note that while models like DP satisfy no-flux (2.11)
by symmetry and periodicity arguments, we do not explicitly impose no-flux in any of
the continuum models. Furthermore, no-flux is inherently not satisfied by zero Dirichlet
constraint D0 except for the trivial solution ψ(θ, y) = 0 for all (θ, y).

A Dirichlet constraint (DC) will be imposed for a wall-bounded domain (θ × y) ∈
[0, 2π)× [−1, 1] such that ψ(θ,±1) = C0 for all θ . The values of the constant emerges
upon the enforcement of the normalisation condition

∫ 2π

0

∫ 1
−1 ψ(θ, y) dy dθ = 4π. When

solving the steady-state equilibrium problem (i.e. the first term in (2.21) is set to zero), the
elements in the θ -direction are uniformly distributed and the elements in the y-direction
are non-uniform to allow for higher resolutions near the wall. A piecewise linear scaling
is implemented to restrict half the elements to |y| ≥ 0.99.

For the double Poiseuille problem (DP), we adapt the finite element model by extending
the flow domain to allow for a doubly periodic flow profile as shown in figure 2(c)
and shown in (2.19) such that the background flow for y ∈ [−1, 1] is identical to the
background flow for a simple Poiseuille flow in the channel. For the steady-state problem
we implement periodic boundary conditions

ψ(θ, 3) = ψ(θ,−1), (2.22a)

ψ(0, y) = ψ(2π, y), (2.22b)

with normalisation condition
∫ 2π

0

∫ 3
−1 ψ(θ, y) dy dθ = 8π. The double Poiseuille flow

profile is C0 continuous in shear and C1 continuous in velocity at y = ±1. While the
extended flow velocity profile introduces a discontinuity in the second derivative of the
flow velocity in y about y = 1, this does not lead to any difficulties with the finite element
discretisation, as the implementation only requires continuity of the first derivative. The
elements in the y and θ -directions are uniformly distributed.

Finally, we have a time-evolving Smoluchowski equation with a double Poiseuille
domain (see (2.19)). A zero Dirichlet constraint (D0) will be imposed on the boundary
such that ψ(θ,−1) = ψ(θ, 3) = 0 for all θ . The unsteady system is evolved using a
second-order backward difference (BDF2) time stepper (Ascher & Petzold 1998) with
time step dt = 10−4. The elements in the θ -directions are uniformly distributed, and
the elements in the y-direction are non-uniformly distributed via a tanh function over
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y ∈ [−1, 3], such that half the elements are restricted to y < −0.93 and y > 2.93,
allowing for higher resolutions near the zero boundaries. The initial condition ψ(θ, y, 0)
is uniform with a small tanh correction to match the boundary conditions, and satisfies∫ 2π

0

∫ 3
−1 ψ0(θ, y, 0) dy dθ = 8π.

3. Results

First, we study different physical boundary-interaction scenarios and determine
appropriate continuum boundary conditions for capturing their dynamics (§ 3.1). We
consider three types of wall interactions: specular reflection S (§ 3.1.1); uniform random
reflection R (§ 3.1.2); and absorbing boundary A (§ 3.1.3). For each case we find a
corresponding continuum model. Then, we consider different bulk flow and particle
properties and analyse how they affect cells approaching boundaries (§ 3.2) for the
diffusive case (§ 3.2.1) and for the deterministic case (§ 3.2.2).

3.1. Boundary conditions

3.1.1. Specular reflection (boundary condition S)
In this section we investigate the IBM with specular reflection S and consider how it
compares with a continuum doubly periodic Poiseuille flow, DP . In the literature, double
Poiseuille flows have been used for studying low and high shear trapping in the bulk flow
of bacterial suspensions to circumvent the problem of explicitly implementing a boundary
(Vennamneni et al. 2020), but there has been no comparison between the wall dynamics
of specular reflection IBMs and continuum doubly periodic Poiseuille models.

Consider the case of a bounded, stochastic IBM with boundary condition S (figure 2b)
with Pe = 101, PeT = 106, ν = 0.04 and β = 0.99, quantifying rotational diffusion,
translational diffusion, velocity ratios and cell shape, respectively. The lowest trajectory
in figure 2 highlights a cell trajectory which starts oriented downstream near the bottom
wall (θ = 2π), reorients rapidly until it is aligned upstream (θ = π), and enters a region
of accumulation (the yellow region) closer to the bottom wall. Once there, the cell
moves up and down in the channel due to translational diffusion effects with orientation
approximately parallel to the flow direction. If no longer pointed parallel to the flow
direction due to rotational diffusion and shear effects, it reorients rapidly again. The
extended alignment with the flow direction is a result of the shape-dependent Jeffery
orbits, in which local sheared flows cause particle rotation and straining. In addition to
reorientation due to Jeffery orbits, there exist additional variations of cell trajectories in
orientation space because rotational diffusion can counteract or enhance reorientations
and thereby affect the spreading of trajectories in physical space.

The macroscopic areas of accumulation in phase space (θ, y) are dependent on both
the shape and the motility of the swimmers. The thickness and location of the areas of
accumulation are dependent on the balance between deterministic shape-dependent effects
and diffusion effects. In figure 3(a–c) we consider probability distribution functions of cell
distributions for β = 0.99, ν = 0.04 and PeT = 106. For high diffusion (see figure 3a),
there exist two regions of accumulation and two regions of depletion of equal widths
at each wall, resulting from strong, continuous mixing of cells. With increasing Pe (see
figure 3b,c), the relative diffusive effects decrease and deterministic effects begin to
dominate. Due to the nature of Jeffery orbits (which have been described earlier), more
cells will be parallel to the flow direction. The reduced diffusion ensures decreased
spreading in orientation space, thereby leading to thinner areas of accumulation in the
(θ, y) phase space. For very weak rotational diffusion Pe = 104 (see figure 3c) the areas

976 A13-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

89
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.897


S. Maretvadakethope, A.L. Hazel, B. Vasiev and R.N. Bearon

(a)
1.0

0.5

0

–0.5

–1.0

1.5

1.0

0.5

0
0

(b) (c)

y

(d ) (e) ( f )

2π

8

6

2

4

0

25

20

10

5

15

0

1.0

0.5

0

–0.5

–1.0

1.0

0.5

0

–0.5

–1.0

1.0

0.5

0

–0.5

–1.0

1.5

1.0

0.5

0

y

8

6

2

4

0

25

20

10

5

15

0

1.0

0.5

0

–0.5

–1.0

1.0

0.5

0

–0.5

–1.0

ππ/2 3π/2 0 2πππ/2 3π/2 0 2πππ/2 3π/2

0 2π

θ

ππ/2 3π/2 0 2π

θ

ππ/2 3π/2 0 2π

θ

ππ/2 3π/2

ψ

ψ

C
o
n
ti

n
u
u
m

IB
M

Figure 3. Comparison of snapshots of bivariate probability density distributions ψ , as obtained for converged
IBMs with (a–c) specular wall reflections S and (d–f ) equilibrium probability density distributions for
doubly periodic continuum models DP : β = 0.99, ν = 0.04 and PeT = 106; (a,d) Pe = 1, (b,e) Pe = 102

and (c, f ) Pe = 104.

of accumulation become very thin and cells swim away from the walls leading to peaks
of accumulation at (θ, y) = (π,±0.5), in agreement with observations by Rusconi et al.
(2014) and Zöttl & Stark (2013).

