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ABSTRACT

In this paper, we find explicit expressions for the moments of the fund level
and the value of the total contribution when arithmetic or geometric rates of
return are modeled by a moving average process of order q and when a
proportional control is applied to the contributions. Our approach is based
on the bilinear Markovian representation.
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1. INTRODUCTION

Defined benefit pension plans are considered in this paper. For these types of
plans, actuarial valuations determine the annual amounts of contributions
and reserves. The safe aspect of these plans, for employees, makes them very
popular in many countries such as Canada, the Netherlands, the UK and the
USA. Our valuation method is an individual one, where normal costs and
actuarial liabilities are calculated separately for each member and are then
summed to give total amounts for the whole population of the plan. Periodic
valuation methods (here annual) rely on some demographic and financial
hypothesis. Essentially, our hypothesis will be that, we have a pension plan
with random rates of return, no inflation, a stationary population and a fixed
valuation rate. In reality, actuarial hypotheses do not exactly come through.
This has for effect of causing deficits (or surplus). In order to attenuate those
deficits, a control is usually applied to contributions. Here, we use the
proportional control which is common in Great Britain. The main purpose
of this paper is to obtain, for our plan, expressions for the first two moments
of the fund level and of the total contribution when arithmetic or geometric
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272 DIANE BEDARD

rates of return form a moving average process. This is achieved through fund
levels which correspond to bilinear processes and geometric bilinear
processes.

We begin this paper by introducing, in Section 2, the concepts of bilinear
processes, geometric bilinear processes and bilinear Markovian representa-
tions. In Appendix, we explain how to formulate a bilinear Markovian
representation for bilinear processes and geometric bilinear processes. In
Subsection 2.3, we discuss the stationarity and the moments of processes
having a bilinear Markovian representation.

In Section 3, we apply the theory of the previous section to our plan in
order to study the stationarity and the moments of the fund level and of the
contributions. In Subsection 3.1, we see how the fund level at time t, F,, can
correspond to a bilinear process or to a geometric bilinear process. Then, in
the next subsection, we give the Markovian representation of {F,} when
arithmetic or geometric rates of return are modeled by a moving average
process of order 0, 1 or 2. In Subsection 3.3, using the bilinear Markovian
representation of {Ft}, we study the stationarity and the moments of the
fund level and of the contributions. Finally, in Subsection 3.4, we observe
the variability of those processes for different scenarios.

In practice, it is well known that random rates of return happen to be a
major cause of deficit or surplus. This is why pension funding with random
rates of return has been a popular research subject in actuarial sciences for
the two past decades. In discrete time, essentially, three models have been
considered for rates of return:
- i.i.d. rates of return: Dufresne (1986, 1988, 1989, 1990, 1994), Haberman

(1993b), Zimbidis and Haberman (1993), Cairns and Parker (1997).
- Autoregressive rates of return: Dufresne (1993), Haberman (1993a,

1994), Gerrard and Haberman (1996), Cairns and Parker (1997).
- Moving average rates of return: Bedard (1997), Bedard and Dufresne

(1999), Dufresne (1990), Haberman and Wong (1997).

Haberman and Wong (1997) obtained explicit expressions for the first
two moments of the fund level and of the contributions under the
proportional control when geometric rates of return formed a moving
average process of order 1 or 2. Their approach was based on the fact that
the white noise included in their moving average process is supposed to be
normal. In this paper, using the bilinear processes theory, we solve similar
problems for arithmetic and geometric moving average rates of return of
order q > 0 having a white noise not necessarily normal. Cairns and Parker
(1997) established expressions for the first two moments of the fund level and
of the contributions under the proportional control when arithmetic rates of
return formed a stationary i.i.d. (independent, identically distributed)
process with a mean rate of return different from the valuation rate. Here,
the bilinear theory allows us to find expressions for those moments without
the stationarity condition. However, unlike Cairns and Parker (1997), our
approach does not allow us to solve explicitly optimization problems.
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2. BILINEAR PROCESSES, GEOMETRIC BILINEAR PROCESSES
AND THE BILINEAR MARKOVIAN REPRESENTATION

