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Abstract

Background: The pressures exerted by the coronavirus disease 2019 (COVID-19) pandemic pose an unprecedented demand on healthcare
services. Hospitals become rapidly overwhelmed when patients requiring life-saving support outpace available capacities.

Objective: We describe methods used by a university hospital to forecast case loads and time to peak incidence.

Methods: We developed a set of models to forecast incidence among the hospital catchment population and to describe the COVID-19 patient
hospital-care pathway. The first forecast utilized data from antecedent allopatric epidemics and parameterized the care-pathwaymodel according
to expert opinion (ie, the static model). Once sufficient local data were available, trends for the time-dependent effective reproduction number
were fitted, and the care pathway was reparameterized using hazards for real patient admission, referrals, and discharge (ie, the dynamic model).

Results: The staticmodel, deployed before the epidemic, exaggerated the bed occupancy for general wards (116 forecasted vs 66 observed), ICUs (47
forecasted vs 34 observed), andpredicted the peak too late: generalward forecastApril 9 andobservedApril 8 and ICU forecastApril 19 andobserved
April 8. After April 5, the dynamic model could be run daily, and its precision improved with increasing availability of empirical local data.

Conclusions: The models provided data-based guidance for the preparation and allocation of critical resources of a university hospital well in
advance of the epidemic surge, despite overestimating the service demand. Overestimates should resolve when the population contact pattern
before and during restrictions can be taken into account, but for now they may provide an acceptable safety margin for preparing during times
of uncertainty.

(Received 2 July 2020; accepted 3 September 2020; electronically published 15 September 2020)

The coronavirus disease 2019 (COVID-19) pandemic poses a pub-
lic health threat, which, if unmitigated, can rapidly overwhelm
health care systems.1–3 In particular, the demand of patients that
require ventilator support becomes critical when available ICU
capacities are exceeded4. Therefore, nonpharmaceutical interven-
tions have been implemented to ameliorate demand at the peak of
the epidemic (the so-called flattening of the curve).5–7 National or

international measures such as border closures, social distancing,
lockdowns, and furloughs have their merit in slowing the epi-
demic,8,9 but they also interrupt global supply chains and may
thus prevent healthcare systems from obtaining necessary
equipment.10

Acute-care hospitals, and especially tertiary-care hospitals, are
advised to increase their capacity (ie, beds, personnel, and equip-
ment) well in advance to cope with the expected numbers of
COVID-19 patients with severe and critical conditions.11

Although some well-known examples show that this can be
achieved by creating “new” beds in temporary, purpose-build
structures,12,13 it most often is accomplished by freeing up existing
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bed capacity. However, this often occurs at the expense of hospital
beds for non–COVID-19 patients,14 and it may carry opportunity
costs and a protracted burden of disease. Therefore, a timely esti-
mate of the required capacity to treat COVID-19 patients is critical
for the planning of sufficient hospital capacity for both COVID-19
and other patients.

The typical course of an epidemicmakes early predictions about
the volume and timing of peak incidence difficult due to the lack of
reliable local data at a time when forecasting and planning becomes
crucial. Here, we describe how monitoring of antecedent allopatric
epidemic waves, combined with timely local estimates, and con-
tinuous monitoring between March 15 and April 28, 2020, helped
a university tertiary-care center in southwestern Germany prepare
for the pandemic as well as scale up its bed capacity. For hospital
management, we offer a forecast strategy within defined credibility
boundaries, allowing for better bed planning, allocation, and pro-
curement of essential resources.

Methods

The University Medical Center Freiburg (Universitätsklinikum
Freiburg, UKF) is a 1,600-bed tertiary-care center; it is the largest
regional hospital in southwestern Germany. As an acute-care hos-
pital, it draws patients from ~60% of the Freiburg, Breisgau, and
Hochschwarzwald health districts. As a tertiary-care referral and
trauma center, UKF serves other district hospitals in the Upper
Rhine region that borders Switzerland to the south and the
French Alsace, Departments Haut-Rhin and Bas-Rhin, to the west.

