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Nonconstant Continuous Functions whose
Tangential Derivative Vanishes along a
Smooth Curve

Laurent Moonens

Abstract. 'We provide a simple example showing that the tangential derivative of a continuous function
¢ can vanish everywhere along a curve while the variation of ¢ along this curve is nonzero. We give
additional regularity conditions on the curve and/or the function that prevent this from happening.

1 Introduction

In [5], H. Whitney shows that for n > 1 there exist a function ¢ € C"~!(R") and a
continuous (parametrized) arc f € C([0, 1], R") so that ¢ is not constant on im f,
yet Vo[ f(¢)] = 0foreach 0 < t < 1. Of course such an arc f must not be rectifiable.

In this paper, we explore the possibility of constructing a continuous function
¢ € C(R") and a smooth arc f € C*([0,1],R™) so that ¢ is not constant on im f>
yet the directional derivative of ¢ at f(t) along the tangent line to f at ¢ (called the
tangential derivative of ¢ at f(¢) along f) vanishes for each 0 < ¢ < 1.

In Section 2} we provide for n > 3 an example of a pair (¢, f) satisfying these
conditions with k = oo and such that ¢ o f is monotone. This situation is not
possible in the plane for k > 2, as we show in Section [4]

In Section[Blwe give some sufficient conditions on the pair ( f, ¢) so that the van-
ishing of the tangential derivative of ¢ at f(t) along f for each 0 < ¢ < 1 implies that
¢ has zero variation on im f.

2 The Tangential Derivative

Let f: [0, 1] — R" be of class C!, injective, regular (i.e., f'(t) # 0 whenever 0 < t <
1) and let U be an open set containing im f.

Definition 2.1 For a given ¢: U — R, the upper tangential derivative of ¢ at f(t)
(0 <t < 1) along f is the extended real number
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whereas the lower tangential derivative of ¢ at f(t) (0 < t < 1) along f is defined as

.. B ()] —
Dol f()] := Tl %g olf(t) +hf ;t)] ¢[f(t)]_

In the case where qub(x) = Qf(b(x) is a real number, we call its value the tangential
derivative of ¢ at x along f.

Example 2.2 Let f: [0,1] — R’ be the map of class C, injective and regular,
defined by the formula f(¢t) = (cost,sint,t). Fort € [0, 1] we denote the tangent
lineto fatt by A(t) = {f(t) + \f'(¢) : A € R}.

Claim 2.3 Fors # tin [0, 1], we have A(s) NA(t) = @.
To see this, assume that f(s) + Af'(s) = f(¢) + pf'(¢). This yields

coss — Asins = cost — psint,
sins+ A coss = sint + i cost,

s—t=pu—A\
From the two first equations, we infer
(u—A)sin(s —t) = 2 — 2 cos(s — t).

Replacing v — A by s — ¢ in the previous equality, using trigonometric identities, and
defining u = (s — t)/2, we get sin>u = usin2u. It follows that either u = 0 or
tan u = u. As 0 is the only fixed point of tan in [—1/2, 1/2], the latter condition also
implies u = 0.

Let & = Ute[o,l] A(t), and let p: & — [0, 1] be the map that associates with
x € .7 the unique t € [0, 1] for which one has x € A().

Claim 2.4 The function p is continuous on the closed set ..

To prove that p is continuous on .#, assume that (xx)i>1 C % converges to x €
Z. Foreachk > 0,letfy, = p(xx) and choose Ay € R for which xx = f(#) + A f/ (8).
Next we show that any convergent subsequence of (f;)r>1 converges to ;. Assuming
that the subsequence (t,) C (fx) converges to 0 < t < 1 (and extracting again a
subsequence if necessary so that ()\,) converges to some A € R), observe that the
continuity of f and f” yields x, = f(¢) + Af'(¢) and hence xy € A(t). According to
Claim2.3]we obtain t = t,.

We easily show that .# is a closed set using similar arguments.