Next, we consider the continuum doubly periodic Poiseuille flow, that serves as a
potential alternative for capturing the bulk flow in the bounded domain. Consider the finite
element model with a doubly periodic flow profile as shown in figure 2(c). Comparing the
lower subdomain for the finite element double Poiseuille model θ ∈ [0, 2π], y ∈ [−1, 1]
in figure 2(a) with the bivariate stochastic IBM distribution (figure 2b) we find similar
bulk-flow dynamics with regions of cell accumulation above y = −1, at angles slightly
greater than θ = 0,π. Meanwhile, just below y = 1, near the ‘upper wall’, there also exist
two areas of accumulation of equal intensity, but of flipped geometry, for angles just below
θ = 2π and θ = π. In both cases, these areas of accumulation correspond to swimmers
oriented close to the horizontal, but pointing out of the wall and into the wall, respectively.
When comparing the probability density distributions of the doubly periodic Poiseuille
continuum model (figure 3d–f ) with the IBM with specular reflection (figure 3a–c) for
increasing Pe, we observe the same sharpening of accumulation areas, with the occurrence
of localised peaks in both figure 3(c, f ). The thickness of the areas of accumulation agree
as well as the intensity of cell accumulations.

Next, we compare the cell concentration distributions of swimmers, n( y), across the
channel height y ∈ [−1, 1] for β = 0.99, for different values of rotational diffusion
(Pe = 1, 101, 102, 104). Direct comparisons between the doubly periodic continuum
model (figure 4a), a doubly periodic IBM (figure 4b),and the wall-bounded IBM with
specular reflection S (figure 4c) show clear agreement in the cell concentrations and
accumulations. Direct comparison between the DP continuum problem and IBM specular
reflection S in figure 4(d) shows clear agreement for high Pe. Deviations between the
models are only notable very close to the walls for medium Pe where the IBM with
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specular reflection exhibits some cell depletion as highlighted in figure 4(d). The observed
depletion is observed consistently for medium Pe, and is a result of specular reflection in
the IBM. Comparing with the bivariate distribution in figures 2(b) and 3(b), we note that
there is a cell depletion around θ = 0 for y = −1 and θ = π at y = 1 that is not captured
by the continuum model. A contributing factor to this cell depletion is finite time stepping.
Due to the finite nature of time steps in the SDE problem, cell trajectories can drift, leading
to reduced cells around θ = 0 for y = −1 and θ = π at y = 1.No matter how small the
time-step error, cumulative effects can lead to considerable errors over long times, hence
producing less accurate local distributions as time evolves (see Appendix B for details of
cell trajectory drift in deterministic problems and at medium Péclet numbers). For high Pe
the migration of cells towards the channel centre due to low shear trapping (Vennamneni
et al. 2020) results in low cell concentrations at the wall. The effects of drifting due to finite
time step sizes are small because there are low cell concentrations at the wall. Meanwhile,
for low Pe, the high rotational diffusion results in model-dependent depletion being largely
counteracted. However, it is important to note that while the finite time step can contribute
to the localised depletion, the observed depletion for medium Pe is significantly larger
than those expected from compounded cell drifting. This suggests that the regions of cell
depletion are inherent features of specular reflection at medium Pe. While the origin of
these large dips are still unclear, their appearance only for a range of medium Péclet shows
that there exists a balance between advective time scales and rotational diffusion time
scales over which a stable layer of depletion occurs. Overall, we note that the observed
structures and positions of cell distributions obtained across all three models are in good
agreement in the bulk flow across the studied range of rotational diffusions, capturing
centreline cell depletion measured for medium-to-high rotational effects (low-to-medium
Péclet numbers) as observed in experiments (Rusconi et al. 2014) as well as numerical
and analytical studies (Bearon & Hazel 2015; Vennamneni et al. 2020). The strong
agreement in the bulk flow and near the walls for high and low Pe suggests that the doubly
periodic Poiseuille continuum model might be a sensible modification for capturing the
cell distributions of elongated swimmers undergoing specular reflection at high and low
diffusion effects, but not for medium Pe near the wall.

While the cell concentration distribution n( y) tells us about the agreement in the
relationship between the three models in terms of cell accumulation for β = 0.99, it does
not allow for any insight into the orientations of the swimmers at or near the walls. In
figure 5 we compare the probability density distributions ψ(θ, y) for the doubly periodic
Poiseuille flow continuum model (figure 5a–c), the IBM double periodic Poiseuille flow
case (figure 5d–f ) and the IBM specular reflection model (figure 5g–i), for Péclet numbers
Pe = 1 (figure 5a,d,g), Pe = 101 (figure 5b,e,h) and Pe = 102 (figure 5c, f,i). For direct
comparison between the doubly Poiseuille models we plot the distributions at y = −1,
given by solid lines, for shape parameter β = 0, 0.5, 0.99. To provide a comparison
between the continuum model and the IBM we need to account for the numerical cell
depletion. To capture near-wall cell distributions, we plot the probability distributions just
beyond the model-induced depletion area near the walls at ynear = −1 + 3ε for ε = 0.04,
as dashed lines.

We note that across the continuum models for spherical swimmers (β = 0 given by
the blue lines), the orientation distribution is constant, indicating that surface interactions
in the absence of hydrodynamic wall interactions, show no preferential orientation. This
uniformity is due to spherical swimmers undergoing a constant rate of reorientation in
sheared flows as spheres have no preferred direction. This is confirmed further by both
IBM models, which do not display any preferential wall interactions orientations for all
considered orientational Péclet numbers.
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Figure 4. Cell number density distributions for (a) the continuum model distribution with doubly periodic
Poiseuille flow; (b) IBM with doubly periodic Poiseuille flow; (c) the IBM distribution with specular reflection
boundary condition; and (d) the direct comparison between IBM with specular reflection boundary condition
(dashed lines) and the distributions of the continuum model with doubly periodic Poiseuille flow (solid lines).
For shape parameters β = 0.99 with Pe = 104 (blue), Pe = 102 (red), Pe = 101 (yellow) and Pe = 1 (purple).

