DIFFERENTIABLE STRUCTURES ON THE
15-SPHERE AND PONTRJAGIN CLASSES
OF CERTAIN MANIFOLDS

NOBUO SHIMADA

Introduction. No manifold had been known which can carry two distinct
differentiable structures until the recent important contribution due to J. Milnor
[7] concerning the 7-sphere appeared.

In connection with his work, there are several problems, for example, about
the existence of any other manifold with such property, about the topological
invariance of the Pontrjagin classes of manifolds, etc.; some of them will be
discussed in the present note. '

First in § 1 and § 2, it will be shown that his method is applicable also for the
case of 15-sphere to prove existence of many distinct differentiable structures.
Secondly in §3 we shall give some examples of differentiable manifolds which
are all of the same homotopy type while any homotopy equivalence between
them does not preserve their Pontrjagin classes.”’ In addition we shall obtain
the following result. Consider 2#-manifolds X*” whose homology groups
Hi(X*")=2Z for i=0,n, 27 and H;(X*") =0 for i =0, n, 2n. Known examples
are the following : complex projective plane (n =2), quaternion projective plane
(n=4) and Cayley projective plane (n =8). We shall show in § 4 that for n=4
and 8 there exist several examples of such topological (triangulable) 2 n-manifolds
with different homotopy types.

All manifolds considered in this note, with or without boundary, are to be

differentiable of class C* (unless otherwise stated) and orientable.

§ 1. Invariant A(M™)

For every closed, oriented 15-manifold M"™ satisfying the hypothesis
Received March 28, 1957

*) After completing this note, I had an opportunity to notice Thom’s remark in [16]
and to read Dold’s paper [15]. I understand that Dold has given already such examples.
But I should like to preserve the original style of the present note, since it stands on a
different view point. Cf. James and Whitehead [17], also Tamura [18].
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a) there exists a 16-manifold B'® with M" as its boundary,”
(*) and
b) H'(M")=0"  for i=3, 4,7, 8 11, 12,

we will define a residue class i(M") of integers modulo 381. This is to be an
invariant of differentiable structure for such a 15-manifold, and will be defined
as a function of the index r and the Pontrjagin classes p; of the open sub-
manifold B = B~ M" of B" with the induced differentiable structure. An
orientation of B and that of B' are chosen in such a way that they are
consistent and the homological boundary of thereby oriented B' is equal to
the standard fundamental cycle of M™. Then the index means that of the
quadratic form defined by the cup-product over the group H%(BY, R) with
real coefficients (H, means cohomology group with compact supports).

The hypothesis (*) implies that the inclusion homomorphism
7 Hdi(B‘lG MIE) - Hii(ElG)
is an isomorphism for 7=1, 2, 3. This permits us to consider the i-th Pontrjagin
class p; of the manifold B® as an element of H¥(B"®) for i=1, 2, 3 (cf. [2]).

Let » be the standard generator of H¥(B") which is dual to the orien-
tation of B'. Then A(M") is defined by the following equation®

AMM®)p =325« Trp+ T1pspy + 199; — 2292+ 3p1 (mod 381).

Tueorem 1. The residue class A(M™) modulo 381 does not depend on the
choice of the manifold B".

Let B}, B be two manifolds with boundary M*. Then C*=B{U B}
is a closed 16-manifold which possesses a differentiable structure compatible
with that of Bi® and B;’. Choose that orientation of C' to be consistent with
the orientation of B}® (and therefore consistent with the negative orientation
of B¥¥). Then the proof of Theorem 1 will be proceeded similarly as in the
case of the invariant A(M") (See Milnor [7]) by making use of the Hirzebruch’s
index formula [5]:

3«5« 70(C*) v =381 ps — T1psps — 1905 + 22 o s — 311,

1) A 15-manifold is not always the boundary of a 16-manifold. See Dold [3].

2) Integer coefficients are to be understood.

3) As Milnor remarked, for every n=4k—1 a residue class i(M») modulo sk e u(Lk)
could be defined similarly. (See [5], p. 14.)
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where » is the standard generator of H'(CY) and p/s are the Pontrjagin
classes of C". Therefore the proof will be omitted here.

