Nonconstant Continuous Functions whose Tangential Derivative Vanishes along a Smooth Curve

Laurent Moonens

Abstract. We provide a simple example showing that the tangential derivative of a continuous function ϕ can vanish everywhere along a curve while the variation of ϕ along this curve is nonzero. We give additional regularity conditions on the curve and/or the function that prevent this from happening.

1 Introduction

In [5], H. Whitney shows that for $n \geqslant 1$ there exist a function $\phi \in C^{n-1}\left(\mathbb{R}^{n}\right)$ and a continuous (parametrized) arc $f \in C\left([0,1], \mathbb{R}^{n}\right)$ so that ϕ is not constant on im f, yet $\nabla \phi[f(t)]=0$ for each $0 \leqslant t \leqslant 1$. Of course such an arc f must not be rectifiable.

In this paper, we explore the possibility of constructing a continuous function $\phi \in C\left(\mathbb{R}^{n}\right)$ and a smooth arc $f \in C^{k}\left([0,1], \mathbb{R}^{n}\right)$ so that ϕ is not constant on im f, yet the directional derivative of ϕ at $f(t)$ along the tangent line to f at t (called the tangential derivative of ϕ at $f(t)$ along f) vanishes for each $0 \leqslant t \leqslant 1$.

In Section 2 we provide for $n \geqslant 3$ an example of a pair (ϕ, f) satisfying these conditions with $k=\infty$ and such that $\phi \circ f$ is monotone. This situation is not possible in the plane for $k \geqslant 2$, as we show in Section 4

In Section 3 we give some sufficient conditions on the pair (f, ϕ) so that the vanishing of the tangential derivative of ϕ at $f(t)$ along f for each $0 \leqslant t \leqslant 1$ implies that ϕ has zero variation on im f.

2 The Tangential Derivative

Let $f:[0,1] \rightarrow \mathbb{R}^{n}$ be of class C^{1}, injective, regular (i.e., $f^{\prime}(t) \neq 0$ whenever $0 \leqslant t \leqslant$ 1) and let U be an open set containing im f.

Definition 2.1 For a given $\phi: U \rightarrow \mathbb{R}$, the upper tangential derivative of ϕ at $f(t)$ $(0 \leqslant t \leqslant 1)$ along f is the extended real number

$$
\bar{D}_{f} \phi[f(t)]:=\frac{1}{\left|f^{\prime}(t)\right|} \varlimsup_{h \rightarrow 0} \frac{\phi\left[f(t)+h f^{\prime}(t)\right]-\phi[f(t)]}{h}
$$

[^0]whereas the lower tangential derivative of ϕ at $f(t)(0 \leqslant t \leqslant 1)$ along f is defined as
$$
\underline{D}_{f} \phi[f(t)]:=\frac{1}{\left|f^{\prime}(t)\right|} \varliminf_{h \rightarrow 0} \frac{\phi\left[f(t)+h f^{\prime}(t)\right]-\phi[f(t)]}{h}
$$

In the case where $\bar{D}_{f} \phi(x)=\underline{D}_{f} \phi(x)$ is a real number, we call its value the tangential derivative of ϕ at x along f.

Example 2.2 Let $f:[0,1] \rightarrow \mathbb{R}^{3}$ be the map of class C^{∞}, injective and regular, defined by the formula $f(t)=(\cos t, \sin t, t)$. For $t \in[0,1]$ we denote the tangent line to f at t by $\Lambda(t)=\left\{f(t)+\lambda f^{\prime}(t): \lambda \in \mathbb{R}\right\}$.

Claim 2.3 For $s \neq t$ in $[0,1]$, we have $\Lambda(s) \cap \Lambda(t)=\varnothing$.
To see this, assume that $f(s)+\lambda f^{\prime}(s)=f(t)+\mu f^{\prime}(t)$. This yields

$$
\begin{aligned}
\cos s-\lambda \sin s & =\cos t-\mu \sin t \\
\sin s+\lambda \cos s & =\sin t+\mu \cos t \\
s-t & =\mu-\lambda
\end{aligned}
$$

From the two first equations, we infer

$$
(\mu-\lambda) \sin (s-t)=2-2 \cos (s-t)
$$

Replacing $\mu-\lambda$ by $s-t$ in the previous equality, using trigonometric identities, and defining $u=(s-t) / 2$, we get $\sin ^{2} u=u \sin 2 u$. It follows that either $u=0$ or $\tan u=u$. As 0 is the only fixed point of \tan in $[-1 / 2,1 / 2]$, the latter condition also implies $u=0$.