For x € .7 define ¢(x) = p(x) and extend ¢ to R® in a continuous way using
the Tietze extension theorem. As ¢ is constant on A(t) for each 0 < t < 1, one has
D¢p[f(t)] = 0foreach 0 <t < 1. Yet

Alf(] —o[f(0)]=1-0=1>0.
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Remark 2.5 Using a Whitney-like extension theorem instead of Tietze’s theorem
(see [I]]), we can extend ¢ to a continuous function in R? that is of class C! outside
the helix H = im f.

Let us summarize the preceding information.

Proposition 2.6 There exists a function ¢ € C(R’) together with a map f €
C*>([0,1],R%), injective and regular, for which the following conditions are fulfilled:

(i) @ is constant on f(t) + span(f’(t)) forall 0 <t < 1;
(ii) @lf(r)] =t foreach0 <t < 1 (soF := ¢ o f is continuous and increasing).

In particular, we have D[ f(t)] = 0 for each 0 < t < 1, yet ¢ is not constant on im f.

Remark 2.7 The oscillation osc(¢, 1) of ¢: U — R at scale r > 0 is the extended
real number

osc(p, 1) = sup{|p(x) — ¢(y)| : x,y €U, |x — y| < r}.
The oscillation of the function ¢ constructed in Example[2.2] satisfies

lim /2 osc(¢,r) > 0.
r—0

This follows from the next proposition.

In the sequel, the notation [0, 1] — ¢ stands for the set {h € R: ¢t + h € [0,1]}.

Proposition 2.8 Assume that U is open and fix p € C(U). If

(i)  f:10,1] — U is of class C"', injective and regular,

(i) forevery0 <t < 1, Dso[f(t)] =0, and

(i) QLA =tfor0 <t <1,

then lim,_,o 7~ /2 osc(¢, r) > 0.

Proof Let L = Lip(f’) > 0 (where Lip(f’) denotes the Lipschitz constant of f”).

For 0 < t < 1 we compute

t+h
215G+~ 0 = b O = B [0~ = Fold] <z
for each h € [0, 1] — t. Moreover, for t € [0, 1] choose d(¢) > 0 so that

LF() + hf' ()] — SLFW)]] < LA

whenever h € [0, 1] —# satisfies f(#)+hf’(¢t) € U and |h| < 4(¢). Soforh € [0,1] —¢
satisfying |h| < §(¢), we have

[BLF(+ )] = SLFO) +hF D] _ B = |90 + hf 0] — SLFON 1
VIFG+ —fo —nf' @]~ /Ift+h) - fO—hf'(0)] 2L

The result follows as h can be chosen as small as we want. [ |
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3 Some Sufficient Conditions for a Mean Value Formula

We can avoid the situation that appears in Example 2.2]by imposing a Lipschitz con-
dition on ¢.

Theorem 3.1 Assume that U is open, and let ¢ € C(U). If

(i) f:[0,1]1 = U is of class C', injective and regular,

(ii) forevery0 <t <1, Qf(b[f(t)] >0, and

(iii) ¢ is Lipschitz,

then [ f(1)] — ¢[f(0)] = 0.

To prove Theorem B.I} we will make use of Cousin’s lemma, which essentially
expresses the compactness property of closed intervals.

Lemma 3.2 (Cousin) Given real numbers a < b and a positive function §: [a, b] —

(0, 00), there exist real numbersa = o < o' < --- < " = b and points t/ €
[a/=1 al], 1 < j < msuch that [a/7Y, /] C [t/ — §(t)),t) + 5(¢7)] holds for each
I1<j<m

This lemma is a crucial tool in the study of Riemann-type integrals; the interested
reader will find a (simple) proof in [3]], for example.