We first define bilinear processes and geometric bilinear processes. Then, we
investigate the probabilistic structure of those processes through their
bilinear Markovian representation. Bilinear processes were introduced in
1978 by Granger and Andersen and the theory on geometric bilinear
processes has been developed in Bedard (1997). As you will notice in
Section 3, the Markovian representation of those two non-linear time series
happen to be very helpful in pension funding with arithmetic and geometric
moving average rates of return.

2.1. Bilinear Processes and Geometric Bilinear Processes
m m

Let t e Z. The sum ^ a n d the product Y[ are defined as zero for m < n.
l=n l=n

Definition 2.1: The process {X,} is a bilinear process of order p, q, P, Q,
denoted: {Xt} ~ BLg(p,q,P, Q), if it satisfies

P q Q P
X> = Y akX'-k + Y bhe'-h + Yl Yl Pj*Xt-ket-j + a (2.1)

k=\ h=0 ./=0 k=l

where {e,} is a sequence of i.i.d. random variables, usually but not always
with zero mean, and {a^}, {b/,}, {fyjc} a n d a are real constants.

Definition 2.2: The process \Xt] is a geometric bilinear process of order p, q, P
denoted: {X,} ~ BLg(/>, q, P), if it satisfies:

where r : R —> 1R and gh : 1R —> 1R, h = 0, 1, ..., q, are measurable functions
in et, {e,} is a sequence of i.i.d. random variables, usually but not always
with zero mean, and {<%}, {b^}, c and a are real constants.

Because Expressions (2.1) and (2.2) are not very tractable when we want to
examine the probabilistic structure of bilinear processes and geometric
bilinear processes, we usually work with their bilinear Markovian
representation that is defined below.

https://doi.org/10.2143/AST.29.2.504615 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.2.504615


274 DIANE BEDARD

2.2. Bilinear Markovian Representation

Definition 2.3: Let {Xt} be a bilinear process or a geometric bilinear process.
The bilinear Markovian representation of {Xt}, if it exists, is in the form of:

Z, = A(et)Zt.l+H(et) , ,
X, = B{et)Zt^ + C(et)

 [^}

where Xt represents the output of the system at time / and where:
(a) {et} is a sequence of i.i.d. random variables (not necessarily with zero

mean);
(b) Zt is a state vector of dimension « x l . This vector is not always

uniquely defined;
(c) The matrices A(et), H(et) and B(et) are respectively matrices of

measurable functions in et of dimensions n x n, n x 1 and 1 x n; and
C(et) is a measurable function in e,;

(d) {<?,} is independent of {Zt-k}, k = I, 2, ...

The Representation (2.3) is said to be "bilinear" since it contains matrices
which have for components measurable functions in et. Moreover, the
present state of the System (2.3) (i.e. Z,), together with the future inputs
{et+k, k= 1, 2, ...} is sufficient to obtain {Xt+k, k = 0, 1, ...}. Since the
inputs are independent random variables, the Representation (2.3) is based
on the Markov property, which implies that given the present state, the
future of the system is independent of its past. Hence, the name bilinear
"Markovian" representation for the two equations in (2.3). The Markovian
representation is considered as a very general approach in the modeling of
time series. Its Markovian property allows to have a better knowledge of the
probabilistic structure of some processes such as bilinear processes and
geometric bilinear processes. This representation plays an important role in
time series, especially in Kalman filtering.

Theorem 2.4: Pham (1986): If {Xt} is a bilinear process (Equation 2.1) then
{Xt} has a bilinear Markovian Representation (2.3).

Theorem 2.5: Bedard (1997): If {Xr} is a geometric bilinear process
(Equation 2.2) then {Xtj has a bilinear Markovian Representation (2.3).