The following property of the invariant 1 is clear.

LemMma 1. If the orientation of M is reversed, then A M) is multiplied
by —1.

As a consequence we have

CoroLLARY 1. If AMMP) %0, then M" possesses mo orientation-reversing

)

diffeomorphism™® onto itself.

§ 2. Examples of 15-manifolds

Consider 7-sphere bundles over the 8-sphere with the rotation group SO(8)
as structural group. The equivalence classes of such bundles are in one-one
correspondence® with elements of the 7th homotopy group = (SO(8)) of the
stractural group. This homotopy group is known to be isomorphic to Z-+ Z,
and a specific isomorphism between these groups is obtained as follows.”” For
each (I, j)e&Z+2Z, let fu;: S - SO(8) be defined by fa(u)+v=u"vu’ for
v € R’. Cayley number multiplication is understood on the right.”

Let ¢ be the standard generator for H°(S°) and denote by %4, the sphere
bundle corresponding to { /s, ;i € m:(SO(8)).

Lemma 2. The Pontrjagin class p»(£n;) equals +6(h—j):.
(The proof will be given at the last of this section.)

For each odd integer k, let M} be the total space of the bundle 24 ;, where
h and j are determined by the equation 2+ j=1, h—j=£k. This manifold M}’
has a natural differentiable structure and orientation, which will be described
as follows.

Let the base space S*® be imbedded in R° by the equation

2

+<0—(§>~= i(orisF:a(l—aH, 0=s0=1),

2

|
1S

# A diffeomorphism f is a homeomorphism such that both f and f~! are differentiable.

5 See [10] §18.

6 See [9]. By making use of the fibration of Spin (7) by G2 over S/, it can be proved
that {f1,-1} generates =7(SO(7)). See Toda, Saito and Yokota [19].

71 The division algebra of Cayley numbers is not associative, but it is known that any
subalgebra generated by two elements is associative. Cf. Dikson, Linear Algebras, Cam-
bridge Tract, 1914.

https://doi.org/10.1017/5S0027763000021942 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021942

62 NOBUO SHIMADA

where s, |s| and ¢ denotes a Cayley number, its norm and a real number
respectively, and (s, o) forms a coordinate system of R°. In S°let Vi, V, be
the complements of (0, 0) and (0, 1) respectively. Consider two spaces VX S’
and V,xS’, and identify the two copies of subset (Vi:N V) x S* under the
diffeomorphism

(s,0; th—{(s a;th, #=s"t/]s]

(using Cayley multiplication). The constructed space can be considered as M¥
and has the natural differentiable structure.
Now define a function f : M¥ - R by

(s, 0; 1) —»VaR),
(s, 0 ) » R(SINT =,

where R(#) denotes the real part of ¢ and § denotes the conjugate of s. It is
easily verified that f has only two critical points (namely (0, 1; =1);) and
that these are non-degenerate. Thus the manifold M7 satisfies the condition
(H) stated in §2 of the paper [7], and therefore by Theorem 2 in [7]1 (cf. also
[81) we obtain

LemMa 3. The manifold MY is homeomorphic to the 15-sphere S®.

Associated with each 7-sphere bundle M} — S° there is an 8-cell bundle
or ¢ B¥ > S°. The total space BY of this bundle is a differentiable manifold
with boundary M¥. The cohomology group H%(BY) is generated by the
element a = pf(¢), where ¢ denotes the standard generator of H®(S®). Choose
orientation for M¥ and B} so that the index t(B¥) will be +1.

The tangent bundle of BY is the Whitney sum of (1) the bundle of vectors
tangent to the fibre, and (2) the bundle of vectors normal to the fibre. The
first bundle (1) is induced (under o) from &4, ;, and therefore has the Pontrjagin
class p:=pf(£6(h—j)¢) = +6ka. The second is induced from the tangent
bundle of S°, and therefore has second Pontrjagin class zero. Thus we have
p(BY) = *6ka.

This and Lemma 3 give

LemMA 4. The invariant A MY) is the residue class mod 381 of 78(1— E*).

Combining the above lemmas we have:

TureoreMm 2. For B =1I® mod 127 the manifolds MY and MY are homeo-
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morphic but not diffeomorphic.

