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Nonconstant Continuous Functions whose
Tangential Derivative Vanishes along a
Smooth Curve

Laurent Moonens

Abstract. We provide a simple example showing that the tangential derivative of a continuous function

φ can vanish everywhere along a curve while the variation of φ along this curve is nonzero. We give

additional regularity conditions on the curve and/or the function that prevent this from happening.

1 Introduction

In [5], H. Whitney shows that for n > 1 there exist a function φ ∈ Cn−1(Rn) and a
continuous (parametrized) arc f ∈ C([0, 1],Rn) so that φ is not constant on im f ,
yet ∇φ[ f (t)] = 0 for each 0 6 t 6 1. Of course such an arc f must not be rectifiable.

In this paper, we explore the possibility of constructing a continuous function
φ ∈ C(Rn) and a smooth arc f ∈ Ck([0, 1],Rn) so that φ is not constant on im f ,
yet the directional derivative of φ at f (t) along the tangent line to f at t (called the
tangential derivative of φ at f (t) along f ) vanishes for each 0 6 t 6 1.

In Section 2, we provide for n > 3 an example of a pair (φ, f ) satisfying these
conditions with k = ∞ and such that φ ◦ f is monotone. This situation is not
possible in the plane for k > 2, as we show in Section 4.

In Section 3 we give some sufficient conditions on the pair ( f , φ) so that the van-
ishing of the tangential derivative of φ at f (t) along f for each 0 6 t 6 1 implies that
φ has zero variation on im f .

2 The Tangential Derivative

Let f : [0, 1] → Rn be of class C1, injective, regular (i.e., f ′(t) 6= 0 whenever 0 6 t 6

1) and let U be an open set containing im f .

Definition 2.1 For a given φ : U → R, the upper tangential derivative of φ at f (t)
(0 6 t 6 1) along f is the extended real number

D f φ[ f (t)] :=
1

| f ′(t)| lim
h→0

φ[ f (t) + h f ′(t)] − φ[ f (t)]

h
,
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Nonconstant Continuous Functions 707

whereas the lower tangential derivative of φ at f (t) (0 6 t 6 1) along f is defined as

D f φ[ f (t)] :=
1

| f ′(t)| lim
h→0

φ[ f (t) + h f ′(t)] − φ[ f (t)]

h
.

In the case where D f φ(x) = D f φ(x) is a real number, we call its value the tangential

derivative of φ at x along f .

Example 2.2 Let f : [0, 1] → R3 be the map of class C∞, injective and regular,
defined by the formula f (t) = (cos t, sin t, t). For t ∈ [0, 1] we denote the tangent
line to f at t by Λ(t) = { f (t) + λ f ′(t) : λ ∈ R}.

Claim 2.3 For s 6= t in [0, 1], we have Λ(s) ∩ Λ(t) = ∅.

To see this, assume that f (s) + λ f ′(s) = f (t) + µ f ′(t). This yields

cos s − λ sin s = cos t − µ sin t,

sin s + λ cos s = sin t + µ cos t,

s − t = µ− λ.

From the two first equations, we infer

(µ− λ) sin(s − t) = 2 − 2 cos(s − t).

Replacing µ− λ by s − t in the previous equality, using trigonometric identities, and
defining u = (s − t)/2, we get sin2 u = u sin 2u. It follows that either u = 0 or
tan u = u. As 0 is the only fixed point of tan in [−1/2, 1/2], the latter condition also
implies u = 0.

Let F :=
⋃

t∈[0,1] Λ(t), and let p : F → [0, 1] be the map that associates with
x ∈ F the unique t ∈ [0, 1] for which one has x ∈ Λ(t).

Claim 2.4 The function p is continuous on the closed set F .

To prove that p is continuous on F , assume that (xk)k>1 ⊆ F converges to x0 ∈
F . For each k > 0, let tk = p(xk) and choose λk ∈ R for which xk = f (tk)+λk f ′(tk).
Next we show that any convergent subsequence of (tk)k>1 converges to t0. Assuming
that the subsequence (tkl

) ⊆ (tk) converges to 0 6 t 6 1 (and extracting again a
subsequence if necessary so that (λkl

) converges to some λ ∈ R), observe that the
continuity of f and f ′ yields x0 = f (t) + λ f ′(t) and hence x0 ∈ Λ(t). According to
Claim 2.3 we obtain t = t0.