The proof of Theorems 2.4 and 2.5 are given in Appendix. They indicate the
procedure for obtaining a bilinear Markovian Representation from a
bilinear process and from a geometric bilinear process. We will refer to those
proofs in Subsection 3.2.
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2.3. Moments of Processes Satisfying a Bilinear Markovian Representation

Guegan (1987) studied processes {X,} having the bilinear Markovian
Representation (2.3) where E[C(e,)] = 0 and obtained results about the
stationarity and the moments of those processes. In Bedard (1997), it was
found that her theorems remain valid when E[C(e<)] ^ 0. We will state three
of her theorems. The first gives recursive expressions for the first two
moments of processes {Xt} given by the Representation (2.3). The two other
theorems give explicit expressions for the first two moments of processes
having a Representation (2.3) and which are first-order or second-order
stationary.

We begin by presenting concepts that are necessary to the understanding
of those theorems.

Definition 2.6: Nicholls and Quinn (1982): Let S and T be two matrices of
order m x n and p x q respectively. The Kronecker product of S with T,
S ® 7\ is the mp x nq matrix whose (/, /)th block is the p x q matrix SyT,
if Sy is the (/, y')th element of S.

Let M and N be two matrices.
vec M is the vector obtained from M by stacking its columns one on top of

the other, in order, from left to right
p(M) supposed that M is a squared matrice,

p(M) represents the maximum modulus of the eigenvalues of the
matrix M

WWN = E[M(e,) ® N(e,)]
MN = E[M(e,)N(e,)]
M = E[M(e/)], V?.

M ® N, MN and M are in fact functions of \ie = E[et] and a2
e = var[er]

where we omit fxe and a2
e in order to simplify the notations.

Definition 2.7: A process {Xt, t G Z} is first-order stationary if
(a) E[Xt] is constant,

and {X,,t 6 Z} is second-order stationary if condition (a) holds and if:
(b) E[X(Xs] depends only on the value of (/ — s).

Theorem 2.8: Guegan (1987): Suppose {Xt} satisfies (2.3). Then

BE[Zt^] + C, (2.4)
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E[Z,] = AE[Zt-i]+H

-A'E[Z0]

and

where

E[X?] = ,_, +2B® CE[Z,_i]

(2.5)

(2.6)

vecA, = vecEfZ/Zj] =A®A vecA,_i + (77 <g> /I + /I (8) 7/)E[Z,_i] +H®H.

(2.7)

Theorem 2.9: Guegan (1987): If p(,4) < 1, then the process {Z,}, and
consequently {Xt} of Representation (2.3), are first-order stationary and

x = lim ELY,] - Bz + C
;—>oc

z= limEFZ,] = (l-A)

with

Theorem 2.10: If p(A) < 1 and p(yi ® A) < 1, then the process {Z,}, and
consequently {XJ in (2.3), are both second-order stationary and

(a) Guegan (1987): if j = 0:

lim cov(A^, Xt+S) = lim varfA",]
f—>0O- /—>DO

= 5(g)5 lim vecA, + 2B®Cz + C® C - x2

where

lim vecAr = lim vecE [ZZ'l

= ( / - A <g> A)~]'[(A ® H + H<g> A)z + H ® H}.

(b) Bedard and Dufresne (1999): if s ^ 0:

limcov(JG,Jfm) = B
s\-2

k=0

xC — x
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where

£ = B® A lim vecA, + (C®A + B® H)z + H <g>C.
(^oo

Remark: Based on Guegan's (1987) results, it is also possible to find
expressions for the moments of even degree k = 2n, (n G IN) for the fc-order
stationary processes {X,} satisfying (2.3).

3. PENSION FUNDING: PROPORTIONAL CONTROL
AND MOVING AVERAGE RATES OF RETURN

3.1. Applications of Bilinear Processes and Geometric Bilinear Processes
to Pension Funding

In the following, we apply the results of Section 2 to study the moments of
the fund level and of the contributions for the pension plan described in the
introduction. We consider this a denned benefit pension plan with an
individual valuation method under Assumptions Al to A4 given below.
From now on we let t e IN.

