

Nonconstant Continuous Functions whose Tangential Derivative Vanishes along a Smooth Curve

Laurent Moonens

Abstract. We provide a simple example showing that the tangential derivative of a continuous function ϕ can vanish everywhere along a curve while the variation of ϕ along this curve is nonzero. We give additional regularity conditions on the curve and/or the function that prevent this from happening.

1 Introduction

In [5], H. Whitney shows that for $n \ge 1$ there exist a function $\phi \in C^{n-1}(\mathbb{R}^n)$ and a continuous (parametrized) arc $f \in C([0, 1], \mathbb{R}^n)$ so that ϕ is not constant on im f, yet $\nabla \phi[f(t)] = 0$ for each $0 \le t \le 1$. Of course such an arc f must not be rectifiable.

In this paper, we explore the possibility of constructing a continuous function $\phi \in C(\mathbb{R}^n)$ and a smooth arc $f \in C^k([0,1],\mathbb{R}^n)$ so that ϕ is not constant on im f, yet the directional derivative of ϕ at f(t) along the tangent line to f at t (called the *tangential* derivative of ϕ at f(t) along f) vanishes for each $0 \leq t \leq 1$.

In Section 2, we provide for $n \ge 3$ an example of a pair (ϕ, f) satisfying these conditions with $k = \infty$ and such that $\phi \circ f$ is monotone. This situation is not possible in the plane for $k \ge 2$, as we show in Section 4.

In Section 3 we give some sufficient conditions on the pair (f, ϕ) so that the vanishing of the tangential derivative of ϕ at f(t) along f for each $0 \le t \le 1$ implies that ϕ has zero variation on im f.

2 The Tangential Derivative

Let $f: [0,1] \to \mathbb{R}^n$ be of class C^1 , injective, regular (*i.e.*, $f'(t) \neq 0$ whenever $0 \leq t \leq 1$) and let U be an open set containing im f.

Definition 2.1 For a given $\phi: U \to \mathbb{R}$, the *upper tangential derivative* of ϕ at f(t) $(0 \le t \le 1)$ along f is the extended real number

$$\overline{D}_f \phi[f(t)] := \frac{1}{|f'(t)|} \lim_{h \to 0} \frac{\phi[f(t) + hf'(t)] - \phi[f(t)]}{h},$$

Received by the editors October 2, 2008; revised January 9, 2009.

Published electronically March 5, 2011.

The author is an Aspirant of the Fonds de la Recherche Scientifique-FNRS, Belgium. This research has been partially supported by a travel grant of the Communauté française de Belgique.

AMS subject classification: 26A24, 28A15.

whereas the *lower tangential derivative* of ϕ at f(t) ($0 \le t \le 1$) along f is defined as

$$\underline{D}_f \phi[f(t)] := \frac{1}{|f'(t)|} \lim_{h \to 0} \frac{\phi[f(t) + hf'(t)] - \phi[f(t)]}{h}$$

In the case where $\overline{D}_f \phi(x) = \underline{D}_f \phi(x)$ is a real number, we call its value the *tangential derivative* of ϕ at x along f.

Example 2.2 Let $f: [0,1] \to \mathbb{R}^3$ be the map of class C^{∞} , injective and regular, defined by the formula $f(t) = (\cos t, \sin t, t)$. For $t \in [0,1]$ we denote the tangent line to f at t by $\Lambda(t) = \{f(t) + \lambda f'(t) : \lambda \in \mathbb{R}\}$.

Claim 2.3 For $s \neq t$ in [0, 1], we have $\Lambda(s) \cap \Lambda(t) = \emptyset$.

To see this, assume that $f(s) + \lambda f'(s) = f(t) + \mu f'(t)$. This yields

$$\cos s - \lambda \sin s = \cos t - \mu \sin t,$$

$$\sin s + \lambda \cos s = \sin t + \mu \cos t,$$

$$s - t = \mu - \lambda.$$

From the two first equations, we infer

$$(\mu - \lambda)\sin(s - t) = 2 - 2\cos(s - t).$$

Replacing $\mu - \lambda$ by s - t in the previous equality, using trigonometric identities, and defining u = (s - t)/2, we get $\sin^2 u = u \sin 2u$. It follows that either u = 0 or $\tan u = u$. As 0 is the only fixed point of $\tan in [-1/2, 1/2]$, the latter condition also implies u = 0.