Let $\mathscr{F}:=\bigcup_{t \in[0,1]} \Lambda(t)$, and let $p: \mathscr{F} \rightarrow[0,1]$ be the map that associates with $x \in \mathscr{F}$ the unique $t \in[0,1]$ for which one has $x \in \Lambda(t)$.

Claim 2.4 The function p is continuous on the closed set \mathscr{F}.
To prove that p is continuous on \mathscr{F}, assume that $\left(x_{k}\right)_{k \geqslant 1} \subseteq \mathscr{F}$ converges to $x_{0} \in$ \mathscr{F}. For each $k \geqslant 0$, let $t_{k}=p\left(x_{k}\right)$ and choose $\lambda_{k} \in \mathbb{R}$ for which $x_{k}=f\left(t_{k}\right)+\lambda_{k} f^{\prime}\left(t_{k}\right)$. Next we show that any convergent subsequence of $\left(t_{k}\right)_{k \geqslant 1}$ converges to t_{0}. Assuming that the subsequence $\left(t_{k_{l}}\right) \subseteq\left(t_{k}\right)$ converges to $0 \leqslant t \leqslant 1$ (and extracting again a subsequence if necessary so that $\left(\lambda_{k_{l}}\right)$ converges to some $\lambda \in \mathbb{R}$), observe that the continuity of f and f^{\prime} yields $x_{0}=f(t)+\lambda f^{\prime}(t)$ and hence $x_{0} \in \Lambda(t)$. According to Claim 2.3 we obtain $t=t_{0}$.

We easily show that \mathscr{F} is a closed set using similar arguments.
For $x \in \mathscr{F}$ define $\phi(x)=p(x)$ and extend ϕ to \mathbb{R}^{3} in a continuous way using the Tietze extension theorem. As ϕ is constant on $\Lambda(t)$ for each $0 \leqslant t \leqslant 1$, one has $D_{f} \phi[f(t)]=0$ for each $0 \leqslant t \leqslant 1$. Yet

$$
\phi[f(1)]-\phi[f(0)]=1-0=1>0
$$

Remark 2.5 Using a Whitney-like extension theorem instead of Tietze's theorem (see [1]), we can extend ϕ to a continuous function in \mathbb{R}^{3} that is of class C^{1} outside the helix $H=\operatorname{im} f$.

Let us summarize the preceding information.
Proposition 2.6 There exists a function $\phi \in C\left(\mathbb{R}^{3}\right)$ together with a map $f \in$ $C^{\infty}\left([0,1], \mathbb{R}^{3}\right)$, injective and regular, for which the following conditions are fulfilled:
(i) $\quad \phi$ is constant on $f(t)+\operatorname{span}\left\langle f^{\prime}(t)\right\rangle$ for all $0 \leqslant t \leqslant 1$;
(ii) $\phi[f(t)]=t$ for each $0 \leqslant t \leqslant 1$ (so $F:=\phi \circ f$ is continuous and increasing).

In particular, we have $D_{f} \phi[f(t)]=0$ for each $0 \leqslant t \leqslant 1$, yet ϕ is not constant on im f.
Remark 2.7 The oscillation $\operatorname{osc}(\phi, r)$ of $\phi: U \rightarrow \mathbb{R}$ at scale $r>0$ is the extended real number

$$
\operatorname{osc}(\phi, r):=\sup \{|\phi(x)-\phi(y)|: x, y \in U,|x-y| \leqslant r\}
$$

The oscillation of the function ϕ constructed in Example 2.2 satisfies

$$
\varlimsup_{r \rightarrow 0} r^{-1 / 2} \operatorname{osc}(\phi, r)>0
$$

This follows from the next proposition.
In the sequel, the notation $[0,1]-t$ stands for the set $\{h \in \mathbb{R}: t+h \in[0,1]\}$.
Proposition 2.8 Assume that U is open and fix $\phi \in C(U)$. If
(i) $\quad f:[0,1] \rightarrow U$ is of class $C^{1,1}$, injective and regular,
(ii) for every $0 \leqslant t \leqslant 1, D_{f} \phi[f(t)]=0$, and
(iii) $\phi[f(t)]=t$ for $0 \leqslant t \leqslant 1$,
then $\varlimsup_{r \rightarrow 0} r^{-1 / 2} \operatorname{osc}(\phi, r)>0$.
Proof Let $L=\operatorname{Lip}\left(f^{\prime}\right)>0\left(\right.$ where $\operatorname{Lip}\left(f^{\prime}\right)$ denotes the Lipschitz constant of $\left.f^{\prime}\right)$. For $0 \leqslant t \leqslant 1$ we compute

$$
|h|^{-2}\left|f(t+h)-f(t)-h f^{\prime}(t)\right|=|h|^{-2}\left|\int_{t}^{t+h}\left[f^{\prime}(s)-=f^{\prime}(t)\right] d s\right| \leqslant L
$$