We easily show that F is a closed set using similar arguments.
For x ∈ F define φ(x) = p(x) and extend φ to R3 in a continuous way using

the Tietze extension theorem. As φ is constant on Λ(t) for each 0 6 t 6 1, one has
D f φ[ f (t)] = 0 for each 0 6 t 6 1. Yet

φ[ f (1)] − φ[ f (0)] = 1 − 0 = 1 > 0.
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708 L. Moonens

Remark 2.5 Using a Whitney-like extension theorem instead of Tietze’s theorem
(see [1]), we can extend φ to a continuous function in R3 that is of class C1 outside
the helix H = im f .

Let us summarize the preceding information.

Proposition 2.6 There exists a function φ ∈ C(R3) together with a map f ∈
C∞([0, 1],R3), injective and regular, for which the following conditions are fulfilled:

(i) φ is constant on f (t) + span〈 f ′(t)〉 for all 0 6 t 6 1;

(ii) φ[ f (t)] = t for each 0 6 t 6 1 (so F := φ ◦ f is continuous and increasing).

In particular, we have D f φ[ f (t)] = 0 for each 0 6 t 6 1, yet φ is not constant on im f .

Remark 2.7 The oscillation osc(φ, r) of φ : U → R at scale r > 0 is the extended
real number

osc(φ, r) := sup{|φ(x) − φ(y)| : x, y ∈ U , |x − y| 6 r}.

The oscillation of the function φ constructed in Example 2.2 satisfies

lim
r→0

r−1/2 osc(φ, r) > 0.

This follows from the next proposition.

In the sequel, the notation [0, 1] − t stands for the set {h ∈ R : t + h ∈ [0, 1]}.

Proposition 2.8 Assume that U is open and fix φ ∈ C(U ). If

(i) f : [0, 1] → U is of class C1,1, injective and regular,

(ii) for every 0 6 t 6 1, D f φ[ f (t)] = 0, and

(iii) φ[ f (t)] = t for 0 6 t 6 1,

then limr→0 r−1/2 osc(φ, r) > 0.

Proof Let L = Lip( f ′) > 0 (where Lip( f ′) denotes the Lipschitz constant of f ′).
For 0 6 t 6 1 we compute

|h|−2| f (t + h) − f (t) − h f ′(t)| = |h|−2
∣

∣

∣

∫ t+h

t

[ f ′(s)− = f ′(t)] ds
∣

∣

∣
6 L

for each h ∈ [0, 1] − t . Moreover, for t ∈ [0, 1] choose δ(t) > 0 so that

|φ[ f (t) + h f ′(t)] − φ[ f (t)]| 6 1
2
|h|

whenever h ∈ [0, 1]−t satisfies f (t)+h f ′(t) ∈ U and |h| 6 δ(t). So for h ∈ [0, 1]−t

satisfying |h| 6 δ(t), we have

|φ[ f (t + h)] − φ[ f (t) + h f ′(t)]|
√

| f (t + h) − f (t) − h f ′(t)|
>

|h| − |φ[ f (t) + h f ′(t)] − φ[ f (t)]|
√

| f (t + h) − f (t) − h f ′(t)|
>

1

2L
.

The result follows as h can be chosen as small as we want.
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3 Some Sufficient Conditions for a Mean Value Formula

We can avoid the situation that appears in Example 2.2 by imposing a Lipschitz con-
dition on φ.

Theorem 3.1 Assume that U is open, and let φ ∈ C(U ). If

(i) f : [0, 1] → U is of class C1, injective and regular,

(ii) for every 0 6 t 6 1, D f φ[ f (t)] > 0, and

(iii) φ is Lipschitz,

then φ[ f (1)] − φ[ f (0)] > 0.