Let C, D and F be processes representing respectively the total
contribution, the unfunded liability and the fund level. The symbols AL, B
and NC refer to the actuarial liability, the benefits and the normal cost,
respectively.

The unfunded liability at time t, D,, is the excess of actuarial liabilities
over assets (which may be positive or negative): Dt — ALt — Ft.

The total contribution made at time t is given by

C, = NC, + ADJt (3.1)

where NC, and ADJ, represent respectively the normal cost and the
adjustment made to the contributions at time t.

Let R, be the rates of return for the period (t — 1, t), 6t = ln(l + Rt),
r = E[Rt], 6 = E[6t] and / be the valuation rate of interest. We assume that
contributions and benefits are paid in full at the beginning of each year, and
therefore

Ft = (\ + R^F,.! + C,-i - B,^) (3.2)

We make the following assumptions:

Al. {R, - r} ~ MAfa) i.e. R, - r = £ djeH,

where do = 1, [dj, 7 = 1 , 2, ..., q} are real constants, and
{eht > 0} is a zero mean white noise process, or
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Al\ {6, - 6} ~ MA(q) i.e. 6,-6=^2 diet-i •

A2. There is no inflation on benefits and on salaries.
A3. The population is static.
A4. The valuation rate, i, is fixed.

Assumptions A2 to A4, which also have been made by Dufresne (1986, 1988,
1989, 1990, 1994), Haberman (1993a, b, 1994), Haberman and Wong (1997),
Zimbidis and Haberman (1993) and Cairns and Parker (1997), are stronger
than the ones usually met in practice. However, they allow us to detect more
easily the effect of a random rate of return on the value of the fund and on
the contributions. Moreover, Assumptions A2 to A4 imply that ALt, NC,
and B, do not depend on time.

Equivalently, as mentioned in Cairns and Parker (1997), one may
suppose that salaries are inflated by imagining that the valuation rate and
the random rate of return are linked to the rate of increase of salaries. For
example, if s is the rate of increase of salaries, we could replace respectively
Rt and i in all formulas by H, = -^^ - 1 and by 7 = | ^ - 1. Approximately,
H, can be seen as the rate of return over the increase of salaries (i.e.
H, = R, — s), and j as the valuation rate over the increase of salaries (i.e.
j = i — s). In our numerical example of Subsection 3.4, the rates Rt and i
can both be thought of as "net" rates.

When a proportional control is applied to the contributions, the
adjustment made to the contributions at time t corresponds to a proportion
of the deficit at time t:

ADJ, = kDt (3.3)

where k £ (0,1].

Replacing the above equation in Expressions (3.1) and (3.2), we find under
Assumptions A2 to A6 that the processes {C,} and {Ft} are such that:

kD,, and (3.4)

F,-i)-B)
(3.5)

where h = NC + kAL - B.

Equation (3.5) allows us to establish the two following theorems:

Theorem 3.1: Dufresne (1990): If {Rt -r} ~MA(?) , then {F,} ~BL(1,?, l,q).
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Proof: We first replace {Rt — r} by a moving average process of order q
in (3.5):

Ft = (\ + Rt)((\ - k)F,.i + h)

.7=0

djeHFt-X + h £ djeH + (1 + r)h
7=0 7=0

where do = 1.
Setting a, = (1 + r)(l - A:), Z>y = My, /?y,i = (1 - k)dj and a = (1 + r)h in the
preceding equation, we obtain

q q

Ft = a i ^ - i + ^ bjeH + J2 Pj,\Ft-\eH + a - (3.6)
y=o ;=o

Thus {F,}~BL(1 ) ? , 1,?). D

Theorem 3.2: If {<5, - ^} ~ MA(?), then {Ft} ~ BLg(0,g, 1) (Equation 2.2)
where gj(et-j) = e^?'-' with <i0 = 1.