for each $h \in[0,1]-t$. Moreover, for $t \in[0,1]$ choose $\delta(t)>0$ so that

$$
\left|\phi\left[f(t)+h f^{\prime}(t)\right]-\phi[f(t)]\right| \leqslant \frac{1}{2}|h|
$$

whenever $h \in[0,1]-t$ satisfies $f(t)+h f^{\prime}(t) \in U$ and $|h| \leqslant \delta(t)$. So for $h \in[0,1]-t$ satisfying $|h| \leqslant \delta(t)$, we have

$$
\frac{\left|\phi[f(t+h)]-\phi\left[f(t)+h f^{\prime}(t)\right]\right|}{\sqrt{\left|f(t+h)-f(t)-h f^{\prime}(t)\right|}} \geqslant \frac{|h|-\left|\phi\left[f(t)+h f^{\prime}(t)\right]-\phi[f(t)]\right|}{\sqrt{\left|f(t+h)-f(t)-h f^{\prime}(t)\right|}} \geqslant \frac{1}{2 L} .
$$

The result follows as h can be chosen as small as we want.

3 Some Sufficient Conditions for a Mean Value Formula

We can avoid the situation that appears in Example 2.2 by imposing a Lipschitz condition on ϕ.

Theorem 3.1 Assume that U is open, and let $\phi \in C(U)$. If
(i) $f:[0,1] \rightarrow U$ is of class C^{1}, injective and regular,
(ii) for every $0 \leqslant t \leqslant 1, \underline{D}_{f} \phi[f(t)] \geqslant 0$, and
(iii) ϕ is Lipschitz,
then $\phi[f(1)]-\phi[f(0)] \geqslant 0$.
To prove Theorem 3.1 we will make use of Cousin's lemma, which essentially expresses the compactness property of closed intervals.

Lemma 3.2 (Cousin) Given real numbers $a<b$ and a positive function $\delta:[a, b] \rightarrow$ $(0, \infty)$, there exist real numbers $a=\alpha^{0}<\alpha^{1}<\cdots<\alpha^{m}=b$ and points $t^{j} \in$ $\left[\alpha^{j-1}, \alpha^{j}\right], 1 \leqslant j \leqslant m$ such that $\left[\alpha^{j-1}, \alpha^{j}\right] \subseteq\left[t^{j}-\delta\left(t^{j}\right), t^{j}+\delta\left(t^{j}\right)\right]$ holds for each $1 \leqslant j \leqslant m$.

This lemma is a crucial tool in the study of Riemann-type integrals; the interested reader will find a (simple) proof in [3], for example.

Proof Write $L=\operatorname{Lip}(f)$ and introduce $M=\max _{0 \leqslant t \leqslant 1}\left|f^{\prime}(t)\right|>0$. Fix $\varepsilon>0$. For each $t \in[0,1]$, choose $\delta_{1}(t)>0$ such that one has

$$
\begin{align*}
& \phi\left[f(t)+h f^{\prime}(t)\right]-\phi[f(t)] \geqslant-\frac{\varepsilon}{2 M}\left|f^{\prime}(t)\right| h \tag{3.1}\\
& \phi\left[f(t)-h f^{\prime}(t)\right]-\phi[f(t)] \leqslant \frac{\varepsilon}{2 M}\left|f^{\prime}(t)\right| h \tag{3.2}
\end{align*}
$$

whenever $h \geqslant 0$ is such that $f(t) \pm h f^{\prime}(t) \in U$ and satisfies $|h| \leqslant \delta_{1}(t)$. Also choose a real number $\delta_{2}(t)>0$ for which one has

$$
\left|f(t+\eta)-f(t)-\eta f^{\prime}(t)\right| \leqslant \frac{\varepsilon}{2 L+1}|\eta|
$$

whenever $\eta \in[0,1]-t$ satisfying $0 \leqslant|\eta| \leqslant \delta_{2}(t)$ is given. For $0 \leqslant t \leqslant 1$ define $\delta(t)=\min \left[\delta_{1}(t), \delta_{2}(t)\right]$. According to Cousin's lemma (Lemma 3.2) find $0=\alpha^{0}<\alpha^{1}<\alpha^{2}<\cdots<\alpha^{m}=1$ together with points $t^{j} \in\left[\alpha^{j-1}, \alpha^{j}\right], 1 \leqslant j \leqslant$ m for which $\left[\alpha^{j-1}, \alpha^{j}\right] \subseteq\left[t^{j}-\delta\left(t^{j}\right), t^{j}+\delta\left(t^{j}\right)\right]$ holds for each $1 \leqslant j \leqslant m$. As ϕ is Lipschitz, we compute for $1 \leqslant j \leqslant m$