For the case of high rotational diffusion, Pe = 1, we note that all distributions for
non-spherical swimmers peak at approximately θ = π/4 and θ = 5π/4 (with troughs
at approximately θ = 3π/4 and θ = 7π/4) across all models, with peak concentrations
increasing with cell elongation. As the rotational diffusion decreases, corresponding to
an increase in the rotational Péclet number, the peaks shift towards θ = 0 and θ = π
for all β, with peaks clearly sharpening for the case of β = 0.99. For β = 0.5 there is
a non-monotonic change in ψpeak, shifting from ψpeak ≈ 1.3 to ψpeak ≈ 1.5 to ψpeak ≈ 1
for Pe = 1, 101, 102, respectively. The shift in peaks has a two-fold origin: the relative roles
of advection and swimming (deterministic effects) versus diffusion effects, and the shift
in the bulk cell distributions due to high- and low-shear trapping. In the aforementioned
case, as rotational diffusion effects decrease (increase from Pe = 1 to Pe = 101) the
decrease in randomness leads to decreased orientational spreading and sharper peaks.
The slight elongation of cells (β = 0.5) results in cells spending more time aligned
parallel to the flow direction. Meanwhile high- and low-shear trapping are phenomena
observed by Vennamneni et al. (2020), where high-shear trapping refers to the shape and
rotational diffusion-dependent migration of cells towards channel walls, and similarly,
low-shear trapping refers to the migration of swimmers towards the centreline. In our
studies, both high-shear trapping and low-shear trapping are captured for β = 0.99, as
evidenced by the high-shear trapping leading the peak of the wall distribution increasing
from ψpeak ≈ 1.6 to ψpeak ≈ 4 to ψpeak ≈ 8, for Pe = 1, 101, 102, respectively, before a
transition to low-shear trapping for Pe = 104 in figure 4 as the cells move away from the
walls.

We further compare the profiles across the different models. For a small Péclet number
Pe = 1 (see figure 5a,g) the profiles at ynear (the dashed lines) are in good agreement, with
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Figure 5. Comparing the distributions at the wall for varying Pe and β, between the doubly periodic continuum
model and the wall-bounded specular reflection IBM for ν = 0.04 and β = 0, 0.5, 0.99. The probability
distributions ψ at y = −1 (solid lines) and y = −1 + 3ε (dashed lines) for the double Poiseuille continuum
model, for (a) Pe = 1 (nθ = 100, ny = 500); (b) Pe = 101 (nθ = 200, ny = 500); and (c) Pe = 102 (nθ = 400,
ny = 200). The probability distributions ψ at y = −1 for the doubly periodic Poiseuille IBM, for (d) Pe = 1;
(e) Pe = 101; and ( f ) Pe = 102. The probability distributions ψ near the bottom wall y = −1 + 3ε for the
wall-bounded IBM with specular reflection, for (g) Pe = 1; (h) Pe = 101; and (i) Pe = 102. The dotted line in
(h) corresponds to the probability distribution near the bottom wall at y = −1 + ε for the wall-bounded IBM
with specular reflection for Pe = 101 and β = 0.99.

similar peak magnitudes and spreads. The IBM distributions for β = 0 are in agreement
with the doubly Poiseuille cases in figure 5(a–i). For Pe = 102 and β = 0.99 (figure 5c,i)
the central peaks about θ = π are of similar height. However, the central peak about θ = π
is slightly larger in the individual-based model, due to the localised depletion of the peak
profile about θ = 0. The depletion of the peak is, however, minor as the rotational diffusion
is sufficiently large to feed more cells into the depletion areas. It is further worth noting
that at Pe = 102 drifting in long time distributions is only significant at ynear for elongated
swimmers as the deterministic trajectories of elongated swimmers point more sharply
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away from the wall about θ = 0, leading to an increased radius of depletion compared
with more spherical swimmers. Running IBM double Poiseuille simulations, as shown in
figure 5(d–f ) corresponding to Pe = 1, 101, 102, we find that the probability distributions
at y = −1 (solid lines) match with those obtained from the continuum model figure 5(a–c)
after sufficiently long runtimes.

Comparing the specular reflection IBM with the continuum double Poiseuille models,
we find a good fit in the probability distributions at y = −1 + 3ε within the studied range
of rotational diffusion strengths and elongations. We see that all peak height and width
distributions are in agreement, with only a slight discrepancy between the peak heights at
Pe = 102 for β = 0.99 in the specular reflection IBM, indicating larger spatial depletion
at high Pe for strong elongation.

The good fit between the specular reflection IBM and the doubly periodic Poiseuille
continuum model for small and large Pe raises the question of how the doubly periodic
model’s symmetry constraints on ψ and ∂ψ/∂y at y = ±1 relate to the literature (Jiang
& Chen 2019, 2020). From figure 5(a–f ), we note that for the periodic boundary cases,
the equilibrium cell probability density distributions satisfy ψ(θ,±1) = ψ(θ + π,±1)
and that the derivatives satisfy (∂ψ/∂y)(θ,±1) = −(∂ψ/∂y)(θ + π,±1). Note that it is
not necessary for all the derivatives to be identically zero for all θ . The combination of
these symmetries ensures the flux condition Jθ (±1) = −Jθ+π(±1), the integral no-flux
at the boundary and impermeability are all satisfied for the equilibrium problem. We
note that this observed boundary flux relationship for the DP model differs from Jiang &
Chen (2019, 2021), in which for their time-evolving continuum models with non-uniform
initial condition, the flux condition itself was prescribed to be specular, by imposing
the equivalent of Jθ (±1) = −J2π−θ (±1), through the constraints ψ(θ,±1) = ψ(2π −
θ,±1) and (∂ψ/∂y)(θ,±1) = −(∂ψ/∂y)(2π − θ,±1), in our coordinate system. This
was then compared with a double Poiseuille with half-channel flows being in the same
direction which has a jump in shear at y = ±1. We note that the imposed conditions
in Jiang & Chen (2019) satisfy the no-flux condition, and though the bulk results are
consistent across Jiang & Chen (2019) and our model, the imposed wall behaviours
in Jiang & Chen (2019) differ from those that emerge in our continuum model.
Recalling, that our continuum model does not capture the dip at the wall from the
specular IBM for medium Pe, we consider the probability distribution ψ even closer
to the bottom wall at y = −1 + ε for β = 0.99 and Pe = 101 in figure 5(h) as given
by the dotted line. We find that the distribution can change significantly across the
small length scale of 2ε, from a π-periodic distribution to a π-symmetric probability
distribution. This wall symmetry is consistent with the model developed by Jiang &
Chen. Furthermore, it has been confirmed via private communications that the alternate
model used in Jiang & Chen (2019, 2021) captures the near-wall dips that the DP model
does not capture, suggesting it is a more appropriate boundary condition for medium
Pe and potentially more appropriate overall. As both systems satisfy the no-flux and
the expected bulk flow dynamics, this reinforces the importance and sensitivity in the
choice of boundary conditions when developing continuum models for active suspension
dynamics.