Let $\mathscr{F} := \bigcup_{t \in [0,1]} \Lambda(t)$, and let $p : \mathscr{F} \to [0,1]$ be the map that associates with $x \in \mathscr{F}$ the unique $t \in [0,1]$ for which one has $x \in \Lambda(t)$.

Claim 2.4 The function *p* is continuous on the closed set \mathscr{F} .

To prove that p is continuous on \mathscr{F} , assume that $(x_k)_{k \ge 1} \subseteq \mathscr{F}$ converges to $x_0 \in \mathscr{F}$. For each $k \ge 0$, let $t_k = p(x_k)$ and choose $\lambda_k \in \mathbb{R}$ for which $x_k = f(t_k) + \lambda_k f'(t_k)$. Next we show that any convergent subsequence of $(t_k)_{k \ge 1}$ converges to t_0 . Assuming that the subsequence $(t_{k_l}) \subseteq (t_k)$ converges to $0 \le t \le 1$ (and extracting again a subsequence if necessary so that (λ_{k_l}) converges to some $\lambda \in \mathbb{R}$), observe that the continuity of f and f' yields $x_0 = f(t) + \lambda f'(t)$ and hence $x_0 \in \Lambda(t)$. According to Claim 2.3 we obtain $t = t_0$.

We easily show that \mathscr{F} is a closed set using similar arguments.

For $x \in \mathscr{F}$ define $\phi(x) = p(x)$ and extend ϕ to \mathbb{R}^3 in a continuous way using the Tietze extension theorem. As ϕ is constant on $\Lambda(t)$ for each $0 \leq t \leq 1$, one has $D_f \phi[f(t)] = 0$ for each $0 \leq t \leq 1$. Yet

$$\phi[f(1)] - \phi[f(0)] = 1 - 0 = 1 > 0.$$

Remark 2.5 Using a Whitney-like extension theorem instead of Tietze's theorem (see [1]), we can extend ϕ to a continuous function in \mathbb{R}^3 that is of class C^1 outside the helix H = im f.

Let us summarize the preceding information.

Proposition 2.6 There exists a function $\phi \in C(\mathbb{R}^3)$ together with a map $f \in C^{\infty}([0,1],\mathbb{R}^3)$, injective and regular, for which the following conditions are fulfilled:

(i) ϕ is constant on $f(t) + \operatorname{span} \langle f'(t) \rangle$ for all $0 \leq t \leq 1$;

(ii) $\phi[f(t)] = t$ for each $0 \le t \le 1$ (so $F := \phi \circ f$ is continuous and increasing).

In particular, we have $D_f \phi[f(t)] = 0$ for each $0 \le t \le 1$, yet ϕ is not constant on im f.

Remark 2.7 The oscillation $osc(\phi, r)$ of $\phi: U \to \mathbb{R}$ at scale r > 0 is the extended real number

$$\operatorname{osc}(\phi, r) := \sup\{|\phi(x) - \phi(y)| : x, y \in U, |x - y| \leq r\}.$$

The oscillation of the function ϕ constructed in Example 2.2 satisfies

$$\overline{\lim_{r\to 0}} r^{-1/2} \operatorname{osc}(\phi, r) > 0.$$

This follows from the next proposition.

In the sequel, the notation [0, 1] - t stands for the set $\{h \in \mathbb{R} : t + h \in [0, 1]\}$.

Proposition 2.8 Assume that U is open and fix $\phi \in C(U)$. If

(i) $f: [0,1] \to U$ is of class $C^{1,1}$, injective and regular, (ii) for every $0 \le t \le 1$, $D_f \phi[f(t)] = 0$, and (iii) $\phi[f(t)] = t$ for $0 \le t \le 1$, then $\overline{\lim}_{r\to 0} r^{-1/2} \operatorname{osc}(\phi, r) > 0$.