$$
\begin{equation*}
\phi\left[f\left(\alpha^{j}\right)\right]-\phi\left[f\left(t^{j}\right)+\left(\alpha^{j}-t^{j}\right) f^{\prime}\left(t^{j}\right)\right] \geqslant-\frac{\varepsilon L}{2 L+1}\left(\alpha^{j}-t^{j}\right) \geqslant-\frac{1}{2} \varepsilon\left(\alpha^{j}-t^{j}\right) \tag{3.3}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\phi\left[f\left(t^{j}\right)-\left(t^{j}-\alpha^{j-1}\right) f^{\prime}\left(t^{j}\right)\right]-\phi\left[f\left(\alpha^{j-1}\right)\right] \geqslant-\frac{1}{2} \varepsilon\left(t^{j}-\alpha^{j}\right) \tag{3.4}
\end{equation*}
$$

Moreover, (3.1) and (3.2) yield

$$
\begin{equation*}
\phi\left[f\left(t^{j}\right)+\left(\alpha^{j}-t^{j}\right) f^{\prime}\left(t^{j}\right)\right]-\phi\left[f\left(t^{j}\right)\right] \geqslant-\frac{\varepsilon M}{2 M}\left(\alpha^{j}-t^{j}\right)=-\frac{1}{2} \varepsilon\left(\alpha^{j}-t^{j}\right) . \tag{3.5}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\phi\left[f\left(t^{j}\right)\right]-\phi\left[f\left(t^{j}\right)-\left(t^{j}-\alpha^{j-1}\right) f^{\prime}\left(t^{j}\right)\right] \geqslant-\frac{1}{2} \varepsilon=\left(t^{j}-\alpha^{j-1}\right) \tag{3.6}
\end{equation*}
$$

Fitting (3.3), (3.4), (3.5), and (3.6) together, we get

$$
\phi\left[f\left(\alpha^{j}\right)\right]-\phi\left[f\left(\alpha^{j-1}\right)\right] \geqslant-\varepsilon\left(\alpha^{j}-\alpha^{j-1}\right) ;
$$

we complete the proof by adding those inequalities obtained for $j=1, \ldots, m$ and letting $\varepsilon \rightarrow 0$.

Whenever f^{\prime} is Lipschitz, one can weaken the last condition in Theorem 3.1
Theorem 3.3 Assume that U is open and fix $\phi \in C(U)$. If
(i) $\quad f:[0,1] \rightarrow U$ is of class $C^{1,1}$, injective and regular,
(ii) for every $x \in \operatorname{im} f, \underline{D}_{f} \phi(x) \geqslant 0$, and
(iii) $\varlimsup_{r \rightarrow 0}\left[r^{-1 / 2} \operatorname{osc}(\phi, r)\right]=0$,
then $\phi[f(1)]-\phi[f(0)] \geqslant 0$.
Proof Let $L=\operatorname{Lip}\left(f^{\prime}\right)$ and assume $L>0$. As in the proof of Proposition 2.8, one observes

$$
|h|^{-2}\left|f(t+h)-f(t)-h f^{\prime}(t)\right| \leqslant L
$$

holds for each $h \in[0,1]-t$. Let $M=\max _{0 \leqslant t \leqslant 1}\left|f^{\prime}(t)\right|>0$, fix $0<\varepsilon \leqslant 1$, and choose $r>0$ such that

$$
|\phi(x)-\phi(y)| \leqslant \frac{\varepsilon}{2 \sqrt{L}}|x-y|^{1 / 2}
$$

holds whenever $x, y \in U$ satisfy $|x-y| \leqslant r$. For each $0 \leqslant t \leqslant 1$, let $\delta_{1}(t)>0$ be such that (3.1) and (3.2) hold whenever $h \geqslant 0$ is such that $f(t) \pm h f^{\prime}(t) \in U$ and satisfies $|h| \leqslant \delta_{1}(t)$. For $0 \leqslant t \leqslant 1$ define $\delta(t)=\min \left[r^{1 / 2} M^{-1 / 2}, \delta_{1}(t), \delta_{2}(t)\right]$, find real numbers $\alpha^{j}, 0 \leqslant j \leqslant m$ and points t^{j} as in the proof of Theorem3.1. Decomposing $\phi\left[f\left(\alpha^{j}\right)\right]-\phi\left[f\left(\alpha^{j-1}\right)\right]$ as in the same proof, we get the estimates (3.5) and (3.6). Observe that

