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Abstract

Existence results of positive solutions for a two point boundary value problem are established. No
asymptotic condition on the nonlinear term either at zero or at infinity is required. A classical result
of Erbe and Wang is improved. The approach is based on variational methods.
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1. Introduction

The aim of this paper is to establish existence results of nontrivial solutions for the
ordinary Dirichlet boundary value problem{

−u′′ = λ f (x, u) for x ∈ (0, 1),

u(0)= u(1)= 0,
(Dλ)

where f : [0, 1] × R→ R is an L1-Carathéodory function and λ is a positive real
parameter. The existence of solutions for problem (Dλ) and, in particular, for
problem (D1) or, more generally, for nonlinear differential problems has been widely
investigated (see, for instance, [1, 2, 6, 8–12, 14] and the references therein).
In particular, when f (x, u)= α(x)g(u), in the seminal work [9] the following
asymptotic conditions:

lim
u→0

g(u)

u
=∞ and lim

u→∞

g(u)

u
= 0

(or, alternatively, limu→0(g(u)/u)= 0 and limu→∞(g(u)/u)=∞) are required.
Also, in [6, 8, 10–12, 14] asymptotic conditions on the nonlinear term are assumed.

In our main result (Theorem 3.1), as well as in its consequences (Corollary 3.2 and
Theorem 3.3), no asymptotic condition on the nonlinear term is assumed. Moreover,
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in a further consequence of Theorem 3.1 (that is, Theorem 3.8) only the condition
limu→0+(g(u)/u)=∞ is enough to ensure the existence of parameters λ for which
the problem (Dλ) admits one positive solution, without assuming further conditions
on g, contrary to results in [6, 8–10, 14]. In particular, simple examples show that our
theorems and results in [8, 10, 14] are mutually independent (see Remark 3.11 and
Example 3.10) and that Theorem 3.3 improves [9, Theorem 1(ii)] (see Remark 3.5).

In our results, instead of asymptotic conditions on the nonlinear term, a suitable
algebraic inequality which involves the potential of the nonlinear term is required (see
condition (3.2) in Theorem 3.3). As an example, we state here a special case.

THEOREM 1.1. Let g : R→ R be a nonnegative continuous function such that∫ 4

0
g(t) dt < 4

∫ 1

0
g(t) dt.

Then for each λ ∈ (16/
∫ 1

0 g(t) dt, 64/
∫ 4

0 g(t) dt) the problem{
−u′′ = λxg(u) for x ∈ (0, 1),
u(0)= u(1)= 0

admits one positive classical solution u such that

|u(x)|< 4 for all x ∈ [0, 1].

Our main tool is a critical point theorem (see Theorem 2.1), which is a more precise
version of the Ricceri variational principle [13, Theorem 2.5] and of [5, Theorem 3.1].

This note is arranged as follows. In Section 2, we recall some basic definitions,
while Section 3 is devoted to existence results for problem (Dλ).

2. Preliminaries and basic notation

Our main tool is the Ricceri variational principle [13, Theorem 2.5] as given below
(see Remark 2.2). First, given 8, 9 : X→ R, put

β(r1, r2)= inf
v∈8−1((r1,r2))

supu∈8−1((r1,r2))
9(u)−9(v)

r2 −8(v)
(2.1)

and

ρ2(r1, r2)= sup
v∈8−1((r1,r2))

9(v)− supu∈8−1((−∞,r1])
9(u)

8(v)− r1
(2.2)

for all r1, r2 ∈ R, with r1 < r2.

THEOREM 2.1. Let X be a reflexive real Banach space; 8 : X→ R be a sequentially
weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable
function;9 : X→ R be a sequentially weakly upper semicontinuous and continuously
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Gâteaux differentiable function. Put Iλ =8− λ9 and assume that there are r1,
r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ2(r1, r2), (2.3)

where β and ρ2 are given by (2.1) and (2.2).
Then for each λ ∈ (1/ρ2(r1, r2), 1/β(r1, r2)) there is u0,λ ∈8

−1((r1, r2)) such
that Iλ(u0,λ)≤ Iλ(u) for all u ∈8−1((r1, r2)) and I ′λ(u0,λ)= 0.