COVID-19 cases were defined as symptomatic individuals with
RT-PCR positivity for severe acute respiratory coronavirus virus 2
(SARS-CoV-2) ascertained at 1 of 3 accredited diagnostic labora-
tories. Tests were carried out at community diagnostic centers, by
general practitioners, or on admission to the UKF. Positive results
were reported to the district health authorities according to
German notifiable disease law and were recorded as COVID-19
on hospital admission in electronic patient records. For
COVID-19 patients, dates of admission, between-ward referrals,
and discharge were kept in electronic patient records available
through the hospital’s patient administration system.

Prediction of the expected bed demand at the UKF was initially
constrained by the availability of valid and representative data.
Therefore, we used a 2-stage approach to model the expected inci-
dence of COVID-19 patients among the UKF catchment popula-
tion. In the first stage, we used a static incidence model based on
extrapolations of antecedent allopatric epidemic waves, and we
parameterized a hospital care-pathway model using a panel of
experts. In the second stage, we used a dynamic incidence model,
informed solely by the number of confirmed cases for the Freiburg,
Breisgau, and Hochschwarzwald health districts, and we parame-
terized the care-pathway model using the individual electronic
patient records as documented by the UKF hospital patient admin-
istration system.

Static incidence model

To provide a forecast prior to the local epidemic surge, we analyzed
aggregated data from Italy and Germany as reported by John
Hopkins University,15 as well as subnational data for the
Lombardy region and the Lodi province, available through the
website of the Italian Dipartimento della Protezione Civile.16 We
calculated the delay between the cumulative per capita incidence
in each region relative to the Italian epidemic, and we normalized
the epidemic curves by correcting for this delay, thus overlaying

and combining all curves into a single epidemic trajectory. We
tested the trajectory for saturation properties and decided on a ten-
tative epidemic peak on which we mirrored the epidemic curve,
following a symmetry conjecture.

To predict the Freiburg regional epidemic, we calibrated the
epidemic curve to the UKF catchment population (taking into
account observed delays) by multiplying the per-capita values with
the catchment population size of the UKF. Calculation of catch-
ment size was based on the relative number of admissions to the
UKF compared to all other hospitals in the state of Baden-
Württemberg (11 million inhabitants) taken from a comprehen-
sive data set recording all patient admissions on an annual basis.
The database was made available by the largest health insurer
(Allgemeine Ortskrankenkasse Baden-Württemberg).

Dynamic incidence model

We produced local data–informed estimates using the dynamic inci-
dence model after cumulative case counts reached 1 per 1,000 pop-
ulation in the Freiburg, Breisgau, and Hochschwarzwald health
districts (492,000 total inhabitants). We imputed the likely date of
infection for each COVID-19 case in the health district and estimated
the time-varying effective reproduction number (RT)17 based on the
probability distribution of the serial intervals between consecutive
case generations.18 We used an individual-based stochastic simula-
tion to predict the local future incidence, assuming that RT declined
exponentially over time, fitting Rf(t) = aebt to the estimated RT. This
declining function serves as a phenomenological approximation to
the observed changes in RT and is used to calculate the transmission
parameter of the SIR model (see Supplementary Text S1 online).

Care pathway model

To convert the forecasted regional incidence to bed demand, we
created an agent-based model for the in-hospital care pathway
(Fig. 1) consisting of confirmed cases, equal to the results of the
above incidence models, patients admitted to general wards, and
patients admitted to intensive care units (ICUs). Patients are
assumed to follow 1 of 3 possible tracks through the hospital:
(1) admitted to and discharged from general wards; (2) admitted
to general wards, moved to ICUs, and then discharged from an
ICU; or (3) directly admitted to an ICU and discharged from there.
Within the model, we make no distinction between discharge,
death, and removed patients as end of stay. The model thus con-
tains 5 parameters: the distributions of the length of stay in general
wards and ICUs, the distribution of time from infection to hospital
admission, the proportion of patients admitted to hospital, and the
proportion of patients directly admitted to an ICU.