Proof: We replace {(5, — 6} by a moving average process of order q in (3.5):

F, = (I + Rt){{! - k)F,_i + h)

F, = e+'-» d'l'\{l- k)F,.i + A), (6, - ln(l + ,R;) and Jo = 1)-

Setting b\ = eb{\ - k) and c = ê /z in the above equation implies that:

F, = J]e4e'-'-(M'r-i+c). (3.7)
7=0

Thus {i7,} ~ BL^(0,^r, 1) where gj(et-j) = ed>e<-> and r(e;) = a = 0 (see
Equation 2.2). •

3.2. Markovian Representation of Fund Levels

In this section, we apply the procedures given in the proofs of Theorems 2.4
and 2.5 in order to show how to obtain a bilinear Markovian Representation
(2.3) for the process {F,} with {R, - r} ~ MA(q) (q = 0 or 1) (Equation 3.6)
and for the process {Ft} with {St — 6} ~ MA(2) (Equation 3.7).
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3.2.1. Case: {R, - r) ~ MA(0) and {R, - r} ~ MA(l)

For the case {Rt — r} ~ MA(1), Equation (3.6) results in:

Ft = aiFt-i + boe, + b\et-\ + (30,iFt-iet + (3\^F,^et-\ + a.

And, the bilinear Markovian representation for {F,} is given by:

F, = B{e,)Zt-X + C(et),

z '=(

- (

Ft= (

where

^a\F

> >

ft*

Ft

f3o,ie,

?„ 1)^-1 + '

' Ftet

et a\

{boe, 4

)
1 N

+ ^l,OeO

-a)

)z,_ boe,

Remark: Naturally, when {Rt — r} ~ MA(0), the Markovian Representa-
tion is obtained by setting b\ — 0 and /3o,i = 0 in the representation above.

3.2.2. Case: {6t - 6} ~ MA(2)

When {^ — <5} ~ MA(2), Equation (3.7) becomes

Ft = e
doe'ed]e'-'ed2e'-2 {bxF,_\ + c).

With the later equation, we obtain the following bilinear Markovian
representation for {Ft}:

Zt = A{et)Zt.{+H{e,)

Z, = Z

ydie, D(O)(e(yhe, \Z,

0lx2 0 l x 2 0
r, = (0, ^»f', 0, 0, 0)Z,_i + 0
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where 0] X2 = (0, 0) and

3.3. Moments of {F,} and {Cf}

Proposition 3.3: Under Assumptions Al to A4, if a proportional control is
applied to the contributions and that {Ft} is a second-order stationary
process, it follows from Theorems 2.9 and 2.10, the following explicit
expressions for the first two moments of {Ft} and {Ct}:

f= limELF,] =B(I~A)~1H + C, (3.8)
1—>OO

limcov[F,,Fm
/—>OO

lhn\ecA, + 2B®C(I-A) lH+C®C-f2 if s = 0,
r-<oo

B
k=o

+fC~f2 if
(3.9)

where lim vecA, = (/ - A ® A) [\(A® H + H ® A)(l - A) ' H + H ® / / I
r^o^i y Lv _ _ , ' J

and £ = B ® A lim vecA, + (C ® A + B ® H)(l - A) H + H <g> C.

And, from Equation (3.4):

limEIC,] =NC + k(AL-f) and (3.10)
I—»CXj

lim cov[C;, C(+J = /:2 lim cov[Ft,Ft+s], s > 0. (3-11)

Proof: In Subsection 3.2 we have shown, under Assumptions Al to A4, that
when the adjustment made to the contributions is a proportional control,
{Ft} has a bilinear Markovian Representation (2.3). Using this representa-
tion, we apply Theorems 2.9 and 2.10 to obtain the above formulas for the
first two moments of {Ft}. Then, with Expression (3.4), we find the moments
of{C,}. •
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Remark: Obviously, since {F,} has a bilinear Markovian representation, it is
always possible to calculate the moments of {F,} and {Q} recursively. For
example, for the first two moments, we use formulas (2.12), (2.14) and (3.4).