Proof Write L = Lip(f) and introduce M = maxo<,<1 |f'(¢)| > 0. Fixe > 0. For
eacht € [0, 1], choose 0;(¢) > 0 such that one has

! € !
() OLAE) + hf'(0)] = LF0) > — 5|1 O],
! € !/
(32) SLF(E) = hf'(0)] = SLFW] < S| F (1)

whenever h > 0 is such that f(¢) £ hf'(¢) € U and satisfies |h| < §;(¢). Also choose
a real number d,(t) > 0 for which one has

5
2L +1

|f(t+m) = f(t) =nf'(1)] < I,

whenever n € [0,1] — ¢ satisfying 0 < |n| < 0,(¢) is given. For 0 < ¢ < 1
define 6(t) = min[d;(2), J2(¢)]. According to Cousin’s lemma (Lemma fin
0=a’<al <a?<- - <a™=1together with points t/ € [a/7!, a/],1 < j

m for which [/~ a/] C [t/ — &(t7),t/ + 5(¢/)] holds for each 1 < j < m. As

Lipschitz, we compute for 1 < j < m

N A

i

w

(3:3) BN = L)+ (@) ~ ) /()] >~ (0d 1)) > —selol 1)),

and similarly

G4 S — (1 — )] = G0 > et — o).

https://doi.org/10.4153/CMB-2011-027-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-027-1

710 L. Moonens

Moreover, (3.1) and yield
(35) OLF(E) + () — ) F ()] — BLfW)] > () 1) = (ol — 1),

and similarly

(3.6)  PLf) —olf(t) — (' =/ f'(H)] = —56 =t — o).
Fitting (33), (34), (3.5), and (3.8)) together, we get
olf(aN] — dlf(a’ ] = —e(a/ —al™h);

we complete the proof by adding those inequalities obtained for j = 1,...,m and
letting e — 0. ]

Whenever f” is Lipschitz, one can weaken the last condition in Theorem [3.1]

Theorem 3.3 Assume that U is open and fix ¢ € C(U). If
(i) f:10,1] — U is of class C"', injective and regular,

(ii) foreveryx € im f, Qf(b(x) >0, and

(i) lim,_g [Fl/z osc(¢, )] =0,

then o[ f(1)] — ¢[f(0)] =0

Proof Let L = Lip(f’) and assume L > 0. As in the proof of Proposition 2.8} one
observes

|h| 72| f(t+h) — f(t) = hf' ()| < L

holds for each h € [0,1] — ¢. Let M = maxogi<1 |f'(#)] > 0, fix0 < & < 1, and
choose r > 0 such that

lp(x) — d(y)] < flx y|?

holds whenever x, y € U satisfy |[x— y| < r. Foreach0 < ¢ < 1,1et 0,(¢) > 0be such
that (3.I) and (3.2) hold whenever h > 0 is such that f(t) £ hf’(t) € U and satisfies
|| < 6,(1). For 0 < t < 1 define 6(t) = min[r'/2M =2 6,(¢), 5,(¢)], find real
numbers o/, 0 < j < m and points ¢/ as in the proof of TheoremB]l Decomposing

ol f(ah)] — ¢[f(a/~1)] as in the same proof, we get the estimates (3.3) and (3.4).
Observe that

If(d) = f(t) — (& =t f' ()] < Lo —t/)* <1,
so that we have

B[ f(a)] = pLEEN) + (o — t) F/(t1)] > —ﬁ[w — )2

1 ) )
= __¢ ]—t]
=3 (a )
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Similarly one shows
B — (&~ D f )] = Gl > — () — o).

One finishes the argument as in the proof of Theorem[3.1] ]
From the preceding statements we arrive at the following corollary.

Corollary 3.4 Assume that U is open and that f € C'([0,1],U) is injective and
regular. Assume moreover that D[ f(t)] = 0 for each 0 < t < 1. If one of the
following conditions is fulfilled, then ¢ is constant on im f:

(1) ¢ is Lipschitz; o
(ii) f'is Lipschitz and lim,_,o r="/? osc(¢, r) = 0.

Proof Fix0 < s <t < 1 and define a map ¢: [0,1] — [s,¢] by ¢(&) = s+ (t — s)&.
Apply Theorem[B.IlorB3[to f o ¢ and ¢ (resp. —¢) to get d[ f(£)] = S f(s)] (resp.
ol f(t)] < @[ f(s)]). Ass < t are arbitrary we conclude that ¢ is constantonim f. W

In the plane, we cannot provide an analogue of Example 2.2

4 The Planar Case

Set the following for this entire section: we have a curve f € C*([0, 1], R?) satisfying
f'(t) # 0 for each 0 < t < 1 and a function ¢ € C(R?). We also assume that f has
nonzero normal curvature everywhere, i.e., that f"/(¢) is not collinear with f’(¢) for
every0 <t < 1.