To prove Theorem 3.1, we will make use of Cousin’s lemma, which essentially
expresses the compactness property of closed intervals.

Lemma 3.2 (Cousin) Given real numbers a < b and a positive function δ : [a, b] →
(0,∞), there exist real numbers a = α0 < α1 < · · · < αm

= b and points t j ∈
[α j−1, α j], 1 6 j 6 m such that [α j−1, α j] ⊆ [t j − δ(t j), t j + δ(t j)] holds for each

1 6 j 6 m.

This lemma is a crucial tool in the study of Riemann-type integrals; the interested
reader will find a (simple) proof in [3], for example.

Proof Write L = Lip( f ) and introduce M = max06t61 | f ′(t)| > 0. Fix ε > 0. For
each t ∈ [0, 1], choose δ1(t) > 0 such that one has

φ[ f (t) + h f ′(t)] − φ[ f (t)] > − ε

2M
| f ′(t)|h,(3.1)

φ[ f (t) − h f ′(t)] − φ[ f (t)] 6
ε

2M
| f ′(t)|h(3.2)

whenever h > 0 is such that f (t) ± h f ′(t) ∈ U and satisfies |h| 6 δ1(t). Also choose
a real number δ2(t) > 0 for which one has

| f (t + η) − f (t) − η f ′(t)| 6 ε

2L + 1
|η|,

whenever η ∈ [0, 1] − t satisfying 0 6 |η| 6 δ2(t) is given. For 0 6 t 6 1
define δ(t) = min[δ1(t), δ2(t)]. According to Cousin’s lemma (Lemma 3.2) find
0 = α0 < α1 < α2 < · · · < αm

= 1 together with points t j ∈ [α j−1, α j], 1 6 j 6

m for which [α j−1, α j] ⊆ [t j − δ(t j), t j + δ(t j)] holds for each 1 6 j 6 m. As φ is
Lipschitz, we compute for 1 6 j 6 m

(3.3) φ[ f (α j)]−φ[ f (t j) + (α j − t j) f ′(t j)] > − εL

2L + 1
(α j − t j) > −1

2
ε(α j − t j),

and similarly

(3.4) φ[ f (t j) − (t j − α j−1) f ′(t j)] − φ[ f (α j−1)] > −1

2
ε(t j − α j).
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Moreover, (3.1) and (3.2) yield

(3.5) φ[ f (t j) + (α j − t j) f ′(t j)] − φ[ f (t j)] > −εM

2M
(α j − t j) = −1

2
ε(α j − t j).

and similarly

(3.6) φ[ f (t j)] − φ[ f (t j) − (t j − α j−1) f ′(t j)] > −1

2
ε = (t j − α j−1).

Fitting (3.3), (3.4), (3.5), and (3.6) together, we get

φ[ f (α j)] − φ[ f (α j−1)] > −ε(α j − α j−1);

we complete the proof by adding those inequalities obtained for j = 1, . . . ,m and
letting ε → 0.

Whenever f ′ is Lipschitz, one can weaken the last condition in Theorem 3.1.

Theorem 3.3 Assume that U is open and fix φ ∈ C(U ). If

(i) f : [0, 1] → U is of class C1,1, injective and regular,

(ii) for every x ∈ im f , D f φ(x) > 0, and

(iii) limr→0

[

r−1/2 osc(φ, r)
]

= 0,

then φ[ f (1)] − φ[ f (0)] > 0.

Proof Let L = Lip( f ′) and assume L > 0. As in the proof of Proposition 2.8, one
observes

|h|−2| f (t + h) − f (t) − h f ′(t)| 6 L

holds for each h ∈ [0, 1] − t . Let M = max06t61 | f ′(t)| > 0, fix 0 < ε 6 1, and
choose r > 0 such that