Fig. 1. Model structure. The COVID-19 care pathway describes how patients progress
from confirmed cases in the community (C), to be admitted on general wards (GW), to
intensive care units (ICU), and to step-down units. Some COVID-19 patients are admit-
ted directly to the ICU from the community. The step-down unit was only included in
the agent-based model.
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In the first stage, we used a consensus care pathway parameter-
ized by judgment of a panel of experts. In the absence sufficient
local data, we asked 4 consultant experts (3 intensivists and 1 infec-
tious diseases specialist) to make estimates about the expected care
pathway of COVID-19 patients during their treatment in the UKF.

Once the number of admitted COVID-19 patients had sur-
passed 150, we parameterized the empirical care pathway using
the individual electronic patient records as documented by the
UKF hospital patient administration system. Based on these obser-
vations, we added a fourth compartment for those patients who left
the ICU and returned to a general ward and named this a step-
down unit.

We analyzed the time until the end of stay in each compartment
split between those patients being transferred to another compart-
ment and those ending their stay. We fit both exponential and
Weibull distributions to the hazard functions of leaving each com-
partment. These served as the main parameters in the empirically
informed care pathway. Furthermore, we calculated the admission
rate as the cumulative number of admissions divided by the

cumulative number of confirmed cases, and similarly, we determined
the proportion of patients being directly admitted to the ICU.

Results

During the first 2 weeks of March 2020, the Lombardy region of
Italy and the Departments Haut-Rhin and Bas-Rhin in France
saw a rapid expansion of the COVID-19 epidemic.1,19,20 The civil
protection authorities in Italy reported confirmed cases on a daily
basis. We observed that cumulative case counts for Germany fol-
lowed the same exponential trajectory as the Lodi province, the
Lombardy region, and Italy as a whole, albeit with some delay
but similar growth rates (Fig. 2A and B). The delay between
Germany and Italy was estimated to be 10 days, while the Lodi
province was 21 days ahead of Italy. Only the trajectory for Lodi
showed an obvious and sustained slowing of the growth rate prior
to March 15 (Fig. 2A and B). We chose March 7 as the saturation
point for the epidemic in Lodi province, and assuming an equiv-
alent dynamic, the peak for Germany could be projected to occur
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Fig. 2. Early forecast using the static model. (A) The trajectory of the number of confirmed cases in Germany, Italy, Region of Lombardy, and Province of Lodi were (B) normalized
and projected as a single curve by compensating for the apparent delay between locations, and (C) the downward slope (grey) was predicted assuming a symmetry conjecture of
the observed upward slope (black). (D) Expected bed occupancy for the UKF (catchment size 290,000 people; general wards in blue and ICU in red). Light shades indicate 95% CI
and dark shades indicate interquartile ranges. Predictions are based on the COVID-19 care pathway using expert consensus. Bed demand peaked on the general wards at 116 beds
on April 9 and in ICUs at 47 beds on April 19.
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on April 7. Applying the combined trajectory (Fig. 2C) to the
catchment population of the UKF (290,000 people), we expected
103 incident cases on the day of the epidemic peak.

To predict the expected bed and ventilator demand, we chose to
describe the expected COVID-19 patient care pathway on the basis
of expert knowledge and opinion. The expert estimates were in
general agreement on most of the care-pathway parameters
(Supplementary Table S2 online). We combined the assessments
by averaging the individual parameter estimates of all 4 experts
into a single consensus care pathway. Combining the care pathway
with the results of the static incidence model, we predicted the
demands for general ward and ICU beds to peak on April 9
(116 beds) and April 19 (47 beds), respectively (Fig. 2D).