Proof Let L = Lip(f') > 0 (where Lip(f') denotes the Lipschitz constant of f'). For $0 \le t \le 1$ we compute

$$|h|^{-2}|f(t+h) - f(t) - hf'(t)| = |h|^{-2} \Big| \int_{t}^{t+h} [f'(s) - f'(t)] \, ds \Big| \leq L$$

for each $h \in [0, 1] - t$. Moreover, for $t \in [0, 1]$ choose $\delta(t) > 0$ so that

$$\left|\phi[f(t) + hf'(t)] - \phi[f(t)]\right| \leq \frac{1}{2}|h|$$

whenever $h \in [0, 1] - t$ satisfies $f(t) + hf'(t) \in U$ and $|h| \leq \delta(t)$. So for $h \in [0, 1] - t$ satisfying $|h| \leq \delta(t)$, we have

$$\frac{|\phi[f(t+h)] - \phi[f(t) + hf'(t)]|}{\sqrt{|f(t+h) - f(t) - hf'(t)|}} \ge \frac{|h| - |\phi[f(t) + hf'(t)] - \phi[f(t)]|}{\sqrt{|f(t+h) - f(t) - hf'(t)|}} \ge \frac{1}{2L}.$$

The result follows as *h* can be chosen as small as we want.

Nonconstant Continuous Functions

3 Some Sufficient Conditions for a Mean Value Formula

We can avoid the situation that appears in Example 2.2 by imposing a Lipschitz condition on ϕ .

Theorem 3.1 Assume that U is open, and let $\phi \in C(U)$. If

- (i) $f: [0,1] \rightarrow U$ is of class C^1 , injective and regular,
- (ii) for every $0 \leq t \leq 1$, $\underline{D}_f \phi[f(t)] \geq 0$, and
- (iii) ϕ is Lipschitz,

then $\phi[f(1)] - \phi[f(0)] \ge 0$.

To prove Theorem 3.1, we will make use of Cousin's lemma, which essentially expresses the compactness property of closed intervals.

Lemma 3.2 (Cousin) Given real numbers a < b and a positive function $\delta: [a, b] \rightarrow (0, \infty)$, there exist real numbers $a = \alpha^0 < \alpha^1 < \cdots < \alpha^m = b$ and points $t^j \in [\alpha^{j-1}, \alpha^j], 1 \leq j \leq m$ such that $[\alpha^{j-1}, \alpha^j] \subseteq [t^j - \delta(t^j), t^j + \delta(t^j)]$ holds for each $1 \leq j \leq m$.

This lemma is a crucial tool in the study of Riemann-type integrals; the interested reader will find a (simple) proof in [3], for example.

Proof Write L = Lip(f) and introduce $M = \max_{0 \le t \le 1} |f'(t)| > 0$. Fix $\varepsilon > 0$. For each $t \in [0, 1]$, choose $\delta_1(t) > 0$ such that one has

(3.1)
$$\phi[f(t) + hf'(t)] - \phi[f(t)] \ge -\frac{\varepsilon}{2M} |f'(t)|h,$$

(3.2)
$$\phi[f(t) - hf'(t)] - \phi[f(t)] \leqslant \frac{\varepsilon}{2M} |f'(t)|h$$

whenever $h \ge 0$ is such that $f(t) \pm hf'(t) \in U$ and satisfies $|h| \le \delta_1(t)$. Also choose a real number $\delta_2(t) > 0$ for which one has