While we have shown that the dynamics from specular reflection are well captured
by a continuum approximation with doubly periodic boundary conditions, we know that
microswimmers’ surface interactions are not perfect specular reflections with a variety of
factors affecting surface scattering (Kantsler et al. 2013; Théry et al. 2021). A swimmer
near the wall may remain oriented upstream for a significant period of time, it may
attach to the surface, or it may leave the surface at varying outgoing angles which may
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Figure 6. Comparison of snapshots of bivariate probability density distributions ψ , as obtained converged
IBMs with random wall reflections (a–c), to equilibrium probability density distributions for continuum models
with constant boundary condition: Pe = 1 (a,d), Pe = 102 (b,e); and Pe = 104 (c, f ).

be independent of the incident angles. Keeping this in mind, we consider the effects
of two further wall-interaction models: perfectly random reflections (§ 3.1.2) and perfect
absorption (§ 3.1.3)

3.1.2. Random reflections (boundary condition R)
In this section, we consider the effects of random uniform reflections at the boundaries
on the equilibrium dynamics of microswimmer suspensions. Consider the model with
random uniform reflection out of the wall as defined by (2.18), such that the angle of
reflection of each swimmer is independent of the angle of incidence. In figure 6(a–c), we
see the bivariate cell probability density distribution ψ for β = 0.99 for varying rotational
Péclet numbers. By inspection, the bulk flow distributions are similar to those found via
the doubly periodic continuum model and the specular reflection IBM, with areas of cell
accumulations which sharpen with increased Pe. However, from figure 6(c) we clearly
note the appearance of secondary peaks at (θ, y) = (0,±0.93) for Pe = 104, and also
note smaller peaks occurring at (θ, y) = (0.13,−0.94) and (θ, y) = (2π − 0.13, 0.94)
for Pe = 102 (figure 6b). No clear peak is visible for Pe = 1, as rotational effects
dominate deterministic secondary structures. We note further, that the upper bound of
the aforementioned secondary peaks are bounded at θ = 0 by the cusp of the deterministic
trajectory originating from y = −1 and θ = π.

Noting that the secondary peaks are wholly introduced by the uniform reflective
conditions, we seek to determine the appropriate continuum model boundary condition to
obtain the corresponding bulk dynamics. To capture the uniformity of reflection, and lack
of orientation preference upon reflection, we consider a continuum model with a constant
Dirichlet wall-boundary condition (constraint DC introduced in § 2.2.2) such that ψ is the
same constant on both walls. From figure 6(d–f ) we find secondary peaks occurring at
the same points in phase space, indicating that slightly away from the wall there is an
enhanced number of cells swimming downstream.
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Figure 7. Cell density distributions for (a) IBM with uniform random wall reflection; (b) the distribution of
continuum model with constant wall distribution; and (c) the direct comparison between IBM with uniform
random wall reflection (dashed lines) and the distributions of the continuum model with constant wall
distribution (solid lines). For shape parameters β = 0.99 with: Pe = 104 (blue); Pe = 102 (red); Pe = 101

(yellow); and Pe = 1 (purple).

To further confirm the suitability of comparing the IBM with random uniform reflection
with the continuum model with a constant Dirichlet boundary condition, we consider the
cell number density distributions in figure 7. We compare the distribution obtained from
both models in figure 7(c) for β = 0.99. We find that both profiles for Pe = 104 (the blue
lines) have the same primary peaks about y = ±0.5 as observed for the IBM with specular
reflection, but we also get a significant peak in density about y = ±0.93 in both figures.
We further note that in both the continuum and IBM models the minimum cell densities
occur at y ≈ ±0.85. While there are discrepancies in the size of the secondary peaks found
near the wall via the IBM, we find that their size is limited by the finite time steps. Too
large time steps result in cells drifting away from the secondary peaks. We find that there is
a computational trade off in the total runtime required to capture the macroscopic effects
(such as the peaks and troughs) and the smallness of time steps required to capture the
slim secondary peaks. This drift-dependent reduction in the peak is especially prominent
for the case of Pe = 104 where diffusive effects are weak. For this case, the slim secondary
peaks are highly susceptible to compounded drift effects as the peaks occur just below a
separatrix that for deterministic trajectories would separate cells that would always interact
with the wall and those that cannot. In this case, compounded time-step dependent drifts
are large enough that they can push cells out of a region that would allow for cells to
interact with the wall. This ultimately leads to some cells depleting from the secondary
peak to the nearest trough of cell accumulation and to the primary peaks.

Comparing figures 7(a) and 7(b) we similarly find the distributions for Pe = 102 to be
a good match with the previous models (figure 4) except at the locations of the secondary
peaks. Finally, there is good agreement between the IBM and continuum models for
Pe = 1, suggesting that overall the uniform reflection boundary is most accurate for
low Pe.