4.1 About the Existence of Curvilinear Derivatives

Let us state and prove an easy geometrical fact.

Lemma 4.1 Fix0 <t < 1. Foreach h € [0,1] — t sufficiently small, the tangent
lines to f att and t + h intersect at x(t, h) and

max{|f(t) — x(t, h)[,|f(t + h) — x(t, h)|} < M]h|,

where M := maxo<,<1 | f'(t)].

Proof Without loss of generality, assume
f®)=00,0, f'©O=1,00#0 and f"(t)=(f"(), ' 1)
with f;//(#) # 0. Choose 17 > 0 such that

. 12
min t+h)| >0
che[o,l]—r|f2 ( ) ’
[h<n
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and assume h € [0, 1] — ¢ satisfies |h| < 7. The coordinates of the point x(t, h) =
(x1(t, h), x,(t, h)) are given by

f(t+h)
£t +h)

x1(t,h) = fi(t+h) — fl(t+h) and x(t,h) = 0.

Also choose § > 0 such that for each h € [0,1] — ¢ verifying |h| < §, one can find
points 6, and ¥}, in [0, 1] for which
Flt+h) =hf)'(t+0,h) and  folt +h) = LE2F (¢ + 0.

For h € [0,1] — ¢ satisfying |h| < min{, §}, compute

x(t,h) = it +h) — %hfl’(t + h) 2/,/(t + Unh) x(t,h) =0
2

/(t + th) ’
and

xi(t,h) — () 1 filt+h)— fi(t) }f{(”h) 1 (t +9ph)

k! (t) AG) h 2 fl() f)'t+0ph)

Thus we get

= f0l | xth =A@ 1
T I e S W S e

On the other hand, compute for h € [0, 1] — ¢ satisfying |h| < min{n,d}

. xi(t,h) = fit+h) . 1 SNt + k) 1,
" z ST R g =
and from f,(t) = 0 we get
- x(th) - Hl+h) . hE+h) - HE)
i DR i BLEEEE g o
Consequently we obtain
xR — f+h)| 1
i I f(0)] -
and the proof is complete. ]

Given a set E C R, denote by |E| the outer Lebesgue measure of E. The notation
dens(E) stands for the set of all Lebesgue-density points of E. We know that

|(E\ densE) U (densE \ E)| = 0.
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Proposition 4.2 Assume that for almost every 0 < t < 1, Dyg[f(t)] = 0. Then for
almost every 0 < t < 1, we have F'(t) = 0 where F := ¢ o f.

Proof To show this, call D the set of 0 < t < 1 at which Dy¢[f(t)] = 0 and observe
that D is a set of full measure in [0, 1]. Define for each integer k and each t € D

0 < 8x(r) = sup{8 > 0: [GL£ () + hf'(1)] — GLF(®)]] < 27¥|h| for each ] < 5},

and let 6;(¢) = 0 for t ¢ D. From the identity

{0<t<1: &) <a}=

N UA{0<e<1:]olf(t+m)] = dlf®)]] > 27 ||}

6€Q he
§>a |h[<6

valid for each av > 0, we see that §; is a measurable function of ¢ for each k € N. For
k € Nand! € N, define

E={0<tr<1:6() =27")

Let Fy; := dens(Eg;) for k,I € N, and observe that F := (o U,cy Fr has full
measure in [0, 1].