$$|f(t+\eta) - f(t) - \eta f'(t)| \leq \frac{\varepsilon}{2L+1}|\eta|,$$

whenever $\eta \in [0,1] - t$ satisfying $0 \leq |\eta| \leq \delta_2(t)$ is given. For $0 \leq t \leq 1$ define $\delta(t) = \min[\delta_1(t), \delta_2(t)]$. According to Cousin's lemma (Lemma 3.2) find $0 = \alpha^0 < \alpha^1 < \alpha^2 < \cdots < \alpha^m = 1$ together with points $t^j \in [\alpha^{j-1}, \alpha^j], 1 \leq j \leq m$ for which $[\alpha^{j-1}, \alpha^j] \subseteq [t^j - \delta(t^j), t^j + \delta(t^j)]$ holds for each $1 \leq j \leq m$. As ϕ is Lipschitz, we compute for $1 \leq j \leq m$

$$(3.3) \ \phi[f(\alpha^{j})] - \phi[f(t^{j}) + (\alpha^{j} - t^{j})f'(t^{j})] \ge -\frac{\varepsilon L}{2L+1}(\alpha^{j} - t^{j}) \ge -\frac{1}{2}\varepsilon(\alpha^{j} - t^{j}),$$

and similarly

(3.4)
$$\phi[f(t^{j}) - (t^{j} - \alpha^{j-1})f'(t^{j})] - \phi[f(\alpha^{j-1})] \ge -\frac{1}{2}\varepsilon(t^{j} - \alpha^{j}).$$

Moreover, (3.1) and (3.2) yield

(3.5)
$$\phi[f(t^j) + (\alpha^j - t^j)f'(t^j)] - \phi[f(t^j)] \ge -\frac{\varepsilon M}{2M}(\alpha^j - t^j) = -\frac{1}{2}\varepsilon(\alpha^j - t^j).$$

and similarly

(3.6)
$$\phi[f(t^{j})] - \phi[f(t^{j}) - (t^{j} - \alpha^{j-1})f'(t^{j})] \ge -\frac{1}{2}\varepsilon = (t^{j} - \alpha^{j-1}).$$

Fitting (3.3), (3.4), (3.5), and (3.6) together, we get

$$\phi[f(\alpha^{j})] - \phi[f(\alpha^{j-1})] \ge -\varepsilon(\alpha^{j} - \alpha^{j-1});$$

we complete the proof by adding those inequalities obtained for j = 1, ..., m and letting $\varepsilon \to 0$.

Whenever f' is Lipschitz, one can weaken the last condition in Theorem 3.1.

Theorem 3.3 Assume that U is open and fix $\phi \in C(U)$. If

- (i) $f: [0,1] \rightarrow U$ is of class $C^{1,1}$, injective and regular,
- (ii) for every $x \in \text{im } f$, $\underline{D}_f \phi(x) \ge 0$, and
- (iii) $\overline{\lim}_{r\to 0} \left[r^{-1/2} \operatorname{osc}(\phi, r) \right] = 0,$
- *then* $\phi[f(1)] \phi[f(0)] \ge 0$.

Proof Let L = Lip(f') and assume L > 0. As in the proof of Proposition 2.8, one observes

$$|h|^{-2}|f(t+h) - f(t) - hf'(t)| \leq L$$

holds for each $h \in [0,1] - t$. Let $M = \max_{0 \le t \le 1} |f'(t)| > 0$, fix $0 < \varepsilon \le 1$, and choose r > 0 such that

$$|\phi(\mathbf{x}) - \phi(\mathbf{y})| \leq \frac{\varepsilon}{2\sqrt{L}} |\mathbf{x} - \mathbf{y}|^{1/2}$$

holds whenever $x, y \in U$ satisfy $|x-y| \leq r$. For each $0 \leq t \leq 1$, let $\delta_1(t) > 0$ be such that (3.1) and (3.2) hold whenever $h \geq 0$ is such that $f(t) \pm hf'(t) \in U$ and satisfies $|h| \leq \delta_1(t)$. For $0 \leq t \leq 1$ define $\delta(t) = \min[r^{1/2}M^{-1/2}, \delta_1(t), \delta_2(t)]$, find real numbers $\alpha^j, 0 \leq j \leq m$ and points t^j as in the proof of Theorem 3.1. Decomposing $\phi[f(\alpha^j)] - \phi[f(\alpha^{j-1})]$ as in the same proof, we get the estimates (3.5) and (3.6). Observe that