PROOF. Fix λ ∈ (1/ρ2(r1, r2), 1/β(r1, r2)). Then there exist v1, v2 ∈8
−1((r1, r2))

such that

supu∈8−1((r1,r2))
9(u)−9(v1)

r2 −8(v1)
<

1
λ
<
9(v2)− supu∈8−1((−∞,r1])

9(u)

8(v2)− r1
.

Hence, by putting

8(v0)− λ9(v0)=min{8(v1)− λ9(v1), 8(v2)− λ9(v2)},

one has
8(v0)− λ9(v0) < r1 − sup

u∈8−1((−∞,r1])

λ9(u) (2.4)

and
8(v0)− λ9(v0) < r2 − sup

u∈8−1((r1,r2))

λ9(u). (2.5)

Now, put

M = r2 −8(v0)+ λ9(v0),

(λ9)M (u)=

{
λ9(u) if λ9(u) < M,

M if λ9(u)≥ M,

8r1(u)=

{
8(u) if 8(u) > r1,

r1 if 8(u)≤ r1,

and
J =8r1 − (λ9)M .

Clearly, J is sequentially weakly lower semicontinuous. Moreover, since 8 is
coercive, J is also coercive. From the classical theorem of the direct methods (see,
for instance, [15, Theorem 1.2]), it follows that J admits a global minimum in X , that
is, there is u0 ∈ X such that

J (u0)≤ J (u) for all u ∈ X. (2.6)

Now, we claim that there is u0,λ ∈8
−1((r1, r2)) such that

J (u0,λ)≤ J (u) for all u ∈ X. (2.7)
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First, we observe that from (2.6) one has J (u0)≤ J (v0). Therefore, if J (u0)=

J (v0), by choosing u0,λ = v0, (2.7) holds. So we can assume that

J (u0) < J (v0) (2.8)

and our aim is then to show that u0 ∈8
−1((r1, r2)). To this end, we prove first that

8(u0) > r1. Suppose on the contrary that 8(u0)≤ r1. From (2.4), we have

λ9(u0) < r1 −8(v0)+ λ9(v0) < r2 −8(v0)+ λ9(v0)= M,

that is,
λ9(u0) < M. (2.9)

Moreover, again from (2.4), taking (2.9) into account, one has

J (v0)=8(v0)− λ9(v0) < r1 − λ9(u0)=8
r1(u0)− (λ9)M (u0)= J (u0),

which contradicts (2.6). Hence, 8(u0) > r1 is proved.
Now, we show that 8(u0) < r2. From (2.8), one has

8r1(u0)− (λ9)M (u0) < 8(v0)− λ9(v0)

and

8(u0) < (λ9)M (u0)+8(v0)− λ9(v0)≤ M +8(v0)− λ9(v0)= r2,

that is, 8(u0) < r2. Hence, (2.7) holds.
Finally, we show that u0,λ satisfies our conclusion. To this end, we observe that

for all u ∈8−1((r1, r2)), from (2.5) one has λ9(u) < r2 −8(v0)+ λ9(v0)= M .
Therefore (2.7) becomes

8(u0,λ)− λ9(u0,λ)≤8(u)− λ9(u)

for all u ∈8−1((r1, r2)) and the conclusion is achieved. 2

REMARK 2.2. Theorem 2.1, as well as [5, Theorem 3.1], improves [13, Theorem 2.5],
since the weak closure of the sublevels of 8 is not used (see [5, Remark 3.3]). We
also observe that, by choosing r1 < infX8, Theorem 2.1 gives back again the Ricceri
variational principle [13, Theorem 2.5] and [5, Remark 3.3], while Theorems 3.1
and 3.3 below are examples where Theorem 2.1 is applied, by choosing r1 ≥ infX8.

REMARK 2.3. If, in addition, we assume that the Gâteaux derivative of 8 admits a
continuous inverse on X∗ and the Gâteaux derivative of 9 is compact, Theorem 2.1
can be deduced from [4, Theorem 5.1], taking [4, Proposition 2.1] into account. On the
other hand, [4, Theorem 5.1], under suitable hypotheses, ensures the same conclusion
of Theorem 2.1 without requiring any weak continuity assumption on 8 and 9.
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Let X be the Sobolev space W 1,2
0 ([0, 1]) endowed with the norm

‖u‖ :=

(∫ 1

0
|u′(x)|2 dx

) 1
2

.