By April 5, the availability of locally generated data provided the
opportunity to populate the care-pathway model with empirical
local data and to offer the first predictions using the dynamic inci-
dence model. At the time, 153 patients had been admitted to the
UKF, of whom 55 required ventilator support on ICUs. Also, 28
were admitted directly to an ICU, whereas 27 had a prior stay
on a general ward. Furthermore, 14 had already been transferred
to the step-down unit. Of all admitted patients, 87 were still hos-
pitalized (general ward, n= 48; ICU, n= 29; and step-down unit,
n= 10). Based on the estimated hazard of end of stay on a general
ward (0.05678 d-1) and the hazard of transfer to an ICU (0.0307 d-1),
we estimated that patients spent a mean of 11.4 days on a general
ward (Fig. 3A and D). Similarly, we estimated patients stayed on
average 14.7 days on an ICU (end of stay hazard, 0.03127; transfer
hazard, 0.03648) (Fig. 3B and E), and 40.5 days on a step-down unit
(Fig. 3C, based on 4 discharges). The hazard estimates stabilized
over time as more data were added (Fig. 3F and Table S3 online).

On the same day, 1,372 cumulative cases (Fig. 4A) had been
reported in the health district (2.8 per 1,000 inhabitants). Since the
onset of the epidemic, the time-varying reproduction number (RT)
showed a clear decline, starting at a median of 3.5 and decreasing
to 1.1 (Fig. 4B). The dynamic incidence model projected a peak inci-
dence of a median number of 90 cases for April 8 (Fig. 4C). Although
there was considerable variation between model simulations (the
lowest peak was projected at 74 cases, the highest at 1,186), 75%
of the realizations suggested little or no further increase with an
imminent saturation of the epidemic in the near future. Dynamic
incidence forecasts could be produced fromMarch 24, albeit without
empirical local care-pathway data until April 5. While adding daily
reported cases to the dynamic incidence model, iterations generated
fluctuations and occasional uncertainty (see Supplementary Fig. S4
online and Supplementary Movie S5 online). The overall trajectory
stabilized after April 6. Combining these projections with the empiri-
cally informed care pathway, we estimated a peak demand of 102
general ward beds (IQR, 92–121) on April 17 and 49 ICU beds
(IQR, 42–58) on April 25 (Fig. 4D). Observed bed occupancy peaked
on April 8 for both the general wards (66 beds occupied) and the
ICUs (34 beds occupied). By April 14, the forecasted bed demand
alignedwith the observedoccupancy (Supplementary Fig. S4, column
5, online), likely because the incidence model predicted the declining
phase of the epidemic curve more precisely.

Discussion

During the current COVID-19 pandemic, hospitals have reported
a breakdown of services when the surge of patients in need of treat-
ment and ventilator support outpaced available capacities.21 Early

(A) (B) (C)

(D) (E) (F)

Fig. 3. Survival analysis (A–E) Kaplan-Meier estimators for the stay on the general ward (A and D), ICU (B and C), and step-down unit (C), for patients that are discharged (A, B, and
C) and transferred to the following ward (D and E), based on the data observed on April 5. (F) The estimated rates of discharge, death, and transfers over time, based on con-
tinuously accumulating data.
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predictions about the timing and volume of maximum service
demand, (ie, expected general ward and ICU bed occupancy)
are therefore critical in the early stages of an epidemic. These pre-
dictions may help guide the upscaling of a hospital’s bed capacity,
redistributing personnel, and/or storage of crucial equipment.
However, data that could provide a basis for predictions are often
equivocal or insufficient in the incipient stages of an epidemic. In
an attempt to decrease these uncertainties, we have utilized allopat-
ric and locally available data for contingency planning for health-
care authorities and hospital management.

We took advantage of antecedent epidemic waves in neighboring
countries, especially in Northern Italy, where daily case counts were
available at the level or provinces with population sizes comparable
to our own health district. When we normalized the epidemic trajec-
tories between nations, regions, and provinces, we found that uncon-
trolledtransmission inpopulationswithsimilar contactpatterns22was
comparable during early stages of epidemics. Therefore, we informed
our local predictions by a staticmodel calibrated by the per capita case
counts and delay of onset in Lodi, Lombardy, and Italy, assuming that
local epidemiology would be similar to that in Northern Italy.