$$|f(\alpha^{j}) - f(t^{j}) - (\alpha^{j} - t^{j})f'(t^{j})| \leq L(\alpha^{j} - t^{j})^{2} \leq r,$$

so that we have

$$\begin{split} \phi[f(\alpha^j)] - \phi[f(t^j) + (\alpha^j - t^j)f'(t^j)] \geqslant -\frac{\varepsilon}{2\sqrt{L}} [L(\alpha^j - t^j)^2]^{1/2} \\ = -\frac{1}{2}\varepsilon(\alpha^j - t^j) \end{split}$$

Nonconstant Continuous Functions

Similarly one shows

$$\phi[f(t^j) - (t^j - \alpha^{j-1})f'(t^j)] - \phi[f(\alpha^{j-1})] \ge -\frac{1}{2}\varepsilon(t^j - \alpha^j).$$

One finishes the argument as in the proof of Theorem 3.1.

From the preceding statements we arrive at the following corollary.

Corollary 3.4 Assume that U is open and that $f \in C^1([0,1],U)$ is injective and regular. Assume moreover that $D_f \phi[f(t)] = 0$ for each $0 \le t \le 1$. If one of the following conditions is fulfilled, then ϕ is constant on im f:

(ii) f' is Lipschitz and $\overline{\lim}_{r\to 0} r^{-1/2} \operatorname{osc}(\phi, r) = 0$.

Proof Fix $0 \le s < t \le 1$ and define a map $\varphi : [0,1] \to [s,t]$ by $\varphi(\xi) = s + (t-s)\xi$. Apply Theorem 3.1 or 3.3 to $f \circ \varphi$ and ϕ (resp. $-\phi$) to get $\phi[f(t)] \ge \phi[f(s)]$ (resp. $\phi[f(t)] \le \phi[f(s)]$). As s < t are arbitrary we conclude that ϕ is constant on im f.

In the plane, we cannot provide an analogue of Example 2.2.

4 The Planar Case

Set the following for this entire section: we have a curve $f \in C^2([0, 1], \mathbb{R}^2)$ satisfying $f'(t) \neq 0$ for each $0 \leq t \leq 1$ and a function $\phi \in C(\mathbb{R}^2)$. We also assume that f has nonzero normal curvature everywhere, *i.e.*, that f''(t) is not collinear with f'(t) for every $0 \leq t \leq 1$.

4.1 About the Existence of Curvilinear Derivatives

Let us state and prove an easy geometrical fact.

Lemma 4.1 Fix $0 \le t \le 1$. For each $h \in [0,1] - t$ sufficiently small, the tangent lines to f at t and t + h intersect at x(t, h) and

$$\max\{|f(t) - x(t,h)|, |f(t+h) - x(t,h)|\} \leq M|h|,$$

where $M := \max_{0 \le t \le 1} |f'(t)|$.

Proof Without loss of generality, assume

$$f(t) = (0,0), \quad f'(t) = (f'_1(t),0) \neq 0 \text{ and } f''(t) = (f''_1(t), f''_2(t))$$

with $f_2^{\prime\prime}(t) \neq 0$. Choose $\eta > 0$ such that

$$\min_{\substack{ch \in [0,1]-t \\ |h| \leq \eta}} |f_2''(t+h)| > 0,$$

⁽i) ϕ is Lipschitz;

L. Moonens

and assume $h \in [0, 1] - t$ satisfies $|h| \leq \eta$. The coordinates of the point $x(t, h) = (x_1(t, h), x_2(t, h))$ are given by

$$x_1(t,h) = f_1(t+h) - f_1'(t+h) \frac{f_2(t+h)}{f_2'(t+h)}$$
 and $x_2(t,h) = 0.$

Also choose $\delta > 0$ such that for each $h \in [0, 1] - t$ verifying $|h| \leq \delta$, one can find points θ_h and ϑ_h in [0, 1] for which

$$f_2'(t+h) = h f_2''(t+\theta_h h)$$
 and $f_2(t+h) = \frac{1}{2} h^2 f_2''(t+\vartheta_h h)$.