Throughout, f : [0, 1] × R→ R is an L1-Carathéodory function and λ is a positive
real parameter. We recall that f : [0, 1] × R→ R is an L1-Carathéodory function if:

(a) x 7→ f (x, ξ) is measurable for every ξ ∈ R;
(b) ξ 7→ f (x, ξ) is continuous for almost every x ∈ [0, 1];
(c) for every s > 0 there exists a function ls ∈ L1([0, 1]) such that

sup
|ξ |≤s
| f (x, ξ)| ≤ ls(x)

for almost every x ∈ [0, 1].

Put

F(x, t)=
∫ t

0
f (x, ξ) dξ for all (x, t) ∈ [0, 1] × R.

We recall that u : [0, 1] → R is a weak solution of problem (Dλ) if u ∈W 1,2
0 ([0, 1])

satisfies the following condition:∫ 1

0
u′(x)v′(x) dx = λ

∫ 1

0
f (x, u(x))v(x) dx for all v ∈W 1,2

0 ([0, 1]).

Clearly, when f is continuous in [0, 1] × R the weak solutions for (Dλ) are classical
solutions.

Finally, we recall the following inequality, which we will use later:

|u(x)|< 1
2‖u‖ for all x ∈ [0, 1] and for all u ∈ X. (2.10)

3. Main results

In this section we present our main results.
Given three nonnegative constants c1, c2, d , with c1 <

√
2d < c2, put

a(c2, d) :=∫ 1
0 max|ξ |≤c2 F(x, ξ) dx −

[∫ 3
4

1
4

F(x, d) dx + 1
4d

∫ d
0 F

( x
4d , x

)
dx + 1

4d

∫ d
0 F

(
1− x

4d , x
)

dx
]

2c2
2 − 4d2

and

b(c1, d) :=[∫ 3
4

1
4

F(x, d) dx + 1
4d

∫ d
0 F

( x
4d , x

)
dx + 1

4d

∫ d
0 F

(
1− x

4d , x
)

dx
]
−
∫ 1

0 max|ξ |≤c1 F(x, ξ) dx

4d2 − 2c2
1

.
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THEOREM 3.1. Assume that there exist three constants c1, c2, d, with 0≤ c1 <√
2d < c2, such that

a(c2, d) < b(c1, d).

Then, for each λ ∈ (1/b(c1, d), 1/a(c2, d)), the problem (Dλ) admits at least one
nontrivial weak solution ū such that 2c1 < ‖ū‖< 2c2.

PROOF. Put

8(u) :=
1
2
‖u‖2 and 9(u) :=

∫ 1

0
F(x, u(x)) dx

for all u ∈ X .
It is well known that 8 and 9 satisfy all regularity assumptions requested in

Theorem 2.1 and that the critical points in X of the functional 8− λ9 are precisely
the weak solutions of problem (Dλ). So our aim is to verify condition (2.3) of
Theorem 2.1.

Now, define

u0(x)=


4dx if x ∈ [0, 1

4 ),

d if x ∈ [ 14 ,
3
4 ],

4d(1− x) if x ∈ ( 3
4 , 1],

and put r1 = 2c2
1 and r2 = 2c2

2.

Clearly, u0 ∈W 1,2
0 ([0, 1]),

9(u0)=

∫ 3
4

1
4

F(x, d) dx +
1

4d

∫ d

0
F

(
x

4d
, x

)
dx +

1
4d

∫ d

0
F

(
1−

x

4d
, x

)
dx,

and
8(u0)= 4d2.

Since c1 <
√

2d < c2, one has r1 <8(u0) < r2.
Moreover, for all u ∈ X such that u ∈8−1((−∞, r2)) one has ‖u‖ ≤ 2c2 and,

taking (2.10) into account, one has

|u(x)|< 1
2‖u‖ ≤ c2 for all x ∈ [0, 1].

So

9(u)=
∫ 1

0
F(x, u(x)) dx ≤

∫ 1

0
max
|ξ |≤c2

F(x, ξ) dx

for all u ∈ X such that u ∈8−1((−∞, r2)). Hence

sup
u∈8−1((−∞,r2))

9(u)≤
∫ 1

0
max
|ξ |≤c2

F(x, ξ) dx .
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Now, arguing as before we obtain

sup
u∈8−1((−∞,r1])

9(u)≤
∫ 1

0
max
|ξ |≤c1

F(x, ξ) dx .