Remark: The first-order mornents_of_F, and ^7, exist only if the process {e,} is
such that the expectations: A, B, C and H exist. And, the second-order
moments of Ft and Ct exist only if the process {et} is such that the
expectations: A~, B~, ~C, H, A®A, B® B, C®C, H®H, B®C, A~®H,
H ®A, B®A, C®A,B®H and H ®C exist.

3.4. Numerical Results

In this section, we use the theory of the previous subsection to study the
variability of the fund level and of the contributions. This is done in the
context of arithmetic moving average rates of return of order 0, 1 or 2.

Our proportional control is the "spread control" which is commonly
used in the UK and which has been investigated by Cairns and Parker
(1997), Dufresne (1986, 1988, 1990, 1994), Gerrard and Haberman (1996),
Haberman (1993a, 1994) and Haberman and Wong (1997). With this
method, the deficit is spread over a certain number of years M (in practice:
around 20-25 years), i.e.

ADJ, = kD, = D, = l±i
 TJD,,

UM\ 1 — V1 + l)

where M 6 N and i is the valuation rate. Hence, the formulas for Ft and Ct

are obtained by setting

aM\

in Expressions (3.5) and (3.4), respectively.
According to Equations (3.9) and (3.11), var[F,] and var[C,] are both

functions of the fraction k and implicitly, of the spread period M. In studies
such as Cairns and Parker (1997), Dufresne (1986, 1988, 1994), Haberman
(1994) and Haberman and Wong (1997), it was shown that for i.i.d. rates of
return, autoregressive rates of return and moving average rates of return,
there is usually a value M* at which var[C,] reaches its minimum. And,
usually for all M between 1 and that M*, var[,F,] increases and var[C,]
decreases as the period M increases and, when M > M*, varfi7,] and var[Cr]
both increases as M increases. This is why the period [1, M*\ is the optimal
spread period for an actuary.
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In the following, we study the variability of the fund level and of the
contributions with respect to the spread period M and the moving average
parameters d\ and cfe-

In Examples 1 to 4, we consider arithmetic rates of return when
v

/var]^J = 0.05 or 0.1. As you will see, for all those examples, results
indicate that we have optimal spread periods [1,M*].

Since y/var[Ft] and y/varfC/f are proportional to AL and that we only

want to minimize y/var[Ft] and y/var[Ct], we therefore proceed as in
Dufresne (1986, 1988, 1994), i.e. we calculate

AL
and

NC

In Figures 3-1 to 3-4, those values are given in percent of AL and NC,
respectively, where AL = 451% and NC — 14.5% of the payroll.

For the MA(q) processes considered in our calculations, we set the values
of the parameters d\, di, ..., dq and var[J?,]. We suppose that {et} ~ Beta
(2,2) over (-2,2), this is, a density equal to

where the value of b is determined by the following relation:

var [et] = — = l i
5

As it is often the case in actuarial papers dealing with random rates of
return, we suppose in our calculations, except for Example 2, that the mean
rate of return is equal to the valuation rate, i.e. r = i.
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Example 1
We study the process {Ft} given by (3.5) when rates of return are i.i.d. and
have a mean rate, r, equal to the valuation rate of return /. Our calculations
support Dufresne's (1994) conclusions. We have optimal spread periods
[1,M*]; this is, for all M between 1 and M*, var[F,] increases and var[C,]
decreases as the period M increases.

d

d

o
d

100 150 200

M
FIGURE 3-1: Case: {R, - r} ~ MA(0), r = i = 0.0!
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Example 2
Here, we also consider i.i.d. rates of return. But, unlike Example 1, the mean
rate of return, r, is greater than the valuation rate, /. Increasing r to 0.02
increases var[.F] and var[C] and reduces significantly M*.
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FIGURE 3-2: Case: {R, - r} ~ MA(0), r = 0.02, / = 0.01
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Example 3
We set R, = r + et + et_\ in order to have Corr^, ,^ , . ] ] = ± > 0. As
expected, according to Figure 3-1, this positive correlation between
successive rates of return increases the variances of the fund levels and of
the contributions.