3.1.3. Perfectly absorbing boundary (boundary condition A)
Our final boundary condition of interest is the case of perfect wall attachment A, i.e.
any swimmer that encounters the wall will adhere to it. For ease of comparing the effect
on the bulk dynamics we allow for specular reflection at the top wall (y = 1) while
enforcing a perfectly absorbing bottom wall, such that cell trajectories are terminated
upon contact with the bottom wall (y = −1). It is worth noting that given the presence
of diffusive effects, given sufficient time, all cells will attach to the bottom wall.
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Let us begin by considering a snapshot of the bivariate probability density distributions
ψ at time T = 600 for the stochastic IBM. In figure 8(a) (β = 0.99 and Pe = 1), the
distributions show clear depletion near the bottom wall, as all cells that have been able
to encounter the bottom have attached. In figure 8(b) (for Pe = 102) fewer cells are
captured by the bottom wall by time T = 600, however, there is a clear depletion, and
the accumulation band in the bottom-half contains approximately 75 % the number of
cells compared with their upper-half channel specular-reflecting counterparts. Finally, we
consider figure 8(c) (for Pe = 104). The yellow line is a separatrix for fully deterministic
cell trajectories, where all cells below the line must interact with the wall, and all cells
above will not in the absence of diffusion. We find that figure 8(c) mainly has depletion
of cells originating below the separatrix, as cell diffusion is very small. For the absorbing
boundary condition, there exists a non-zero flux because cells are leaving the bulk flow
at the boundaries. In figure 8(g) we consider the fraction of cells absorbed at the bottom
wall in time, which measures the cumulative cell flux at the wall. We find that the highest
absorption rate is at the start when the cell density near the surface is at its highest. As the
rate of cell absorption decreases continuously in time, the integral of the flux must change
in time too. We also note see that by Tsim = 600 approximately 30 %, 12 % and 5 % of total
cells were absorbed at the bottom wall for Pe = 1, 102, 104, respectively, with absorption
plateauing earliest for Pe = 104 (yellow line). Therefore, higher diffusion effects yield
higher rates of wall absorption for extended times.

In figure 8(d–f ), we consider the normalised orientation distributions of the cells which
have been absorbed at the bottom wall. In figure 8(d) we find that in the presence of
high diffusion, the wall-encounter probability distributions are wide, centred about θpeak ≈
21π/16, and the distributions remain unchanged for T = 50, 100, 600. For Pe = 102 in
figure 8(e), the peak near θ = π continuously increases in time. This is due to a localised
increase in the number of swimmers crossing the separatrix (from figure 8c) with time. The
rotational diffusion is sufficiently weak that deterministic effects dominate and cells are
quickly captured by the absorbing condition just above θ = π. Finally, for figure 8( f ), we
note a similar increase in the peak near θ = π. In fact, across figure 8(d–f ), we find that the
peak orientations at which absorptions occurs shifts from θpeak ≈ 21π/16 towards θpeak =
π with decreasing rotational diffusion. The difference in distribution for increasing Péclet
number is a result of swimming and fluid advection dominating diffusion effects. The role
of diffusion effects on cell interactions with walls will be studied in more detail in § 3.2.

We compare these results with the time evolving continuum model where we model
the perfectly absorbing wall at y = −1 with Dirichlet boundary condition D0 (see § 2.2.2
for details), and use the double Poiseuille profile to capture the reflective boundary
condition at y = 1. Note that as the continuum formulation imposes the constraint
ψ( y = −1, θ, t) = 0 for all times, the continuum model cannot provide wall probability
distributions comparable to figure 8. In figure 9 we compare the early time evolution of
cells near the absorbing boundary using the continuum model with boundary condition D0
and stochastic boundary condition A. At t = 0, the stochastic system is initially uniformly
distributed (see figure 9b), and the continuum model (figure 9a) has a uniform distribution
everywhere except at the very thin boundary layer as defined in § 2.2.2. By t = 0.4, it is
clear from figure 9(c,d) that cells near the wall oriented into the wall with π < θ < 2π
move to the bottom wall, and those with orientations 0 < θ < π swim away from the
bottom wall, leaving an area of depletion. Across both models, with increasing time
(figure 9e, f ), the depletion area grows, emanating into the bulk domain from 0 ≤ θ < π
as cells continue to be absorbed at y = −1 and π ≤ θ < 2π. This persists despite the
emergence of the macroscopic areas of accumulation sharpening in time. In figure 9(g,h),
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Figure 8. Snapshots of the effects of a perfectly absorbing wall condition for different Pe at the bottom wall
for an IBM (with dynamics at the top wall prescribed by specular reflection) on the bulk dynamics (a–c) at
Tsim = 600 and on normalised wall orientation probability distributions for β = 0.99 (d–f ) for runtimes Tsim =
50, 100, 600. The yellow line in (c) is a separatrix between fully deterministic trajectories which interact with
the bottom wall and those that do not. In figures (d–f ), the black dashed lines correspond to wall distributions
for β = 0.99 as calculated by the accumulation index (see § 3.2.2). Here: (a,d) Pe = 1; (b,e) Pe = 102; and
(c, f ) Pe = 104; (g) time evolution of the fraction of cells absorbed by the bottom wall.

we see the time evolution of the cell concentration distributions for absorbing boundaries
at different instants in time (see also supplementary movie 1). The concentration profiles
capture the cell depletion away from the wall across both models. The depletion front (the
location in y at which we see sharp dip in cell concentration n( y)) moves into the bulk
at comparable rates across the IBM and continuum models in figure 9(g,h). While the
macroscopic areas of accumulation are already visibly beginning to form (see figure 9a–f )
it is worth noting that in the time-evolving cell concentration profiles the cell distributions
are still uniform near the wall aside from the region of cell depletion due to the absorption
boundary condition. This stands in contrast to the cell equilibrium profiles for other
boundary conditions (see figures 4 and 7) where there are greater spatial variations in
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Figure 9. Early time evolution near the bottom boundary of a double Poiseuille absorbing boundary continuum
model (a,c,e,g), and the stochastic IBM with specular reflection upper boundary and perfectly absorbing lower
boundary (b,d, f,h), for ν = 0.04, β = 0.99,Pe = 104,PeT = 106. Here: Tsim = 0 (a,b); Tsim = 0.4 (c,d); and
Tsim = 0.8 (e, f ). Cell concentration n( y) evolution near the lower wall for the continuum model with boundary
condition D0 (g) and the IBM with absorbing boundary condition A (h).

cell concentration across y. This highlights the existence of a faster time scale of interest,
which will be discussed further in § 3.2.2.

3.2. Bulk flow dynamics effects on wall approach
In this section we analyse how the underlying bulk flow dynamics of swimmers of different
shapes in sheared fluids impact their orientations at wall-approach in the θ–y space. This
is of particular interest as individual swimmer dynamics inform how suspensions interact
with the walls, and sheds insights into why swimmers of different geometries are more
likely to interact with walls at different preferred orientations, thereby affecting their
likelihood of wall attachment and biofilm formation.