Therefore, one has

β(r1, r2)≤
supu∈8−1((−∞,r2))

9(u)−9(u0)

r2 −8(u0)

≤

∫ 1
0 max|ξ |≤c2 F(x, ξ) dx −

[∫ 3
4

1
4

F(x, d) dx + 1
4d

∫ d
0 F

( x
4d , x

)
dx + 1

4d

∫ d
0 F

(
1− x

4d , x
)

dx
]

2c2
2 − 4d2

= a(c2, d).

On the other hand,

ρ2(r1, r2)≥
9(u0)− supu∈8−1((−∞,r1])

9(u)

8(u0)− r1

≥

[∫ 3
4

1
4

F(x, d) dx + 1
4d

∫ d
0 F

( x
4d , x

)
dx + 1

4d

∫ d
0 F

(
1− x

4d , x
)

dx
]
−
∫ 1

0 max|ξ |≤c1 F(x, ξ) dx

4d2 − 2c2
1

= b(c1, d).

So, from our assumption it follows that

β(r1, r2) < ρ2(r1, r2).

Hence, from Theorem 2.1 for each λ ∈ (1/b(c1, d), 1/a(c2, d)),8− λ9 admits at
least one critical point ū such that

2c1 < ‖ū‖< 2c2,

and our conclusion is achieved. 2

Now, we point out a previous result when the nonlinear term is with separable
variables. To be precise, let α ∈ L1([0, 1]) be such that α(x)≥ 0 almost everywhere,
x ∈ [0, 1], α 6≡ 0, and let g : R→ R be a continuous function. Consider the following
two point boundary value problem:{

−u′′ = λα(x)g(u) for x ∈ (0, 1),

u(0)= u(1)= 0.
(ADλ)

Put

G(t)=
∫ t

0
g(ξ) dξ

for all t ∈ R.
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We have the following result.

COROLLARY 3.2. Assume that g is nonnegative and there exist three nonnegative
constants c1, c2, d, with c1 <

√
2d < c2, such that

‖α‖1G(c2)−
(∫ 3

4
1
4
α(x) dx

)
G(d)

2c2
2 − 4d2

<

(∫ 3
4

1
4
α(x) dx

)
G(d)− ‖α‖1G(c1)

4d2 − 2c2
1

. (3.1)

Then, for each

λ ∈

(
4d2
− 2c2

1(∫ 3
4

1
4
α(x) dx

)
G(d)− ‖α‖1G(c1)

,
2c2

2 − 4d2

‖α‖1G(c2)−
(∫ 3

4
1
4
α(x) dx

)
G(d)

)
,

the problem (ADλ) admits at least one positive weak solution ū such that 2c1 < ‖ū‖<
2c2.

PROOF. Put f (x, ξ)= α(x)g(ξ) for all (x, ξ) ∈ [0, 1] × R. Since g is a nonnegative
function, one has∫ 1

0
max
|ξ |≤c2

F(x, ξ) dx = ‖α‖1G(c2),

∫ 1

0
max
|ξ |≤c1

F(x, ξ) dx = ‖α‖1G(c1),

and
1

4d

∫ d

0
F

(
x

4d
, x

)
dx +

1
4d

∫ d

0
F

(
1−

x

4d
, x

)
dx ≥ 0.

Therefore, one has

a(c2, d)≤
‖α‖1G(c2)−

(∫ 3
4

1
4
α(x) dx

)
G(d)

2c2
2 − 4d2

and b(c1, d)≥

(∫ 3
4

1
4
α(x) dx

)
G(d)− ‖α‖1G(c1)

4d2 − 2c2
1

.

Hence, taking (3.1) into account, Theorem 3.1 and the strong maximum principle
ensure the conclusion. 2

Now, we point out two relevant consequences of Corollary 3.2, namely
Theorems 3.3 and 3.8.

THEOREM 3.3. Assume that g is nonnegative and there exist two positive constants c,
d, with

√
2d < c, such that

G(c)

c2 <

(∫ 3
4

1
4
α(x) dx

2‖α‖1

)
G(d)

d2 . (3.2)
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Then, for each

λ ∈

(
4∫ 3

4
1
4
α(x) dx

d2

G(d)
,

2
‖α‖1

c2

G(c)

)
,

the problem (ADλ) admits at least one positive weak solution ū such that |ū(x)|< c
for all x ∈ [0, 1].