(For k= +1 the manifold M} is diffeomorphic to S*; but it is not known
whether this is true for any other &.)

CoroLLARY 2. There exist such differentiable structures on S” that cannot
be extended throughout R'.

Proof of Lemma 2. It is clear that the Pontrjagin class p.(25;) is a
linear function of Iz and j. Furthermore it is known that it is independent of
the orientation of the fibre. But if the orientation of S is reversed (for example
replace t by 7), then %;,; is replaced by Z-,-5. This shows that p.(%; ;) is
given by an expression of the form e¢(k—j):. Here ¢ is a constant determined
by ¢+ ¢=p.(£1,0) (and therefore ¢+ « = p,(Bi*)). In order to evaluate the constant
¢, we will note that the maniford B’ is diffeomorphic to the Cayley projective
plane I7 with a 16-cell removed.” The Pontrjagin class p.(/T) is known to be
six times of a generator of H®*(JI) (See Hirzebruch’s announcement in [67, also
Borel and Hirzebruch [1]). Therefore the constant ¢ must be +=6. This proves

Lemma 2.

§ 3. Certain types of 16-manifolds

Some examples of 16-(respectively 8-)manifolds of the same homotopy
type will be constructed and it will be shown that any homotopy equivalence
between them does not preserve their second (respectively first) Pontrjagin
classes. These can be done by parallel methods for the respective cases, and
therefore we shall treat here mainly the case of the 16-manifolds.

Associated with each of the 7-sphere bundles M}, there is an 8-sphere
bundle whose total space BJ is a closed 16-manifold. These 16-manifolds BY
will serve as the examples mentioned above.

Consider, in general, 8-sphere bundles over the 8-sphere with rotation group
SO(9) as structural group. The equivalence classes of such bundles are in one-
one correspondence with elements of #;(SO(9)). This group is known to be
isomorphic® to Z. Let i : SO(8) -» SO(9) be a natural injection map, then the
induced homomorphism z, : m(SO(8)) - =:(S0O(9)) is onto and the kernel of i,
is generated by {fi,.} (in the notation of §2, cf. [10] §23).

8 This fact is proved by using the expression by matrices of points of 1I. See [4].
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Let /4; : S* > SO(9) be defined by f»,;=1 ° f4,j, then {/,,} is a generator
of %:(S0(9)) and we have {/i;}=(h—7){fi,c}. Denote by 7, the 8sphere
bundle corresponding to {/x ;). Since the structural group of 7 ; is reduced
to SO(8), we have p:(ys,;) = p(54,5).

For each odd integer % let B¥ be the total space of the bundle 74,;, where
h and j are determined by the equation A+ j=1, k—j=k. This manifold has
a natural differentiable structure and orientation, which will be described as
follows. Let (s, o), (2, 7) with [s°=¢(1-¢), {#[=7(1-1) be the coordinates
of the base S*® and the fibre S°® respectively (See §2). Consider two spaces
Vi x S* and V, x S%, and identify the two copies of subset ( Vi N\ V,) x S* under

the diffeomorphism
(s,05t th—=(s, a5t c) t=s"t/lsl, <=x

The constructed space is considered as B¥ and has the natural differentiable
structure. There are two natrual cross sections (s, ¢ ; 0,0), (s, ¢ ; 0, 1). The
part (r < ;) and the part (r = ;) of the manifold BY are just regarded as
two copies of B} previously constructed.

Lemma 5. The manifold BY is considered as the sum By \UB¥ of two
copies of BY with identification of the corresponding points on their boundaries
MY. The differentiable structure is compatible with that of each BY. An ori-
entation of BY is consistent with that of the ome of B¥ and consistent with

the negative orientation of the other BY.