|φ(x) − φ(y)| 6 ε

2
√

L
|x − y|1/2

holds whenever x, y ∈ U satisfy |x− y| 6 r. For each 0 6 t 6 1, let δ1(t) > 0 be such
that (3.1) and (3.2) hold whenever h > 0 is such that f (t) ± h f ′(t) ∈ U and satisfies
|h| 6 δ1(t). For 0 6 t 6 1 define δ(t) = min[r1/2M−1/2, δ1(t), δ2(t)], find real
numbers α j , 0 6 j 6 m and points t j as in the proof of Theorem 3.1. Decomposing
φ[ f (α j)] − φ[ f (α j−1)] as in the same proof, we get the estimates (3.5) and (3.6).
Observe that

| f (α j) − f (t j) − (α j − t j) f ′(t j)| 6 L(α j − t j)2
6 r,

so that we have

φ[ f (α j)] − φ[ f (t j) + (α j − t j) f ′(t j)] > − ε

2
√

L
[L(α j − t j)2]1/2

= −1

2
ε(α j − t j)
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Similarly one shows

φ[ f (t j) − (t j − α j−1) f ′(t j)] − φ[ f (α j−1)] > −1

2
ε(t j − α j).

One finishes the argument as in the proof of Theorem 3.1.

From the preceding statements we arrive at the following corollary.

Corollary 3.4 Assume that U is open and that f ∈ C1([0, 1],U ) is injective and

regular. Assume moreover that D f φ[ f (t)] = 0 for each 0 6 t 6 1. If one of the

following conditions is fulfilled, then φ is constant on im f :

(i) φ is Lipschitz;

(ii) f ′ is Lipschitz and limr→0 r−1/2 osc(φ, r) = 0.

Proof Fix 0 6 s < t 6 1 and define a map ϕ : [0, 1] → [s, t] by ϕ(ξ) = s + (t − s)ξ.
Apply Theorem 3.1 or 3.3 to f ◦ ϕ and φ (resp. −φ) to get φ[ f (t)] > φ[ f (s)] (resp.
φ[ f (t)] 6 φ[ f (s)]). As s < t are arbitrary we conclude that φ is constant on im f .

In the plane, we cannot provide an analogue of Example 2.2.

4 The Planar Case

Set the following for this entire section: we have a curve f ∈ C2([0, 1],R2) satisfying
f ′(t) 6= 0 for each 0 6 t 6 1 and a function φ ∈ C(R2). We also assume that f has
nonzero normal curvature everywhere, i.e., that f ′ ′(t) is not collinear with f ′(t) for
every 0 6 t 6 1.

4.1 About the Existence of Curvilinear Derivatives

Let us state and prove an easy geometrical fact.

Lemma 4.1 Fix 0 6 t 6 1. For each h ∈ [0, 1] − t sufficiently small, the tangent

lines to f at t and t + h intersect at x(t, h) and

max{| f (t) − x(t, h)|, | f (t + h) − x(t, h)|} 6 M|h|,

where M := max06t61 | f ′(t)|.

Proof Without loss of generality, assume

f (t) = (0, 0), f ′(t) = ( f ′
1 (t), 0) 6= 0 and f ′ ′(t) = ( f ′ ′

1 (t), f ′ ′
2 (t))

with f ′ ′
2 (t) 6= 0. Choose η > 0 such that

min
ch∈[0,1]−t

|h|6η

| f ′ ′
2 (t + h)| > 0,
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and assume h ∈ [0, 1] − t satisfies |h| 6 η. The coordinates of the point x(t, h) =

(x1(t, h), x2(t, h)) are given by

x1(t, h) = f1(t + h) − f ′
1 (t + h)

f2(t + h)

f ′
2 (t + h)

and x2(t, h) = 0.

Also choose δ > 0 such that for each h ∈ [0, 1] − t verifying |h| 6 δ, one can find
points θh and ϑh in [0, 1] for which

f ′
2 (t + h) = h f ′ ′

2 (t + θhh) and f2(t + h) = 1
2
h2 f ′ ′

2 (t + ϑhh).