Fix t € F. By definition there exist increasing sequences (k;) and (I;) of integers
such that t € Fy,, for each i. Observing that for h sufficiently small we have (see
Lemmal4.1])

F+h) — FO| _ oL+ )] = glse. )] | [6LF0)] — olxte, )]
] SM e <] M o e

For any i we thus get

— |F(t+h) —F(t
lim [FG+ k) — F@)] < 27kt
ch—0 |h‘
hEFkl'.l —t
. T |F(t+h)—F(t)| __ . . .
that is, ap lim,,_,, =0 (here and in the sequel, we will use the particle ap

to indicate that we are dealing with an approximate limit; see [2} Section 2.9.12]).
We infer from [2} Theorem 3.1.8] that F has vanishing approximate derivative

almost everywhere. It follows from [3} Theorem 6.6.8] that F/(t) = 0 for almost

every0 <t < 1. |

4.2 Using de la Vallée Poussin’s Theorem

In the case where F has bounded variation, de la Vallée Poussin’s theorem [4, Chapter
IV, Theorem 9.6] will allow us to prove a mean value formula for tangential deriva-
tives.
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Fix F: [0,1] — R. For real numbers 0 < a < b < 1 define

ViR .= inf Z [F(d) — F(c)] and V.F:= sup Z [F(d) — F(c)],
[ed]€P ledleP
where the infimum and the supremum are taken over all finite families P of nonover-
lapping compact intervals contained in [a, b].
Define the classical variation of F on [a, b] by VPF = ViF + |VEF.
In the case where F has bounded variation (i.e., satisfies VOIF < 00), define an
outer measure V*F on [0, 1] by

oo
V*F(E) = inf{ ZVf:F 0< < by <1,EC U int[071][ak,bk]},
k=0 keN

where int[o ;) means “relative interior in [0, 1] of”.
The following lemma is the first part of de la Vallée Poussin’s theorem.

Lemma 4.3 (de la Vallée Poussin, Part I) Assume that F: [0,1] — R has bounded
variation on [0, 1]. Then the derivative (finite or infinite) F'(t) exists for each t outside
a V*F-negligible set.

The following proposition is an immediate corollary of Lemma[4£.3]

Proposition 4.4 Assume that ¢ is continuous and that for each 0 < t < 1 we have
Dso[f(t)] = 0. Assume moreover that F := ¢ o f has bounded variation on [0, 1].
Then F'(t) = 0, except on a set having zero V*F measure.

Proof Asin the proof on Proposition[d.2] define for k, I € N a positive function d; on
[0, 1] and measurable subsets Ex; of [0, 1]. For each k € N observe [0, 1] = [, Exs
and call Dy the countable set of isolated points in Ey . Aslo define D = | J; ;e D

Let us associate with F a set B according to Lemma[4.3] For eacht € F:= [0, 1] \
(BU D) and for any k, I such that t € Ey, observe that ¢ is an accumulation point of
Ej; and use Lemma[.T]to infer

F(t+h) — F(t)

; g 27k+1M.

[F'(t)| = lim
h—0
hEEy —t
As k can be chosen as large as we wish, we get F/(¢) = 0.

It suffices now to observe that BU D is V*F negligible as V*F cannot concentrate
on points (F is continuous). ]

Given any function F having bounded variation on [0, 1], define outer measures
F*and F" on [0,1] by

o0
E*(E) = 1nf{ Z[—ZZ;F] 0K g < bk < I,E - U int[O‘,l][ak, bk]},
—0 keN

8

F'(E) = inf{ ZVZF (0 < ap < by <1,EC | intjoy[ar, bk]};
k=0 keN

and define for E C [0, 1], F*(E) = F (E) — F*(E).
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Theorem 4.5 (de la Vallée Poussin, Part 1I) Assume F has bounded variation on
[0, 1] and let E, (resp. E_) denote the set of points 0 < t < 1 at which F'(t) = +o0
(resp. F'(t) = —o0). For any Borel set B

V*F(B) :F*(BmE+)+\F*(BmE,)|+/|F’(t)|dt.
B

As a corollary, we get the following mean value formula.

Corollary 4.6  Assume that ¢ is continuous and that F := ¢o f has bounded variation.
If, moreover, D[ f(t)] = 0 for each 0 < t < 1, then ¢ is constant on im f.

Proof It suffices to observe that Proposition @4land Theorem[4.3]yield
1
V*F([0,1]) :/ |F'(t)| dt = 0. [
0
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