CO

d

d

d

o

o
d

when y/var [Rt] = 0.05

when y/var [Rt] — 0.05

when vW[.R,] = 0.1

M
FIGURE 3-3: Case: {R, - r] ~ MA(1), r = i = 0.01, rf, = 1
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Example 4
We set Rt = r + et + et-\+0.3et-2 and naturally, increasing t/2 to
increases the variances of both the fund level and of the contributions.

0.3
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.

M* 100 150 200

M
F I G U R E 3-4: C a s e : {R, - r] ~ M A ( 2 ) , r = i = 0 . 0 1 , d, = l,d2 = 0.3

^.4.7. Analysis of results

Let v4(e,) be the matrix of Representation (2.3). We observe that for \d\ < 11,
\d2 <11, M < 200, 0 < /, r, 8 < 0.5 and {et} ~ N(0, var[e;] < oo), we
usually have that p(v4) < 1 and p[A ® A) < 1, i.e. the processes {i7,} and
{CJ are second-order stationary. This implies that for this range of
parameters, we usually have explicit expressions for the first two moments of
{F,} and {C,} which are given by (3.8), (3.9), (3.10) and (3.11)._

For all scenarios of Figures 3-1 to 3-4, it results that p(A) < 1 and
p^A®A) < 1. This means that for those scenarios {F,} and {Ct} are
second-order stationary processes and that we can use the explicit formulas
(3.8) to (3.11) to calculate, E[Ft], E[Ct], var[F,] and var[C,].

From Figures 3-1 to 3-4, we make the following conclusions:
(a) As mentioned earlier, we have an optimal spread period for all

examples, i.e. we have a range of M where var[F;] increases and var[C,]
decreases as the spread period M increases and the other parameters
stay constant. This means that for each example, there is an increase of
the spread period which implies an increase of the variability of the fund
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level and a decrease of the variability of the contributions. What is
interesting is that this period is always longer than 15 years. From
Figures 3-1 to 3-4, we observe that increasing y/\ar[R\] from 0.05 to
0.1 increases significantly var[7^], var[Q] and also the optimal period
[l,M*].

(b) As we could naturally expect, the variability of the fund level and of the
contributions seems to increase with the moving average parameters d\
and di-

(c) We made analogue calculations for geometric rates of return and we
observed similar results than those obtained for arithmetic rates of
return.

4. CONCLUSION

Haberman and Wong (1997) obtained, under the proportional control,
explicit expressions for the first two moments of the fund level and of the
contributions when geometric rates of return formed a moving average
process of order 1 or 2. Their method was based on the fact that the white
noise included in their moving average processes is supposed to be normal.
Here, we use the bilinear Markovian representation to find similar results.
We found, under the proportional control, explicit and recursive expressions
for the moments of the fund level and of the contributions when arithmetic
or geometric rates of return were modeled by a moving average process of
order q > 0 with a white noise not necessarily normal. It was Dufresne
(1990) who suggested the Markovian approach. Here, the Markovian
approach happened to be remarkable since it allowed us to easily resolve
problems which were considered difficult. Unfortunately, this approach has
some limitations. It cannot really be used for autoregressive rates of return
since it would involve infinite order matrices and it does not allow to solve
explicitly optimization problems.
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APPENDIX