PROOF. Our aim is to apply Corollary 3.2. To this end, we pick c1 = 0 and c2 = c.
From (3.2), one has

‖α‖1G(c2)−
(∫ 3

4
1
4
α(x) dx

)
G(d)

2c2
2 − 4d2

<
‖α‖1G(c2)− 2‖α‖1d2G(c2)/c2

2

2c2
2 − 4d2

=
‖α‖1G(c)

2c2 .

On the other hand, one has(∫ 3
4

1
4
α(x) dx

)
G(d)− ‖α‖1G(c1)

4d2 − 2c2
1

=

(∫ 3
4

1
4
α(x) dx

)
G(d)

4d2 .

Hence, from Corollary 3.2, taking (2.10) into account, the conclusion follows. 2

REMARK 3.4. Theorem 1.1 in the Introduction is a consequence of Theorem 3.3 by
choosing α(x)= x for all x ∈ [0, 1], d = 1, and c = 4.

REMARK 3.5. In [9, Theorem 1(ii)], the conditions

lim
t→0

g(t)

t
=+∞, lim

t→∞

g(t)

t
= 0 (E)

ensure the existence of at least one positive solution for (AD1). Clearly, conditions (E)
imply (3.2) and Theorem 3.3 establishes the existence of at least one positive solution
to (ADλ) for all λ > 0. On the other hand, simple examples of functions, which satisfy
(3.2) and do not satisfy conditions (E), can be found (see, for instance, Example 3.10
and Remark 3.11). Hence Theorem 3.3 improves [9, Theorem 1(ii)].

REMARK 3.6. We explicitly observe that, applying the classical Ricceri variational
principle (or the same Theorem 2.1 by choosing r1 < 0) and arguing as in the proof of
Theorem 3.1, the following result can be obtained:

Given a nonnegative continuous function g : R→ R and fixed a positive constant c,
one has that for each λ ∈ (0, (2/‖α‖1)(c2/G(c))), the problem (ADλ) admits at least
one nonnegative weak solution ū such that |ū(x)|< c for all x ∈ [0, 1].

Clearly, in this case the solution may be zero.

An immediate consequence of Theorem 3.3 and the preceding remark is the
following corollary.
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COROLLARY 3.7. Let g : R→ R be a nonnegative continuous function such that
g(0) 6= 0 and assume that there exist two positive constants c, d such that

G(c)

c2 <

(∫ 3
4

1
4
α(x) dx

2‖α‖1

)
G(d)

d2 . (3.3)

Then, for each

λ ∈

(
4∫ 3

4
1
4
α(x) dx

d2

G(d)
,

2
‖α‖1

c2

G(c)

)
,

the problem (ADλ) admits at least one positive classical solution ū such that |ū(x)|<
c for all x ∈ [0, 1].

PROOF. From (3.3), one has c 6=
√

2d . If c >
√

2d , Theorem 3.3 ensures the
conclusion, while if c <

√
2d the result in Remark 3.6 completes the proof. 2

A further consequence of Theorem 3.1 is the following result.

THEOREM 3.8. Assume that

lim
t→0+

g(t)

t
=+∞, (3.4)

fix δ > 0 such that g(t) > 0 for all t ∈ (0, δ), and put λ∗ = 2/‖α‖1 supc∈ (0,δ) c2/G(c).
Then, for each λ ∈ (0, λ∗), the problem (ADλ) admits at least one positive weak
solution ū such that |ū(x)|< δ for all x ∈ [0, 1].

PROOF. We observe that λ∗ > 0. In fact, from (3.4) there is δ > 0 such that g(t) > 0
for all t ∈ (0, δ). Therefore, c2/G(c) > 0 for all c ∈ (0, δ). Now, put

g∗(t)=


g(t) if 0< t < δ,

g(0) if t ≤ 0,

g(δ) if t ≥ δ

and denote by G∗ its antiderivative. Clearly, g∗ is continuous and nonnegative.
Fix λ ∈ (0, λ∗). Then there is c ∈ (0, δ) such that 1/λ > ‖α‖1G∗(c)/2c2.