$$
\left|f\left(\alpha^{j}\right)-f\left(t^{j}\right)-\left(\alpha^{j}-t^{j}\right) f^{\prime}\left(t^{j}\right)\right| \leqslant L\left(\alpha^{j}-t^{j}\right)^{2} \leqslant r
$$

so that we have

$$
\begin{aligned}
\phi\left[f\left(\alpha^{j}\right)\right]-\phi\left[f\left(t^{j}\right)+\left(\alpha^{j}-t^{j}\right) f^{\prime}\left(t^{j}\right)\right] & \geqslant-\frac{\varepsilon}{2 \sqrt{L}}\left[L\left(\alpha^{j}-t^{j}\right)^{2}\right]^{1 / 2} \\
& =-\frac{1}{2} \varepsilon\left(\alpha^{j}-t^{j}\right)
\end{aligned}
$$

Similarly one shows

$$
\phi\left[f\left(t^{j}\right)-\left(t^{j}-\alpha^{j-1}\right) f^{\prime}\left(t^{j}\right)\right]-\phi\left[f\left(\alpha^{j-1}\right)\right] \geqslant-\frac{1}{2} \varepsilon\left(t^{j}-\alpha^{j}\right)
$$

One finishes the argument as in the proof of Theorem3.1
From the preceding statements we arrive at the following corollary.
Corollary 3.4 Assume that U is open and that $f \in C^{1}([0,1], U)$ is injective and regular. Assume moreover that $D_{f} \phi[f(t)]=0$ for each $0 \leqslant t \leqslant 1$. If one of the following conditions is fulfilled, then ϕ is constant on $\operatorname{im} f$:
(i) ϕ is Lipschitz;
(ii) f^{\prime} is Lipschitz and $\overline{\lim }_{r \rightarrow 0} r^{-1 / 2} \operatorname{osc}(\phi, r)=0$.

Proof Fix $0 \leqslant s<t \leqslant 1$ and define a map $\varphi:[0,1] \rightarrow[s, t]$ by $\varphi(\xi)=s+(t-s) \xi$. Apply Theorem 3.1 or 3.3 to $f \circ \varphi$ and ϕ (resp. $-\phi$) to get $\phi[f(t)] \geqslant \phi[f(s)]$ (resp. $\phi[f(t)] \leqslant \phi[f(s)])$. As $s<t$ are arbitrary we conclude that ϕ is constant on im f.

In the plane, we cannot provide an analogue of Example 2.2

4 The Planar Case

Set the following for this entire section: we have a curve $f \in C^{2}\left([0,1], \mathbb{R}^{2}\right)$ satisfying $f^{\prime}(t) \neq 0$ for each $0 \leqslant t \leqslant 1$ and a function $\phi \in C\left(\mathbb{R}^{2}\right)$. We also assume that f has nonzero normal curvature everywhere, i.e., that $f^{\prime \prime}(t)$ is not collinear with $f^{\prime}(t)$ for every $0 \leqslant t \leqslant 1$.

4.1 About the Existence of Curvilinear Derivatives

Let us state and prove an easy geometrical fact.
Lemma 4.1 Fix $0 \leqslant t \leqslant 1$. For each $h \in[0,1]-t$ sufficiently small, the tangent lines to f at t and $t+h$ intersect at $x(t, h)$ and

$$
\max \{|f(t)-x(t, h)|,|f(t+h)-x(t, h)|\} \leqslant M|h|,
$$

where $M:=\max _{0 \leqslant t \leqslant 1}\left|f^{\prime}(t)\right|$.
Proof Without loss of generality, assume

$$
f(t)=(0,0), \quad f^{\prime}(t)=\left(f_{1}^{\prime}(t), 0\right) \neq 0 \quad \text { and } \quad f^{\prime \prime}(t)=\left(f_{1}^{\prime \prime}(t), f_{2}^{\prime \prime}(t)\right)
$$

with $f_{2}^{\prime \prime}(t) \neq 0$. Choose $\eta>0$ such that

$$
\min _{\substack{c h \in[0,1]-t \\|h| \leqslant \eta}}\left|f_{2}^{\prime \prime}(t+h)\right|>0,
$$

and assume $h \in[0,1]-t$ satisfies $|h| \leqslant \eta$. The coordinates of the point $x(t, h)=$ $\left(x_{1}(t, h), x_{2}(t, h)\right)$ are given by

$$
x_{1}(t, h)=f_{1}(t+h)-f_{1}^{\prime}(t+h) \frac{f_{2}(t+h)}{f_{2}^{\prime}(t+h)} \quad \text { and } \quad x_{2}(t, h)=0
$$