3.2.1. Diffusive wall approach
From the perfectly absorbing IBM (§ 3.1.3) we know that as time evolves the orientation of
the cells as they interact with boundaries evolves (see figure 8d–f ). The time evolution and
spread of orientations at the point of wall interaction is shown to be diffusion dependent.
We can analyse the extent of diffusion dependence by considering two regions of cell
origin. If cells are initially uniformly distributed in the phase space, in the deterministic
case we can clearly divide the cells in the phase space into two regions with respect
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Figure 10. Stacked probability distribution of angle of incidence for particles striking the lower wall (y = −1),
for ν = 0.04 and PeT = 106. The blue distribution corresponds to particles which are expected to strike the wall
in the absence of diffusive effects (originating in Region 1), and the red, correspond to particles that would
not strike the bottom wall in the absence of diffusive effects (originating in Region 2). The overall envelope
characterises the distribution of cells striking the bottom wall and integrates to 1. For β = 0.99, (a) Pe = 1,
(b) Pe = 102 and (c) Pe = 104. (d) Ratio of cell–wall interactions with cells originating in Region 1 to total
cell–wall interactions, for varying β and Péclet numbers.

to the yellow deterministic streamline in figure 8(c). We call the area of interactions
(below the yellow line) ‘Region 1’, and the area above ‘Region 2’. In the absence of
diffusion, only Region 1 cells interact with the walls. However, with increasing diffusion,
larger quantities of microswimmers cross the deterministic streamlines, and more cells
from Region 2 interact with the walls. The shift in interactions is captured in figure 10
for fixed IBM runtime Tsim = 600 through stacked probability distributions, where the
total number of wall interactions across 51 bins are normalised to 1. For the case of
Pe = 104 with β = 0.99, the orientation distribution peaks tend towards θ → π as β → 1
(see figure 10c). This means that there is increased upstream alignment with elongation.
From figure 10(d) we find that in this low rotational diffusion case, over 80 % of all wall
interactions originate from Region 1, and this percentage decreases monotonically with
Pe, irrespective of swimmer shape. An increase in rotational diffusivity, corresponding to
Pe = 1 (figure 10a) shifts the peak of the distribution to θpeak ≈ 21π/16.

3.2.2. Deterministic wall approach and underlying dynamics
To further understand what happens when there is an absorbing wall we develop a novel
accumulation index to capture the orientation for the fully deterministic case. To analyse
shape effects on wall interactions we consider the deterministic problem, in which we keep
the purely deterministic drift term and remove diffusion dynamics, such that

dy
dt

= ν sin θ, (3.1)
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dθ
dt

= y(1 − β cos 2θ). (3.2)

From this, we derive constants of motion for the dynamics (similar to Zöttl & Stark (2013)),
by eliminating time dependence and solving

dy
dθ

=
dy
dt
dθ
dt

= ν sin θ
y(2 − β cos 2θ)

. (3.3)

Integrating, we find constants of motion, H, with y, θ, β and ν dependence, such that

H = y2

2ν
+ 1√

2β(1 + β)
arctanh

(√
2β

1 + β
cos θ

)
+ C, (3.4)

where C is a constant dependent on particle initial conditions (θ0, y0). From this we derive
the trajectories y(θ; H, β, ν) in phase space θ–y, for any particle with initial condition
(θ0, y0) and corresponding constant of motion H:

y(θ; H, β, ν) =
√√√√2ν

(
H − 1√

2β(1 + β)
arctanh

(√
2β

1 + β
cos θ

))
. (3.5)

From the trajectories we extract information regarding the expected wall interactions and
trajectory times, and develop a novel accumulation index determining the distribution of
expected wall interactions in the case of a uniformly seeded domain. Example trajectories
are shown in figure 11(b) for ν = 0.04, where β = 0 and β = 0.99. The shape of the
trajectories themselves are dependent upon the elongation of the swimmers as highlighted
in figure 11(b,c), where the black lines correspond to spherical swimmers (β = 0), and the
red dash–dotted lines correspond to β = 0.99. Elongated swimmers undergo increasing
strain effects, such that swimmers spend extended times oriented with the flow direction
(θ = 0,π). With increased elongation, the reorientation in phase space (∂y/∂θ) steepens
about θ = 0 and θ = π, thus leading to a change in total area enclosed by trajectories
through θ = π, y = ±1 and the cell trajectories upon wall approach.

Supposing there is an initial, uniform distribution over the entire phase plane θ × y ∈
[0, 2π)× [−1, 1], the accumulation index, AI , is defined as∫ θ+δθ

θ

AI(θ
′) dθ ′ = IW(θ, θ + δθ)

N
, (3.6)

where IW(θ, θ + δθ) is the total number of swimmers that interact with the bottom wall
at y = −1 with orientations ranging in [θ, θ + δθ ] (see schematic in figure 11a), and N
is the total number of swimmers. The accumulation indices for orientations of incidence
captured in figure 11(d) correspond to the velocity ratio ν = 0.04. For a fixed centreline
flow velocity, the increased accumulation index for ν = 0.1 results from the increased
swimming velocity Vs enabling swimmers to traverse larger vertical distances prior to
shear-induced reorientation. This, in turn, allows larger proportions of swimmers in an
initially uniformly distributed domain to interact with the walls.

Further points of interest include the orientation θpeak at which maximal wall
interactions occur. In the accumulation index (figure 11d) there is a shift in the peak
interaction orientation θpeak from approximately θpeak ≈ 21π/16 to θpeak ≈ π, with
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space δθ . The cell trajectories are shown via arrows; (b) streamlines at constants of motion for ν = 0.04,
β = 0, 0.99 (solid black and dash–dotted red, respectively); (c) streamlines at constants of motion for ν = 0.1,
β = 0, 0.99 (solid black and dash–dotted red, respectively); (d) accumulation index (proportion of initially
uniformly distributed cells in the phase space that are incident upon the bottom wall at angles θ ) for β =
0, 0.5, 0.99, for ν = 0.04; (e) distribution of wall interactions with absorbing boundary conditions (solid lines)
for Pe = 104 for β = 0, 0.5, 0.99 with Tsim = 5, 6, and 50, respectively, and the corresponding accumulation
index distributions (dashed lines) and ( f ) proportion of total area of phase space incident on the bottom wall∫ 2π

0 AI(θ;β, ν) dθ as a function of shape, β, for various swimming speeds, ν.

cell elongation. We find similar shape-based shifts in peak wall-interaction orientation
with the absorbing boundary condition in figure 11(e).