For h ∈ [0, 1] − t satisfying |h| 6 min{η, δ}, compute

x1(t, h) = f1(t + h) − 1

2
h f ′

1 (t + h)
f ′ ′
2 (t + ϑhh)

f ′ ′
2 (t + θhh)

, x2(t, h) = 0

and

x1(t, h) − f1(t)

h f ′
1 (t)

=
1

f ′
1 (t)

f1(t + h) − f1(t)

h
= −1

2

f ′
1 (t + h)

f ′
1 (t)

f ′ ′
2 (t + ϑhh)

f ′ ′
2 (t + θhh)

.

Thus we get

lim
h→0

|x(t, h) − f (t)|
|h f ′(t)| =

∣

∣

∣

∣

lim
h→0

x1(t, h) − f1(t)

h f ′
1 (t)

∣

∣

∣

∣

=
1

2
.

On the other hand, compute for h ∈ [0, 1] − t satisfying |h| 6 min{η, δ}

lim
h→0

x1(t, h) − f1(t + h)

h
= − lim

h→0

1

2
f ′
1 (t + h)

f ′ ′
2 (t + ϑhh)

f ′ ′
2 (t + θhh)

= −1

2
f ′
1 (t),

and from f2(t) = 0 we get

lim
h→0

x2(t, h) − f2(t + h)

h
= − lim

h→0

f2(t + h) − f2(t)

h
= − f ′

2 (t) = 0.

Consequently we obtain

lim
h→0

|x(t, h) − f (t + h)|
|h f ′(t)| =

1

2
,

and the proof is complete.

Given a set E ⊆ R, denote by |E| the outer Lebesgue measure of E. The notation
dens(E) stands for the set of all Lebesgue-density points of E. We know that

|(E \ dens E) ∪ (dens E \ E)| = 0.
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Proposition 4.2 Assume that for almost every 0 6 t 6 1, D f φ[ f (t)] = 0. Then for

almost every 0 6 t 6 1, we have F ′(t) = 0 where F := φ ◦ f .

Proof To show this, call D the set of 0 6 t 6 1 at which D f φ[ f (t)] = 0 and observe
that D is a set of full measure in [0, 1]. Define for each integer k and each t ∈ D

0 < δk(t) := sup{δ > 0 : |φ[ f (t) + h f ′(t)] − φ[ f (t)]| 6 2−k|h| for each |h| 6 δ},

and let δk(t) = 0 for t /∈ D. From the identity

{0 6 t 6 1 : δk(t) 6 α} =

⋂

δ∈Q
δ>α

⋃

h∈Q

|h|6δ

{0 6 t 6 1 : |φ[ f (t + h)] − φ[ f (t)]| > 2−k|h|}

valid for each α > 0, we see that δk is a measurable function of t for each k ∈ N. For
k ∈ N and l ∈ N, define

Ek,l = {0 6 t 6 1 : δk(t) > 2−l}.

Let Fk,l := dens(Ek,l) for k, l ∈ N, and observe that F :=
⋂

k∈N

⋃

l∈N
Fk,l has full

measure in [0, 1].

Fix t ∈ F. By definition there exist increasing sequences (ki) and (li) of integers
such that t ∈ Fki ,li for each i. Observing that for h sufficiently small we have (see
Lemma 4.1)

|F(t + h) − F(t)|
|h| 6 M

|φ[ f (t + h)] − φ[x(t, h)]|
| f (t + h) − x(t, h)| + M

|φ[ f (t)] − φ[x(t, h)]|
| f (t) − x(t, h)| .

For any i we thus get

lim
ch→0

h∈Fki ,li
−t

|F(t + h) − F(t)|
|h| 6 2−ki +1M,

that is, ap limh→0
|F(t+h)−F(t)|

|h| = 0 (here and in the sequel, we will use the particle ap

to indicate that we are dealing with an approximate limit; see [2, Section 2.9.12]).

We infer from [2, Theorem 3.1.8] that F has vanishing approximate derivative
almost everywhere. It follows from [3, Theorem 6.6.8] that F ′(t) = 0 for almost
every 0 6 t 6 1.