Also choose $\delta>0$ such that for each $h \in[0,1]-t$ verifying $|h| \leqslant \delta$, one can find points θ_{h} and ϑ_{h} in $[0,1]$ for which

$$
f_{2}^{\prime}(t+h)=h f_{2}^{\prime \prime}\left(t+\theta_{h} h\right) \quad \text { and } \quad f_{2}(t+h)=\frac{1}{2} h^{2} f_{2}^{\prime \prime}\left(t+\vartheta_{h} h\right) .
$$

For $h \in[0,1]-t$ satisfying $|h| \leqslant \min \{\eta, \delta\}$, compute

$$
x_{1}(t, h)=f_{1}(t+h)-\frac{1}{2} h f_{1}^{\prime}(t+h) \frac{f_{2}^{\prime \prime}\left(t+\vartheta_{h} h\right)}{f_{2}^{\prime \prime}\left(t+\theta_{h} h\right)}, \quad x_{2}(t, h)=0
$$

and

$$
\frac{x_{1}(t, h)-f_{1}(t)}{h f_{1}^{\prime}(t)}=\frac{1}{f_{1}^{\prime}(t)} \frac{f_{1}(t+h)-f_{1}(t)}{h}=-\frac{1}{2} \frac{f_{1}^{\prime}(t+h)}{f_{1}^{\prime}(t)} \frac{f_{2}^{\prime \prime}\left(t+\vartheta_{h} h\right)}{f_{2}^{\prime \prime}\left(t+\theta_{h} h\right)}
$$

Thus we get

$$
\lim _{h \rightarrow 0} \frac{|x(t, h)-f(t)|}{\left|h f^{\prime}(t)\right|}=\left|\lim _{h \rightarrow 0} \frac{x_{1}(t, h)-f_{1}(t)}{h f_{1}^{\prime}(t)}\right|=\frac{1}{2}
$$

On the other hand, compute for $h \in[0,1]-t$ satisfying $|h| \leqslant \min \{\eta, \delta\}$

$$
\lim _{h \rightarrow 0} \frac{x_{1}(t, h)-f_{1}(t+h)}{h}=-\lim _{h \rightarrow 0} \frac{1}{2} f_{1}^{\prime}(t+h) \frac{f_{2}^{\prime \prime}\left(t+\vartheta_{h} h\right)}{f_{2}^{\prime \prime}\left(t+\theta_{h} h\right)}=-\frac{1}{2} f_{1}^{\prime}(t),
$$

and from $f_{2}(t)=0$ we get

$$
\lim _{h \rightarrow 0} \frac{x_{2}(t, h)-f_{2}(t+h)}{h}=-\lim _{h \rightarrow 0} \frac{f_{2}(t+h)-f_{2}(t)}{h}=-f_{2}^{\prime}(t)=0
$$

Consequently we obtain

$$
\lim _{h \rightarrow 0} \frac{|x(t, h)-f(t+h)|}{\left|h f^{\prime}(t)\right|}=\frac{1}{2}
$$

and the proof is complete.
Given a set $E \subseteq \mathbb{R}$, denote by $|E|$ the outer Lebesgue measure of E. The notation dens (E) stands for the set of all Lebesgue-density points of E. We know that

$$
|(E \backslash \operatorname{dens} E) \cup(\operatorname{dens} E \backslash E)|=0
$$

Proposition 4.2 Assume that for almost every $0 \leqslant t \leqslant 1, D_{f} \phi[f(t)]=0$. Then for almost every $0 \leqslant t \leqslant 1$, we have $F^{\prime}(t)=0$ where $F:=\phi \circ f$.

Proof To show this, call D the set of $0 \leqslant t \leqslant 1$ at which $D_{f} \phi[f(t)]=0$ and observe that D is a set of full measure in $[0,1]$. Define for each integer k and each $t \in D$

$$
0<\delta_{k}(t):=\sup \left\{\delta>0:\left|\phi\left[f(t)+h f^{\prime}(t)\right]-\phi[f(t)]\right| \leqslant 2^{-k}|h| \text { for each }|h| \leqslant \delta\right\}
$$

and let $\delta_{k}(t)=0$ for $t \notin D$. From the identity

$$
\begin{aligned}
& \left\{0 \leqslant t \leqslant 1: \delta_{k}(t) \leqslant \alpha\right\}= \\
& \qquad \bigcap_{\substack{\delta \in \mathbb{Q} \\
\delta>\alpha}} \bigcup_{\substack{h \in \mathbb{Q} \\
\delta|h| \leqslant \delta}}\left\{0 \leqslant t \leqslant 1:|\phi[f(t+h)]-\phi[f(t)]|>2^{-k}|h|\right\}
\end{aligned}
$$

valid for each $\alpha>0$, we see that δ_{k} is a measurable function of t for each $k \in \mathbb{N}$. For $k \in \mathbb{N}$ and $l \in \mathbb{N}$, define

$$
E_{k, l}=\left\{0 \leqslant t \leqslant 1: \delta_{k}(t) \geqslant 2^{-l}\right\}
$$

Let $F_{k, l}:=\operatorname{dens}\left(E_{k, l}\right)$ for $k, l \in \mathbb{N}$, and observe that $F:=\bigcap_{k \in \mathbb{N}} \bigcup_{l \in \mathbb{N}} F_{k, l}$ has full measure in $[0,1]$.