The absorbing boundary condition distributions are shown to be in agreement with
the accumulation index in the case of small rotational diffusion for shape dependent
simulation runtimes Tsim. We consider the role of swimmer shape for wall interactions as
elongation affects swimming trajectories in sheared flows, especially in linearly varying
shear flows. Trajectories, in turn, affect the time it takes for cells with specific initial
positions and orientations to swim and rotate before cells encounter the walls. We find
that the accumulation index captures the wall interactions in short runtimes only, as
the clear shape-dependent shift in peak interaction orientations (figure 11e) disappears
for sufficiently long runtimes, highlighting the transience of the accumulation index
distribution. In figure 11( f ), the total proportion of swimmers which interact with the
bottom wall

∫ 2π

0 AI(θ) dθ are shown for a range of shape factors and velocity ratios. For
small swimming velocities, for swimmers of all considered shape factors, only a small
proportion of swimmers are expected to interact with the lower wall. The proportion of
wall interactions increases monotonically with swimming velocity, and increases fastest
for β > 0.9, with over 70 % of swimmers interacting with the bottom wall for ν > 0.3.

While swimmer shape affects the orientations at which swimmers are most likely
to interact with the bottom wall we find that all particle trajectories are not of equal
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Figure 12. Shape dependence of time taken for trajectories beginning at (θ0, y0) to reach an absorbing wall
condition at y = −1, θ ∈ [π, 2π). From this we can extrapolate the total number of wall interactions by
swimmers in the ‘trapped’ domain over a fixed total runtime. For ν = 0.04, (a) β = 0 and (b) β = 0.99.

time duration. While separate identical particles on the same trajectories will have
the same orbit duration in the deterministic problem, identical particles on different
trajectories will have different closed-loop orbits in phase space and with different orbit
durations. In figure 12, the colour maps highlight the time taken for a trajectory starting
at position (θ0, y0) to terminate at the bottom wall (i.e. at y = −1, θ ∈ [π, 2π]) via an
absorbing wall boundary condition. The longest trajectories have durations ranging from
T ≈ 6, for β = 0, to T ≈ 45, for β = 0.99, indicating that slender, elongated cells can
take over seven times longer to complete a single full orbit, compared with spherical cells.
This indicates, that strongly elongated particles have over seven times fewer opportunities
for wall interactions over the fixed time interval of the faster orbit. Although a larger
proportion of cells are likely to come into contact with walls at orientation θpeak (as
in figure 11d), the particles initially oriented about θ = π have the longest closed loop
trajectories and consequent orbit durations, while cells about θ = 0 have the shortest
closed loop trajectories and corresponding orbit times. When considering a Lagrangian
perspective, this acts as a limiting factor for the number of wall interactions per interaction
orientation. The number of orbits that a particle can undergo over a fixed simulation
runtime Tsim is of biological interest, as it affects the probability of biofilm formation
due to increased opportunities for cell attachment. Finally, we note that the accumulation
index captures the deterministic limit of the perfectly absorbing boundary A (as shown in
figure 11e) for runtimes corresponding to the longest closed-loop orbit durations calculated
for each cell shape in figure 12.

4. Conclusions

Using a finite element framework for continuum distributions of dilute suspensions of
microswimmers we have studied the coupled relationship between the bulk flow cell
dynamics and the boundary dynamics. We find that in order to capture the dynamics of
different individual-based wall dynamics (specular reflection, uniform random reflection,
absorbing boundaries), it is necessary to be cautious in the choice of boundary constraints
for continuum model approximations. We find that a doubly periodic Poiseuille continuum
approximation yields a good equilibrium approximation for IBM microswimmer dynamics
in a wall-bounded Poiseuille flow with specular reflection for the case of high and low
Pe. We find that this continuum model effectively captures the macroscopic suspension
distributions such as peaks of accumulation and cell depletion at the walls due to low-shear
trapping in y−θ phase space. This is especially noteworthy as this offers justification for
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the use of doubly periodic Poiseuille flow models like Vennamneni et al. (2020) to capture
simple bounded domains with a reflective wall condition for high and low Pe. However,
the doubly periodic Poiseuille flow model fails to capture dips in cell accumulation very
close to walls for medium Pe. In these regions, alternate continuum models as prescribed
by Jiang & Chen (2019) are better approximations of specular reflection. Comparing our
model with the models in Jiang & Chen (2019) also highlights that the observed dips
are due to specular reflection and not purely a result of shear-induced trapping. We also
find that a constant boundary approximation in the equilibrium continuum model yields
good agreement with an IBM with random reflections capturing additional secondary
peaks of cell accumulation near the walls. For these models, we find that the uniform
reflection boundary is most accurate for low to medium Pe, outside the limit where
time-step sizes influence cell drifts from the secondary peaks. It is important to note
that both results highlight that there exist clear limiting cases for the use of different
continuum models and that the use of continuum approximations for dilute microswimmer
suspensions must be made carefully. Given that cumulative effects of time-step errors
are a common problem in Hamiltonian systems, a potential avenue for future research
lies in studying the deterministic system from a Hamiltonian perspective to determine if
there exist any symplectic integrators for the system that minimise numerical drifting.
This could allow for the uncoupling of time-step effects and the inherent cell drifts at the
walls due to the balance of advection and diffusion effects. Meanwhile, as the long-term
limit of an absorbing boundary condition is all diffusing cells being attached to the wall,
we developed a time-evolving continuum model with a zero Dirichlet boundary condition
restricted to shorter simulation runtimes Tsim < 1 due to computational costs. This model
effectively captures the evolution of near-wall distributions due to wall absorption, and
we have quantified the time and diffusion dependence of wall absorption for elongated
particles.

The shape of the swimmers and rotational diffusion experienced by the swimmers is
shown to significantly affect the orientation distributions. From a Eulerian perspective,
there are no preferred cell orientations for spherical cells, while more elongated swimmers
exhibit a clear preference for orientation upstream and downstream. This preference has
smallest orientational spread for β = 0.99, for which the distributions are most peaked at
angles just above θ = {0,π} (i.e. pointing downstream and out of the bottom wall and
pointing upstream and into the bottom wall), with approximately 40 % of cells being
shown to interact with the walls with incidence angles θ ∈ [π − 0.25,π + 0.5]. From
a Lagrangian perspective, this is due to elongated swimmers spending over 60 % of
their orbits aligned with the flow (|θ − π| < 0.1 and |θ − 2π| < 0.1). On decreasing
the rotational Péclet number, Pe, the spread of maximum wall incidence shifts from
θpeak = π to θpeak ≈ 21π/16 as diffusion dominates deterministic dynamics. For the
case of an absorbing boundary condition, when decreasing the rotational diffusion,
the wall-incidence distributions tend towards the distributions as captured by the novel
accumulation index based on deterministic trajectories for runtimes corresponding to
shape-dependent orbits, highlighting the importance of bulk flow swimmer trajectories
on wall-interaction distributions.