For $h \in [0,1] - t$ satisfying $|h| \leq \min\{\eta, \delta\}$, compute

$$x_1(t,h) = f_1(t+h) - \frac{1}{2}hf_1'(t+h)\frac{f_2''(t+\vartheta_h h)}{f_2''(t+\vartheta_h h)}, \quad x_2(t,h) = 0$$

and

$$\frac{x_1(t,h) - f_1(t)}{hf_1'(t)} = \frac{1}{f_1'(t)} \frac{f_1(t+h) - f_1(t)}{h} = -\frac{1}{2} \frac{f_1'(t+h)}{f_1'(t)} \frac{f_2''(t+\vartheta_h h)}{f_2''(t+\theta_h h)}$$

Thus we get

$$\lim_{h \to 0} \frac{|x(t,h) - f(t)|}{|hf'(t)|} = \left| \lim_{h \to 0} \frac{x_1(t,h) - f_1(t)}{hf_1'(t)} \right| = \frac{1}{2}.$$

On the other hand, compute for $h \in [0, 1] - t$ satisfying $|h| \leq \min\{\eta, \delta\}$

$$\lim_{h \to 0} \frac{x_1(t,h) - f_1(t+h)}{h} = -\lim_{h \to 0} \frac{1}{2} f_1'(t+h) \frac{f_2''(t+\vartheta_h h)}{f_2''(t+\theta_h h)} = -\frac{1}{2} f_1'(t),$$

and from $f_2(t) = 0$ we get

$$\lim_{h \to 0} \frac{x_2(t,h) - f_2(t+h)}{h} = -\lim_{h \to 0} \frac{f_2(t+h) - f_2(t)}{h} = -f_2'(t) = 0$$

Consequently we obtain

$$\lim_{h \to 0} \frac{|x(t,h) - f(t+h)|}{|hf'(t)|} = \frac{1}{2},$$

and the proof is complete.

Given a set $E \subseteq \mathbb{R}$, denote by |E| the outer Lebesgue measure of E. The notation dens(E) stands for the set of all Lebesgue-density points of E. We know that

$$|(E \setminus \operatorname{dens} E) \cup (\operatorname{dens} E \setminus E)| = 0.$$

Nonconstant Continuous Functions

Proposition 4.2 Assume that for almost every $0 \le t \le 1$, $D_f \phi[f(t)] = 0$. Then for almost every $0 \le t \le 1$, we have F'(t) = 0 where $F := \phi \circ f$.

Proof To show this, call *D* the set of $0 \le t \le 1$ at which $D_f \phi[f(t)] = 0$ and observe that *D* is a set of full measure in [0, 1]. Define for each integer *k* and each $t \in D$

$$0 < \delta_k(t) := \sup\{\delta > 0 : |\phi[f(t) + hf'(t)] - \phi[f(t)]| \leq 2^{-k}|h| \text{ for each } |h| \leq \delta\},\$$

and let $\delta_k(t) = 0$ for $t \notin D$. From the identity

$$\{0 \leqslant t \leqslant 1 : \delta_k(t) \leqslant \alpha\} = \bigcap_{\substack{\delta \in \mathbb{Q} \\ \delta > \alpha \ |h| \leqslant \delta}} \bigcup_{\substack{h \in \mathbb{Q} \\ \delta > \alpha}} \{0 \leqslant t \leqslant 1 : |\phi[f(t+h)] - \phi[f(t)]| > 2^{-k}|h|\}$$

valid for each $\alpha > 0$, we see that δ_k is a measurable function of t for each $k \in \mathbb{N}$. For $k \in \mathbb{N}$ and $l \in \mathbb{N}$, define

$$E_{k,l} = \{ 0 \leqslant t \leqslant 1 : \delta_k(t) \ge 2^{-l} \}.$$

Let $F_{k,l} := \text{dens}(E_{k,l})$ for $k, l \in \mathbb{N}$, and observe that $F := \bigcap_{k \in \mathbb{N}} \bigcup_{l \in \mathbb{N}} F_{k,l}$ has full measure in [0, 1].