Fix $t \in F$. By definition there exist increasing sequences $\left(k_{i}\right)$ and $\left(l_{i}\right)$ of integers such that $t \in F_{k_{i}, l_{i}}$ for each i. Observing that for h sufficiently small we have (see Lemma4.1)

$$
\frac{|F(t+h)-F(t)|}{|h|} \leqslant M \frac{|\phi[f(t+h)]-\phi[x(t, h)]|}{|f(t+h)-x(t, h)|}+M \frac{|\phi[f(t)]-\phi[x(t, h)]|}{|f(t)-x(t, h)|} .
$$

For any i we thus get

$$
\varlimsup_{\substack{c h \rightarrow 0 \\ h \in F_{k_{i}, l_{i}}-t}} \frac{|F(t+h)-F(t)|}{|h|} \leqslant 2^{-k_{i}+1} M
$$

that is, ap $\overline{\lim }_{h \rightarrow 0} \frac{|F(t+h)-F(t)|}{|h|}=0$ (here and in the sequel, we will use the particle ap to indicate that we are dealing with an approximate limit; see [2, Section 2.9.12]).

We infer from [2, Theorem 3.1.8] that F has vanishing approximate derivative almost everywhere. It follows from [3, Theorem 6.6.8] that $F^{\prime}(t)=0$ for almost every $0 \leqslant t \leqslant 1$.

4.2 Using de la Vallée Poussin's Theorem

In the case where F has bounded variation, de la Vallee Poussin's theorem [4, Chapter IV, Theorem 9.6] will allow us to prove a mean value formula for tangential derivatives.

Fix $F:[0,1] \rightarrow \mathbb{R}$. For real numbers $0 \leqslant a<b \leqslant 1$ define

$$
\underline{V}_{a}^{b} F:=\inf _{\mathcal{P}} \sum_{[c, d] \in \mathcal{P}}[F(d)-F(c)] \quad \text { and } \quad \bar{V}_{a}^{b} F:=\sup _{\mathcal{P}} \sum_{[c, d] \in \mathcal{P}}[F(d)-F(c)],
$$

where the infimum and the supremum are taken over all finite families \mathcal{P} of nonoverlapping compact intervals contained in $[a, b]$.

Define the classical variation of F on $[a, b]$ by $V_{a}^{b} F=\bar{V}_{a}^{b} F+\left|\underline{V_{a}^{b}} F\right|$.
In the case where F has bounded variation (i.e., satisfies $V_{0}^{1} F<\infty$), define an outer measure $V^{*} F$ on $[0,1]$ by

$$
V^{*} F(E)=\inf \left\{\sum_{k=0}^{\infty} V_{a_{k}}^{b_{k}} F: 0 \leqslant a_{k}<b_{k} \leqslant 1, E \subseteq \bigcup_{k \in \mathbb{N}} \operatorname{int}_{[0,1]}\left[a_{k}, b_{k}\right]\right\}
$$

where int ${ }_{[0,1]}$ means "relative interior in $[0,1]$ of".
The following lemma is the first part of de la Vallée Poussin's theorem.
Lemma 4.3 (de la Vallée Poussin, Part I) Assume that $F:[0,1] \rightarrow \mathbb{R}$ has bounded variation on $[0,1]$. Then the derivative (finite or infinite) $F^{\prime}(t)$ exists for each t outside a $V^{*} F$-negligible set.

The following proposition is an immediate corollary of Lemma4.3
Proposition 4.4 Assume that ϕ is continuous and that for each $0 \leqslant t \leqslant 1$ we have $D_{f} \phi[f(t)]=0$. Assume moreover that $F:=\phi \circ f$ has bounded variation on $[0,1]$. Then $F^{\prime}(t)=0$, except on a set having zero $V^{*} F$ measure.
Proof As in the proof on Proposition 4.2, define for $k, l \in \mathbb{N}$ a positive function δ_{k} on $[0,1]$ and measurable subsets $E_{k, l}$ of $[0,1]$. For each $k \in \mathbb{N}$ observe $[0,1]=\bigcup_{l \in \mathbb{N}} E_{k, l}$ and call $D_{k, l}$ the countable set of isolated points in $E_{k, l}$. Aslo define $D=\bigcup_{k, l \in \mathbb{N}} D_{k, l}$.