Proof of Theorem 2.4:
The aim is to find a procedure which allows to obtain a bilinear Markovian
Representation (2.3) for the bilinear process (Equation 2.1):

p i Q P

X, = ̂ 2 akXt-k + ^2 het-h + ̂ 2 ^2 PjJcXt-ket-j + a.
k=\ h=0 y=0 k=\

Q P
Let (*) -- Y1Y1 Pj,k^t-ket-j- It is easier to obtain a Representation (2.3)

j=Ok=\ ' Q p

when we first split the double sum (*) = ]C S i^j^t-k^t-j into three parts.
j=0k=l
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The first part is the term et J2 Po,k^t-k- The second part consists in the terms
/t=i

in (*) where the subscript of X is less than or equal to the subscripts of e
(cases where 1 <j < k). The remaining terms form the third part of (*).
Define P', Q, (3'kJ and (3'^ as follows (for k > 1):

Q' = mm[P,max{k\f3j+k:k ¥" 0 f° r a t least one value of j , j = 1, 2, ..., P'}]

'kj+k if 7 > 0

0 otherwise

Wk,k i f / > l
0 otherwise.

Then Equation (2.1) becomes

p

k=\

b°e* e<
k=\

+ E E
y=0 k=\

k + E E &jXt-keH-k + <*• (A.I)
./=1 k=\

Let n = max(/7, P + q, P + g, P + Q) and m — n — max(^, g, Q'), and define
a vector Zf^ as:

Z g - Xt.m+i, l<i<m,

if « - m = 0 and

if ii - iff > 1 : Z^ + , , = £ akXt.k+i

A : = l

it—*A(

+E
k=i

We obtain

1 < i < n - m.

J=m-P+l

(A.2)
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a n d

<0> =Z<0> = A^(et)zZ + #%,) + J2 [Cj°\et)zl% + D^{e,)]eH, (A.3)
7=1

where A{0\e,), B^(e,), cf\et) and Df\et) are matrices or vectors in et.
Let F^(t) = (eh , et+k-P)', k = 1, ..., F, and define

Then, we claim that

Zf~]) = M « f e ) « + JVW(C,), * = 1, -.., I", (A.5)

where Mik^(et) and N^(e,) are matrices of finite degree polynomials in e;.
Using the definition of Zfk), we can show by induction that Equation (A.5)
is valid. Indeed, according to Expression (A.3), the equation is verified for
k = 1. And if Equation (A.5) is true for k then it will be valid for k + 1 since
/$>(/) =e , , and

Expression (A.5) is therefore verified for /: = 1, ..., F.
Finally, setting

[f if
Z l = J z r / } = z (

( o ) if

and taking Xt given by Equation (A.2), we obtain a bilinear Markovian
Representation (2.3). •

Remark: In Pham (1986), the expression for Zt , which is analogous to
(A.4), is slightly incorrect. The right expression is given by (A.4).

Proof of Theorem 2.5:
Consider {X,} ~ BLg(p,q,P), i.e.:

( ) + c ] + r{et) + a.
k=l \;=0 / \fe=l /
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Setting m = m&x{p,P}, we define the vector Zt with the following
components:

P
J2 bkXt_k+] +c
k=\(0)

The components of the vector Z) allow us to write

X=

and

r(e,) + a (A.6)

(A.7)

where A^(et), B^0)(et), C^(et) and Dm(et) are matrices of measurable
functions in et of dimensions (m + 1) x (m + 1), (m+ 1) x 1, (m+ 1) x (tn+ 1)
and (m + 1) x 1, respectively. We define for q > 2:

k=l,...,q-h (A.

Then, we claim that:

Z,(*~° = M^k\et)zf\ + ivW(e,), A: = 1, ..., q - 1 (A.9)

where M^k\et) and N^(et) are matrices of measurable functions in e,. Using
the definition of Z) , we can show by induction that Equation (A.9) is valid.
Indeed, according to Expression (A.7), the equation is verified for k=\.
And if Equation (A.9) is true for k then it will be valid for k + 1. Expression
(A.9) is therefore verified for k — \, ..., q — 1.
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Finally, taking Z, defined by:

f a = 0,

and Xt given by Equation (A.6), we obtain a bilinear Markovian
Representation (2.3). •
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