Let 0, 7 : BY —» BY be the above inclusion maps, then there are natrual
injection homomorphisms » : H%(B¥) - H*(B¥), i=0, 1. Itis easy to see that
D(BE) = 95 (0 BE)) + 95 (9 B¥)). It follows from Lemma 2:

LeMMA 6. p:(BE) = 6 kao + 6 kay, where a; =77 (a) are generators of H(BY).
We shall prove the following theorem in the next section:

Tuaeorem 3. The manifolds BY and BI* have the same homotopy type if
and only if k= 1 mod 240.*"

From this theorem and Lemma 6 we have

**) Cf. [15], [17].
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TueoreM 4. The second Pontrjagin class of a (16-)manifold is not, in

general, a homotopical invariant.**™

As for the first Pontrjagin class, we can construct 8-manifolds B} similarly
as BY which are 4-sphere bundles over the 4-sphere associated with the 3-sphere
bundles M} which was treated in Milnor’s paper [7]. We can obtain similarly
(see the next section).

TreoreMm 3. The manifolds By and B} have the same homotopy type if
and only if k= +1 mod 24.*%

TueoreMm 4. The first Pontrjagin class of an (8- )manifold is not, in general,

a homotopical invariant.”*"

CorOLLARY 3. Either (a) the Hurewicz's conjecture” is megative for the
above cases, or (b) the first Pontrjagin class of a closed 8-manifold and the
second Pontrjagin class of a closed 16-manifold are not topological invariants.

§ 4. Homotopy types of the manifolds B

In this section we shall prove Theorem 3 (and Theorem 3'), and give also
an interesting side-result.

We need some preparation. Let (x, v) denote the coordinate system of R
and let (s, o) denote that of R’, where x, v, s are Cayley numbers and ¢ a real
number. The 15-sphere S” in R" is defined by the equation |xI*+|y[*=1, and
S® in R’ by the equation |s|°=¢(1—4) as above.

Consider the map Z,; : S° - S® for any pair of integers k, j which is
defined by Zx ;(x, y) = (|x" "7 x"yx’, |y[*). Let the map gi,: S xS —> S be
defined by g i(u, v)=fn,(u)v (as for fu,; see §2), then &y ; is no other than
the so-called Hopf construction of gz,;. The J-homomorphism: #:(SO(8))
- m5(S%) in the sense of G. W. Whitehead [12] is known to be onto in this

case and maps {fx ;} to — (@, It follows easily
LEMMA 7. G.; represents the element (h+ j)os—j+ E(r:) of m:(S%), where

as is represented by the Hopf fibre map g, and E(z:) is the image of a gener-
ator t; of m(S’) by the suspension homomorphism and is represented by B ..

LEMMA 8. @) (—¢) o {Zu;t ={F n) where s is the standard generator of
73(S®). b)) [is, ts] =20s— E(z:), the left side denotes the Whitehead product.

9 By the Hurewicz’s conjecture we mean that two manifolds of the same homotopy
type would be homeomorphic.
¥ Cf, [18].
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This is a known result (cf. Toda [11]), but we shall give here a simple
proof. Let x: S® - S” be defined by x(x, y)=(% 3 and « :S*->S* by
£'(s, ¢) = (5, ¢). Then we have k' o Zs,; °o k=gjr. Since k' reverses the orien-
tation of S®, we obtain a). b) follows immediately from a) and Theorem 5.
15 of G. W. Whitehead [14].

Now we return to our purpose. Let ¢ : S - M} be an orientation pre-
serving homeomorphism, of which existence is assured by Lemma 3, and denote
by o the projection M% — S* as in the preceding section. We shall determine
the element of 75(S®) represented by the composition map o ° ¢.

For this purpose, define the following map ¢’ : S -» M} by

(N2@2lvPP=1)x, 21y =15 y/lyDs for |y[*>

s

- Do

¢'(x, y) =4 (0, 0 ; 2x"yx7) for |yl*= o,

- N

(V2@ =2[y /1 x]) x"yx?, 1-2]91?; 1); for Iylz<—§,

where & and 7 are the integers determined by the equation Z+j=1, h—j==%.
Thus defined map ¢' is obviously continuous and, we may consider, of degree 1.
Since ¢’ is homotopic to ¢, we have only to consider the map pr o ¢' : S*

- S% which is defined by

(2@yP=Ds 2lyF-1) for [y*= .
ok ° ¢'(%, ¥) _ 1
(V2@ =2/ lxDx"pa’, 1-215F)  for Iyl = 5.