Let us associate with F a set B according to Lemma4.3 For each $t \in F:=[0,1] \backslash$ $(B \cup D)$ and for any k, l such that $t \in E_{k, l}$, observe that t is an accumulation point of $E_{k, l}$ and use Lemma4.1to infer

$$
\left|F^{\prime}(t)\right|=\lim _{\substack{h \rightarrow 0 \\ h \in E_{k, l}-t}}\left|\frac{F(t+h)-F(t)}{h}\right| \leqslant 2^{-k+1} M
$$

As k can be chosen as large as we wish, we get $F^{\prime}(t)=0$.
It suffices now to observe that $B \cup D$ is $V^{*} F$ negligible as $V^{*} F$ cannot concentrate on points (F is continuous).

Given any function F having bounded variation on $[0,1]$, define outer measures \underline{F}^{*} and \bar{F}^{*} on $[0,1]$ by

$$
\begin{aligned}
& \underline{F}^{*}(E)=\inf \left\{\sum_{k=0}^{\infty}\left[-\underline{V}_{a_{k}}^{b_{k}} F\right]: 0 \leqslant a_{k}<b_{k} \leqslant 1, E \subseteq \bigcup_{k \in \mathbb{N}} \operatorname{int}_{[0,1]}\left[a_{k}, b_{k}\right]\right\} \\
& \bar{F}^{*}(E)=\inf \left\{\sum_{k=0}^{\infty} \bar{V}_{a_{k}}^{b_{k}} F: 0 \leqslant a_{k}<b_{k} \leqslant 1, E \subseteq \bigcup_{k \in \mathbb{N}} \operatorname{int}_{[0,1]}\left[a_{k}, b_{k}\right]\right\}
\end{aligned}
$$

and define for $E \subseteq[0,1], F^{*}(E)=\bar{F}^{*}(E)-\underline{F}^{*}(E)$.

Theorem 4.5 (de la Vallée Poussin, Part II) Assume F has bounded variation on $[0,1]$ and let $E_{+}\left(\right.$resp. $\left.E_{-}\right)$denote the set of points $0 \leqslant t \leqslant 1$ at which $F^{\prime}(t)=+\infty$ (resp. $\left.F^{\prime}(t)=-\infty\right)$. For any Borel set B

$$
V^{*} F(B)=F^{*}\left(B \cap E_{+}\right)+\left|F^{*}\left(B \cap E_{-}\right)\right|+\int_{B}\left|F^{\prime}(t)\right| d t
$$

As a corollary, we get the following mean value formula.
Corollary 4.6 Assume that ϕ is continuous and that $F:=\phi \circ f$ has bounded variation. If, moreover, $D_{f} \phi[f(t)]=0$ for each $0 \leqslant t \leqslant 1$, then ϕ is constant on $\operatorname{im} f$.

Proof It suffices to observe that Proposition 4.4 and Theorem 4.5 yield

$$
V^{*} F([0,1])=\int_{0}^{1}\left|F^{\prime}(t)\right| d t=0
$$

Acknowledgments I would like to acknowledge helpful discussions with Guy David and Thierry De Pauw. It is also a pleasure to thank Thierry De Pauw for all the other mathematical discussions we have had during the past years. Finally, I am particularly grateful to the referee for his/her careful reading of this paper; his/her suggestions and comments have undoubtedly improved the present text.

References

[1] T. De Pauw, L. Moonens, and W. F. Pfeffer, Charges in middle dimensions. J. Math. Pures Appl. (9) 92(2009), no. 1, 86-112.
[2] H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, New York, 1969.
[3] W. F. Pfeffer, The Riemann approach to integration. Local geometric theory. Cambridge Tracts in Mathematics, 109, Cambridge University Press, Cambridge, 1993.
[4] S. Saks, Theory of the integral. Stechert, New York, 1937.
[5] H. Whitney, A function not constant on a connected set of critical points. Duke Math. J. 1(1935), no. 4, 514-517. doi:10.1215/S0012-7094-35-00138-7

Département de mathématique, Université catholique de Louvain, 1348 Louvain-la-neuve, Belgium e-mail: laurent.moonens@uclouvain.be

[^0]: Received by the editors October 2, 2008; revised January 9, 2009.
 Published electronically March 5, 2011.
 The author is an Aspirant of the Fonds de la Recherche Scientifique-FNRS, Belgium. This research has been partially supported by a travel grant of the Communaute française de Belgique.

 AMS subject classification: 26A24, 28A15.