Fix $t \in F$. By definition there exist increasing sequences (k_i) and (l_i) of integers such that $t \in F_{k_i,l_i}$ for each *i*. Observing that for *h* sufficiently small we have (see Lemma 4.1)

$$\frac{|F(t+h) - F(t)|}{|h|} \leqslant M \frac{|\phi[f(t+h)] - \phi[x(t,h)]|}{|f(t+h) - x(t,h)|} + M \frac{|\phi[f(t)] - \phi[x(t,h)]|}{|f(t) - x(t,h)|}.$$

For any *i* we thus get

$$\overline{\lim_{\substack{ch\to 0\\h\in F_{k_i,l_i}-t}}}\frac{|F(t+h)-F(t)|}{|h|}\leqslant 2^{-k_i+1}M,$$

that is, ap $\overline{\lim}_{h\to 0} \frac{|F(t+h)-F(t)|}{|h|} = 0$ (here and in the sequel, we will use the particle ap to indicate that we are dealing with an *approximate limit*; see [2, Section 2.9.12]).

We infer from [2, Theorem 3.1.8] that *F* has vanishing approximate derivative almost everywhere. It follows from [3, Theorem 6.6.8] that F'(t) = 0 for almost every $0 \le t \le 1$.

4.2 Using de la Vallée Poussin's Theorem

In the case where *F* has bounded variation, de la Vallée Poussin's theorem [4, Chapter IV, Theorem 9.6] will allow us to prove a mean value formula for tangential derivatives.

L. Moonens

Fix $F: [0,1] \to \mathbb{R}$. For real numbers $0 \le a < b \le 1$ define

$$\underline{V}_{a}^{b}F := \inf_{\mathcal{P}} \sum_{[c,d] \in \mathcal{P}} [F(d) - F(c)] \text{ and } \overline{V}_{a}^{b}F := \sup_{\mathcal{P}} \sum_{[c,d] \in \mathcal{P}} [F(d) - F(c)],$$

where the infimum and the supremum are taken over all finite families \mathcal{P} of nonoverlapping compact intervals contained in [a, b].

Define the *classical variation* of *F* on [a, b] by $V_a^b F = \overline{V}_a^b F + |\underline{V}_a^b F|$.

In the case where F has bounded variation (*i.e.*, satisfies $V_0^1 F < \infty$), define an outer measure V^*F on [0, 1] by

$$V^*F(E) = \inf \left\{ \sum_{k=0}^{\infty} V_{a_k}^{b_k} F : 0 \leqslant a_k < b_k \leqslant 1, E \subseteq \bigcup_{k \in \mathbb{N}} \operatorname{int}_{[0,1]}[a_k, b_k] \right\},$$

where $int_{[0,1]}$ means "relative interior in [0,1] of".

The following lemma is the first part of de la Vallée Poussin's theorem.

Lemma 4.3 (de la Vallée Poussin, Part I) Assume that $F: [0,1] \rightarrow \mathbb{R}$ has bounded variation on [0,1]. Then the derivative (finite or infinite) F'(t) exists for each t outside a V*F-negligible set.

The following proposition is an immediate corollary of Lemma 4.3.

Proposition 4.4 Assume that ϕ is continuous and that for each $0 \le t \le 1$ we have $D_f \phi[f(t)] = 0$. Assume moreover that $F := \phi \circ f$ has bounded variation on [0, 1]. Then F'(t) = 0, except on a set having zero V^*F measure.