This static forecast gave local healthcare authorities and hospi-
tal management of the UKF 3 weeks to prepare for the expected

number of COVID-19 patients at the epidemic peak, ample time
to call off elective interventions, upscale ICU capacity, reallocate
staff, take stock, and strengthen efforts to procure essential equip-
ment such as disposables, personnel protective equipment (PPE),
oxygen, etc. Given the size of the epidemics in Lombardy and the
neighboring department in France, the results of the static model
were used as the lower bound of the required capacity. Whether
regional district hospitals would be able to cope with the likely
caseloads in the larger region was uncertain. The entire region con-
sists of a catchment population 3 times the size of the UKF’s catch-
ment (1 million vs 290,000), which was forecasted to result in an
additional demand for 284 general ward beds and 121 ICU beds in
the surrounding hospitals (Supplementary Fig. S6 online).

The dynamic model required locally available data. After March
24, sufficient numbers of incident cases had been ascertained and
moved through the UKF, allowing forecasts to be updated on a daily
basis. This real-time tracking provided us with the potential to adjust
hospital planning. In particular, it provided the means to fine-tune
ICU and general ward capacities and to reconcile foreseeable equip-
ment demands with available stock and expected deliveries. In hind-
sight, our model predicted the peak to be higher and later than the
peak observed, but no further upscaling of capacity was required.
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Fig. 4. Late forecast using the dynamic model based on locally available data on April 5. (A) The observed incidence of confirmed cases in the Freiburg, Breisgau, and Hochschwarzwald
health districts combined. (B) Backward model: Estimates of the time-varying Reproduction number (blue dots) over 100 stochastic simulations, with fitted Rf(t) trajectories (black lines).
(C) Forwardmodel: Forecasted incidence of confirmed cases, grey lines show single simulation results, green line show themedian, with green shade showing the interquartile range and
green light shade 5%–95% of the simulation results. (D) Estimated bed demand (median, IQR, 5%–95% range) for the general wards (blue) and ICU (red). Circles denote actual observed
number of beds occupied (closed: past days; open: future days not known at the time of the analysis on April 5).
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The implicit continuity assumption of the parameters made our
dynamic prediction models vulnerable to unforeseen changes in
transmission dynamics, such as the introduction of nonpharma-
ceutical interventions, or changes in the ascertainment of con-
firmed cases. For Freiburg and surroundings, restrictions took
effect on March 20 and included closures of schools, shops, and
restaurants; prohibition of large gatherings; and an obligation
for social distancing. Therefore, our fitted trajectory to the esti-
mated time-varying reproduction number (RT) may initially have
been too high because preintervention RT estimates still carried too
much weight. Additionally, random mixing assumed in the stan-
dard SIR model overestimates epidemic growth because extant
contact patterns are generally assortative. Furthermore, the inci-
dence model assumes homogeneity in the patient population, that
is, each infected individual having the same probability of being
admitted to hospital. In reality, risks are strongly associated with
age,23-25 which skews hospitalization rates depending on demo-
graphic composition. We therefore suggest that improved predic-
tion models should account for age-stratified contact patterns, age
structure of hospital catchment populations, and the effect of non-
pharmaceutical interventions.

Local data–based, short-term forecasts of hospital admissions
are vital to epidemic planning by hospitals because the onset of epi-
demics may vary greatly between different geographical regions.
Also, local bed demand may peak at different times. The lack of
local data in the early phase of an epidemic is challenging in this
respect. We solved this issue by forecasting in 2 stages, with an
early “crude” estimate based on observed COVID-19 outbreaks
abroad and a later, continuously adjusted, nowcasting and fore-
casting using locally ascertained data. Thus, we were able to nav-
igate hospital capacities by setting weekly targets while adjusting
the elective admission and discharge policies according to the most
current epidemic situation.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2020.464.
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