Denote by E® the closed spherical 8-cell defined in R®* by x| <1. The
boundary (E®x E®)* of E®x E® is homeomorphic to S®. A specific homeo-

morphism f is defined by

(q/\/?', /1— % l;]_l;w’) on E®x ES
flg, r) = B
(/1— ;lrlz-q, r/\/'2m) on E®x ES

Further define two maps ¢i, ¢ : (E* x E*)° > S® by

(g, Vi-1[q*r) . on E°XxE’

olg 7) = { (g, 0) on E®x E®

https://doi.org/10.1017/50027763000021942 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021942

DIFFERENTIABLE STRUCTURES ON THE 15-SPHERE 67

(0, 7) on E®x E%

(g, 7) = R ,
¢la, 7) { (V1-=17[%q, 7) on E®x E®.

The maps f, ¢1, ¢ are all considered as of degree 1 with respective to the
natural orientation of (E® x E®)" and S™.

Let u, v : S¥ > S¥ denote two maps of degree 1 and of degree — 1 which
are defined by u(x, y)=(y, x) and 7(x, y)=(x, ¥) respectively. And let
2 : S*> S* be defined by X(s, ¢) = (s, 1 —0).

Set

Fi=Xe@ooroned
and
Fo=X°8nj°re o

then F, F, are two maps of (E®x E®)’ into S® and satisfy the following

conditions :
pro ¢ o f(qg, 1) on E°*x E,
Fx((]. 7’) = { ¢ s s
(0, 0) on E®x ES
and ‘
(0, 0) on E®x E®
FO(Q) r) = {

pro @' o f(q, 7) on E°®x E*

Denote the 8-cell E*x 1 in E®x E®* by E! and 1 x E® in E® x E® by E}.
Let fi: (ES, E}) > (S° po) and fo: (ES, E}) > (S°, pi) be the restriction of
F, and F, respectively, where p. denotes the south pole (0, 0). Since fi(g, 1)

sent the standard generator s of ms(S®).
Now from the theorem of G. W. Whitehead [13] we have

{or o ¢ ofy={F}+{F}+L{An} {fo1l.

Clearly F; represents the zero element and F, represents the element
— (—=t3) © {@s,;), therefore by using Lemmas 7 and 8 we have
{oro¢r=Apro¢t= —{Z.nt+ i, =05~ 7+ Ers)
THEOREM 5. The projection or @ MY > S° represents the element
gs + % (E-1)E(t) of mi5(S?).

Tueorem 5. The projection o : My - S* represents the element
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vi+ é(k—l)E(wa) of m(S*Y), where vy is represented by the Hopf fibre map
and E(w;) is the image of a gemerator ws of ns(S®) by the suspension homo-

morphism.

Proof of Theorem 3. It is easily seen that the homotopy type of the
manifold BY is the same as that of the reduced cell complex Lr constructed
as follows. Consider the union of two copies of 8-sphere with only one point
in common, which is denoted by S®VS® Attach a 16-cell ¢° to S®VS® by
such a map Br of the boundary e into S®VS® that represents the element
{or o ¢} +{pro ¢}t of mis(S®) + mis(S%) Cmis(SPVS®).  The constructed cell
complex (S*V S®) U " is the above mentioned complex L.

Since the homotopy type of L is determined by the element {B:} of
m:(S*V S®) and the order of the element £(r;) is known to be 120 (See [9]),
Theorem 3 can be now proved easily. Theorem 3' can be proved similarly.

Now we shall state the side-result. Consider the following hypothesis for

a topological 2n-manifold X*”:

() H(X")=2Z for =0, n, 2n,
H(X*) =0 for %0, n, 2.
Manifolds with the properties (*) are known for »=2, 4, 8 (complex, qua-

ternion, Cayley projective planes respectively).

THEOREMT™6. There exist several topological 2n-manifolds satisfying the
hypothesis (™) and having different homotopy types for the cases n=4, 8

respectively.

(The author does not know if these topological manifolds admit any differ-
entiable structures. Cf. Problem 5 in [6].)

Let X% be the closed manifold obtained from B}" by collapsing its boundary
(a topological (27— 1)-sphere) to a point x, for =4, 8. Then the topological
manifolds X% serve themselves as the examples of the manifolds stated in

Theorem 6.
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