Proof As in the proof on Proposition 4.2, define for $k, l \in \mathbb{N}$ a positive function δ_k on [0, 1] and measurable subsets $E_{k,l}$ of [0, 1]. For each $k \in \mathbb{N}$ observe $[0, 1] = \bigcup_{l \in \mathbb{N}} E_{k,l}$ and call $D_{k,l}$ the countable set of isolated points in $E_{k,l}$. Aslo define $D = \bigcup_{k,l \in \mathbb{N}} D_{k,l}$.

Let us associate with *F* a set *B* according to Lemma 4.3. For each $t \in F := [0, 1] \setminus (B \cup D)$ and for any *k*, *l* such that $t \in E_{k,l}$, observe that *t* is an accumulation point of $E_{k,l}$ and use Lemma 4.1 to infer

$$|F'(t)| = \lim_{\substack{h \to 0\\h \in E_{k,l}-t}} \left| \frac{F(t+h) - F(t)}{h} \right| \leq 2^{-k+1}M.$$

As k can be chosen as large as we wish, we get F'(t) = 0.

It suffices now to observe that $B \cup D$ is V^*F negligible as V^*F cannot concentrate on points (*F* is continuous).

Given any function *F* having bounded variation on [0, 1], define outer measures \underline{F}^* and \overline{F}^* on [0, 1] by

$$\underline{F}^*(E) = \inf\left\{\sum_{k=0}^{\infty} \left[-\underline{V}_{a_k}^{b_k}F\right] : 0 \leqslant a_k < b_k \leqslant 1, E \subseteq \bigcup_{k \in \mathbb{N}} \operatorname{int}_{[0,1]}[a_k, b_k]\right\}$$
$$\overline{F}^*(E) = \inf\left\{\sum_{k=0}^{\infty} \overline{V}_{a_k}^{b_k}F : 0 \leqslant a_k < b_k \leqslant 1, E \subseteq \bigcup_{k \in \mathbb{N}} \operatorname{int}_{[0,1]}[a_k, b_k]\right\};$$

and define for $E \subseteq [0, 1]$, $F^*(E) = \overline{F}^*(E) - \underline{F}^*(E)$.

Theorem 4.5 (de la Vallée Poussin, Part II) Assume F has bounded variation on [0, 1] and let E_+ (resp. E_-) denote the set of points $0 \le t \le 1$ at which $F'(t) = +\infty$ (resp. $F'(t) = -\infty$). For any Borel set B

$$V^*F(B) = F^*(B \cap E_+) + |F^*(B \cap E_-)| + \int_B |F'(t)| \, dt.$$

As a corollary, we get the following mean value formula.

Corollary 4.6 Assume that ϕ is continuous and that $F := \phi \circ f$ has bounded variation. If, moreover, $D_f \phi[f(t)] = 0$ for each $0 \le t \le 1$, then ϕ is constant on im f.

Proof It suffices to observe that Proposition 4.4 and Theorem 4.5 yield

$$V^*F([0,1]) = \int_0^1 |F'(t)| \, dt = 0.$$

Acknowledgments I would like to acknowledge helpful discussions with Guy David and Thierry De Pauw. It is also a pleasure to thank Thierry De Pauw for all the other mathematical discussions we have had during the past years. Finally, I am particularly grateful to the referee for his/her careful reading of this paper; his/her suggestions and comments have undoubtedly improved the present text.

References

- [1] T. De Pauw, L. Moonens, and W. F. Pfeffer, *Charges in middle dimensions*. J. Math. Pures Appl. (9) **92**(2009), no. 1, 86–112.
- H. Federer, *Geometric measure theory*. Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, New York, 1969.
- [3] W. F. Pfeffer, *The Riemann approach to integration. Local geometric theory.* Cambridge Tracts in Mathematics, 109, Cambridge University Press, Cambridge, 1993.
- [4] S. Saks, Theory of the integral. Stechert, New York, 1937.
- H. Whitney, A function not constant on a connected set of critical points. Duke Math. J. 1(1935), no. 4, 514–517. doi:10.1215/S0012-7094-35-00138-7

Département de mathématique, Université catholique de Louvain, 1348 Louvain-la-neuve, Belgium e-mail: laurent.moonens@uclouvain.be