Moreover, since again from (3.4) one has

lim
t→0+

G∗(t)

t2 =+∞,

there is d > 0 such that d < (1/
√

2)c and (
∫ 3

4
1
4
α(x) dx/4)(G∗(d)/d2) > 1/λ. Hence,

from Theorem 3.3 the problem{
−u′′ = λα(x)g∗(u) on (0, 1),

u(0)= u(1)= 0
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admits at least one positive solution ū such that |ū(x)|< c < δ for all x ∈ [0, 1].
Taking into account that g∗(ū(x))= g(ū(x)) for all x ∈ [0, 1], the conclusion is
achieved. 2

REMARK 3.9. In particular, Theorem 3.8 ensures that if g : R→ R is a nonnegative
continuous function such that limt→0+(g(t)/t)=+∞, then for each

λ ∈

(
0,

2
‖α‖1

sup
c∈(0,+∞)

c2

G(c)

)
the problem (ADλ) admits at least one positive weak solution.

EXAMPLE 3.10. Let g1 : R→ R be the function defined as follows:

g1(t)=

{
(1+ t)et if t ≤ 1,

h(t) if t > 1,

where h : (1,+∞) → R is a completely arbitrary function.
Owing to Theorem 3.8, for each λ ∈ (0, 4/e), the following problem:{

−u′′ = λxg1(u) on (0, 1),

u(0)= u(1)= 0,
(Pλ)

admits at least one positive classical solution ū such that ū(x) < 1 for all x ∈ [0, 1]. In
fact, it is enough to pick δ = 1 and to observe that

λ∗ =
2
‖α‖1

sup
c∈(0,δ)

c2∫ c
0 g1(t) dt

= 4 sup
c∈ (0,1)

c2

cec =
4
e
.

In particular, by choosing λ= 1, the following problem:{
−u′′ = x(1+ u)eu on (0, 1),

u(0)= u(1)= 0,
(P)

admits at least one positive classical solution ū such that ū(x) < 1 for all x ∈ [0, 1].

REMARK 3.11. The existence of at least one positive solution for problem (Dλ) or,
more generally, for nonlinear differential problems has been widely investigated (see,
for instance, [1, 3, 7] and the references therein). In particular, condition (3.4) has been
assumed, for instance, in [6, 8–12]. However, in these papers, besides (3.4), further
conditions must be added to obtain solutions (see [6, Theorem 3.2], [8, Lemma 3], [9,
Theorem 1], [10, Lemma 3.1], [11], and [12, Corollary 1]).

In [9], together with (3.4), the condition

lim
t→∞

g(t)

t
= 0
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is assumed. Clearly, [9, Theorem 1] cannot be applied, for instance, to problem (P) of
Example 3.10 since

lim
t→∞

g(t)

t
= lim

t→∞

(1+ t)et

t
=∞.

The same remark is also true for [14, Theorem 2.2], [8, Lemma 3], and [10,
Lemma 3.1], where lim supt→∞(g(t)/t) < λ1 = π

2 is assumed.

References
[1] P. R. Agarwal, D. O’Regan and P. J. Y. Wong, Positive Solutions of Differential, Difference and

Integral Equations (Kluwer, Dordrecht, 1999).
[2] D. Averna and G. Bonanno, ‘A three critical points theorem and its applications to the ordinary

Dirichlet problem’, Topol. Methods Nonlinear Anal. 22 (2003), 93–103.
[3] C. Bereanu and J. Mawhin, ‘Boundary value problems for some nonlinear systems with singular

8-laplacian’, J. Fixed Point Theory Appl. 4 (2008), 57–75.
[4] G. Bonanno, ‘A critical point theorem via the Ekeland variational principle’, Preprint.
[5] G. Bonanno and P. Candito, ‘Non-differentiable functionals and applications to elliptic problems

with discontinuous nonlinearities’, J. Differential Equations 244 (2008), 3031–3059.
[6] A. Capietto and W. Dambrosio, ‘Boundary value problems with sublinear conditions near zero’,

NoDEA: Nonlinear Differential Equations Appl. 6 (1999), 149–172.
[7] A. Capietto, J. Mawhin and F. Zanolin, ‘Boundary value problems for forced superlinear second

order ordinary differential equations’, in: Nonlinear Partial Differential Equations, Collège de
France Seminar (Longman, New York, 1994), pp. 55–94.
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