The deterministic dynamics of individual trajectory dynamics in the phase plane θ–y
capture the shift in peak orientation distribution from θpeak ≈ 21π/16 to θpeak = π for
spherical to highly elongated swimmers via the accumulation index. The perpendicular
approach of spherical swimmers towards surfaces and the parallel approach of elongated
swimmers towards walls, have been observed for both Chlamydomonas (Buchner et al.
2021) and bacteria (Berke et al. 2008), respectively, in experiments and numerical
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studies which include hydrodynamic interactions. Our results suggest that the orientational
preferences are influenced by the fundamental bulk behaviours of differently shaped
swimmers.

We find that in the absence of diffusion, elongated particles take over seven times as
long before interacting with the wall compared with a spherical swimmer. It is possible
that elongated swimmers, therefore, must maximise each opportunity they have near the
wall. Once near a wall, elongation leads to increased resistance to random Brownian
rotation allowing swimmers to remain oriented parallel to flows for longer periods which
improves their chemotactic sampling accuracy. Additionally, longer periods of alignment
with walls allow for longer periods of mechanosensing, which increases the chances of
surface attachment being initiated.

While we have considered multiple idealised wall interaction models, true biological
wall interactions do not follow pin-ball dynamics, uniformly random reflections or perfect
absorption, especially due to hydrodynamic interactions. In the literature, there is ongoing
study into how individual swimmers interact with surfaces in the absence of flows, and
even then swimmers are shown to reorient due to hydrodynamic forces. One of the
nuances picked up by the accumulation index is that the bulk flow dynamics affect the
likelihood of how cells approach the wall. For actual accumulation, this is also dependent
on the attachment mechanisms of different swimmers, and attachment rates which are not
accounted for here. Ideally, future models will combine the models with hydrodynamic
interactions. For microswimmers in nature, there exist further variables which affect the
likelihood of attachment and reorientation like pili attachment location (Proft & Baker
2009; Jain et al. 2012; Melville & Craig 2013), chemical signals (Wadhams & Armitage
2004), hydrodynamic stresses (Boyle & Lappin-Scott 2006; Conrad & Poling-Skutvik
2018) and cell deformability (Yoshida & Onoe 2020). Further experimental data regarding
pili, and observed attachment rates at different cell orientations are required to refine the
models to specific swimmer types and to draw further conclusions regarding the likelihood
and speed of initial biofilm formation.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.897.
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Appendix A. Cell trajectories

The effect of rotational diffusion in x–y space is highlighted in figure 1(c), where we
neglect translational diffusion for simplicity and the IBM is augmented with an x-direction
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advection term such that X t = ( y(t), θ(t), x(t)):

μ(θ, y, t) = Ẋ t =
⎛
⎝ ν sin θ

y(1 − β cos 2θ)
1 − y2 + ν cos θ

⎞
⎠ , (A1a)

σ (θ, y, t) =

⎛
⎜⎜⎜⎜⎝

√
2

PeT
0 0

0

√
2
Pe

0

0 0 0

⎞
⎟⎟⎟⎟⎠ . (A1b)

Appendix B. The IBM with specular reflection: origin of the wall depletion region

For the case of the stochastic individual-based model, regions of accumulation occur
in the θ–y phase space, as observed for the doubly periodic Poiseuille flow and the
wall-bounded formulation in § 3.1.1. However, in the case of the wall-bounded distribution
with specular reflection at the walls, a drop in cell accumulation occurs around θ = 0 at
y = −1, and θ = 2π at y = 1 which increases with increased runtime. While the origin
of this dip for specular reflection is not fully understood, their appearance only for a
range of medium Péclet shows that there exists a balance between advective time scales
and rotational diffusion time scales over which a stable layer of depletion occurs. When
diffusive and advective effects are comparable they can combine to effectively remove
cells from near-wall regions. However, if diffusion is low, cells do not move away; and if
advection is low, cells do not get carried away.

The depletion is further compounded by a time-stepping effect that partially contributes
to the drop in local cell density. The contributing factor lies in the discrete nature of the
numerical method.

To illustrate this, consider the case of a purely deterministic system such that the cells
must all follow predetermined trajectories. However, as time is discretised the time steps
are of finite size. As shown in the schematic in figure 13( f ), if a swimmer (the blue
particle) begins on a deterministic trajectory given by the dotted blue line, due to discrete
step sizes, the swimmer will gradually drift farther from the continuous trajectory with
consecutive steps. This effect is compounded when the last step in the orbit (see the
red particle on the right) undergoes specular reflection (the red particle on the left) to a
position firmly outside its previous deterministic trajectory. With each cycle of reflection,
the particle moves farther from θ = 0, and contributes to local cell depletion. In a fully
deterministic case for β = 0.99, over a runtime T = 600, we have found a 50 % cell
depletion in a radius rε(= 0.08) about (θ, y) = (0,−1), when increasing the step size
from dt = 10−3 to dt = 0.1 as seen in figure 13(a,b).

In the diffusive case for β = 0.99 with Pe = 101 and PeT = 106, over a runtime T =
600, we find enhanced cell depletion about (θ, y) = (0,−1), when increasing the step size
from dt = 0.01 to dt = 1 as seen in figure 13(c,d). In this case, at T = 600, we have found
a 20 % cell depletion in a radius of rε about (θ, y) = (0.2,−1). While decreasing the time
step size does not completely remove the cell depletion at the wall (see figure 13e), it does
decrease it.
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Figure 13. Figures to highlight the sensitivity of the IBM to finite time steps, and how these affect the observed
boundary interactions. (a–e) The IBM Poiseuille flow, for β = 0.99, ν = 0.04. Purely deterministic IBM for
Tsim = 600 near bottom wall in (a,b), with (a) dt = 10−3 and (b) dt = 0.1. (c–e) The IBM Poiseuille flow,
for β = 0.99, ν = 0.04, Pe = 101, PeT = 106, for Tsim = 600 near bottom wall in (c,d), (c) dt = 0.01 and
(d) dt = 1. (e) Cell density distribution n( y) for diffusive case (Pe = 101 and PeT = 106) for dt = 1 (blue line)
and dt = 0.01 (red line). ( f ) Schematic of deterministic trajectory of a particle at bottom wall in continuous
time (blue dotted line) highlighting the trajectory deviation for particles of finite time step. Red particle on the
right overshoots the wall, and is reflected to the red particle on the left.
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