4.2 Using de la Vallée Poussin’s Theorem

In the case where F has bounded variation, de la Vallée Poussin’s theorem [4, Chapter
IV, Theorem 9.6] will allow us to prove a mean value formula for tangential deriva-
tives.
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Fix F : [0, 1] → R. For real numbers 0 6 a < b 6 1 define

V b
aF := inf

P

∑

[c,d]∈P

[F(d) − F(c)] and V
b

aF := sup
P

∑

[c,d]∈P

[F(d) − F(c)],

where the infimum and the supremum are taken over all finite families P of nonover-
lapping compact intervals contained in [a, b].

Define the classical variation of F on [a, b] by V b
a F = V

b

aF + |V b
aF|.

In the case where F has bounded variation (i.e., satisfies V 1
0 F < ∞), define an

outer measure V ∗F on [0, 1] by

V ∗F(E) = inf

{ ∞
∑

k=0

V bk
ak

F : 0 6 ak < bk 6 1, E ⊆
⋃

k∈N

int[0,1][ak, bk]

}

,

where int[0,1] means “relative interior in [0, 1] of”.
The following lemma is the first part of de la Vallée Poussin’s theorem.

Lemma 4.3 (de la Vallée Poussin, Part I) Assume that F : [0, 1] → R has bounded

variation on [0, 1]. Then the derivative (finite or infinite) F ′(t) exists for each t outside

a V ∗F-negligible set.

The following proposition is an immediate corollary of Lemma 4.3.

Proposition 4.4 Assume that φ is continuous and that for each 0 6 t 6 1 we have

D f φ[ f (t)] = 0. Assume moreover that F := φ ◦ f has bounded variation on [0, 1].

Then F ′(t) = 0, except on a set having zero V ∗F measure.

Proof As in the proof on Proposition 4.2, define for k, l ∈ N a positive function δk on
[0, 1] and measurable subsets Ek,l of [0, 1]. For each k ∈ N observe [0, 1] =

⋃

l∈N
Ek,l

and call Dk,l the countable set of isolated points in Ek,l. Aslo define D =
⋃

k,l∈N
Dk,l.

Let us associate with F a set B according to Lemma 4.3. For each t ∈ F := [0, 1] \
(B ∪ D) and for any k, l such that t ∈ Ek,l, observe that t is an accumulation point of
Ek,l and use Lemma 4.1 to infer

|F ′(t)| = lim
h→0

h∈Ek,l−t

∣

∣

∣

F(t + h) − F(t)

h

∣

∣

∣
6 2−k+1M.

As k can be chosen as large as we wish, we get F ′(t) = 0.
It suffices now to observe that B ∪ D is V ∗F negligible as V ∗F cannot concentrate

on points (F is continuous).

Given any function F having bounded variation on [0, 1], define outer measures
F∗ and F

∗
on [0, 1] by

F∗(E) = inf

{ ∞
∑

k=0

[−V bk
ak

F] : 0 6 ak < bk 6 1, E ⊆
⋃

k∈N

int[0,1][ak, bk]

}

,

F
∗
(E) = inf

{ ∞
∑

k=0

V
bk

ak
F : 0 6 ak < bk 6 1, E ⊆ ⋃

k∈N

int[0,1][ak, bk]

}

;

and define for E ⊆ [0, 1], F∗(E) = F
∗
(E) − F∗(E).
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Theorem 4.5 (de la Vallée Poussin, Part II) Assume F has bounded variation on

[0, 1] and let E+ (resp. E−) denote the set of points 0 6 t 6 1 at which F ′(t) = +∞
(resp. F ′(t) = −∞). For any Borel set B

V ∗F(B) = F∗(B ∩ E+) + |F∗(B ∩ E−)| +

∫

B

|F ′(t)| dt.

As a corollary, we get the following mean value formula.

Corollary 4.6 Assume thatφ is continuous and that F := φ◦ f has bounded variation.

If, moreover, D f φ[ f (t)] = 0 for each 0 6 t 6 1, then φ is constant on im f .

Proof It suffices to observe that Proposition 4.4 and Theorem 4.5 yield

V ∗F([0, 1]) =

∫ 1

0

|F ′(t)| dt = 0.
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