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Central Extensions of Loop Groups and
Obstruction to Pre-Quantization

Derek Krepski

Abstract. An explicit construction of a pre-quantum line bundle for the moduli space of flat G-bundles

over a Riemann surface is given, where G is any non-simply connected compact simple Lie group. This

work helps to explain a curious coincidence previously observed between Toledano Laredo’s work

classifying central extensions of loop groups LG and the author’s previous work on the obstruction to

pre-quantization of the moduli space of flat G-bundles.

1 Introduction

The moduli space M(Σ) of flat G-bundles over a surface Σ with one boundary com-

ponent is known to admit a pre-quantization at integer levels1 when the structure

group G is a simply connected compact simple Lie group. If the structure group is

not simply connected, however, integrality of the level does not guarantee the exis-

tence of a pre-quantization. It was found in [5] that for non-simply connected G,

M(Σ) admits a pre-quantization if and only if the underlying level is an integer mul-

tiple of l0(G) listed in Table 1.1 for all non-simply connected, compact, simple Lie

groups G.

G
SU (n)/Zk PSp(n) SO(n) PO(2n) Ss(4n) PE6 PE7

n ≥ 2 n ≥ 1 n ≥ 7 n ≥ 4 n ≥ 2

l0(G) ordk( n
k

)
1, n even

1
2, n even 1, n even

3 2
2, n odd 4, n odd 2, n odd

Table 1.1: The integer l0(G). Here, ordk(x) denotes the order of x mod k in Zk = Z/kZ.

A curiosity observed in [5] is that the integer l0(G) also appears in Toledano

Laredo’s work [9], which classifies positive energy projective representations of loop

groups LG for non-simply connected, compact, simple Lie groups G. To be more

specific, Toledano Laredo classifies central extensions

1 → U (1) → L̂G → LG → 1,
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1The level l > 0 encodes a choice of invariant inner product on the simple Lie algebra g of G.
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showing they can only exist at levels that are integer multiples of the so-called basic

level lb(G), which is then computed for each non-simply connected G (see [9, Propo-

sition 3.5]). By inspection, it is easy to see that l0(G) = lb(G), and this paper aims to

understand this coincidence.

The main result of this work, which helps to account for the observed coincidence,

is an explicit construction of a pre-quantum line bundle over the moduli space M(Σ)

of flat G-bundles in the case when the structure group G is non-simply connected.

The construction is an extension of the well-known constructions in the case when

G is simply connected (see [6,8]). It also appears in [1] for non-simply connected G,

although using unnecessary assumptions on the underyling level. The necessary and

sufficient condition for pre-quantization, found in [5], is that the underlying level

must be an integer multiple of l0(G). Using the equality l0(G) = lb(G), we show that

the construction appearing in [1] applies at these levels.

The obstruction to applying this construction of the pre-quantum line bundle in

the case of non-simply connected structure group G is related to a central extension

(1.1) 1 → U (1) → Γ̂ → Γ → 1,

where Γ ∼= π1(G) × π1(G) (see (4.4) in). The proof of Theorem 4.2 shows that this

extension is trivial precisely when the underlying level is an integer multiple of the

basic level lb(G). As a consequence, when the level is an integer multiple of the basic

level, the well-known construction of the pre-quantum line bundle applies.

This paper is organized as follows. Section 2 reviews some of the relevant back-

ground material about loop groups and establishes some notation used throughout

the paper. Section 3 reviews the construction of the moduli space, paying special

attention to the fact that the underlying structure group is not simply connected. Fi-

nally, Section 4 contains the main results of this work, which include a careful study

of the central extensions of the gauge groups and Theorem 4.2 whose proof shows

that non-triviality of the central extension (1.1) is the obstruction to constructing

the pre-quantum line bundle. This last section also contains the construction of the

pre-quantum line bundle under the conditions when the above central extension is

trivial.

2 Preliminaries and Notation

In this section, we establish notation that will be used in the rest of this paper and

review some relevant background material.

Let G be a simply connected, compact, simple Lie group with Lie algebra g, and

let T ⊂ G be a maximal torus with Lie algebra t ⊂ g. For a non-trivial subgroup Z

of the center Z(G), let G ′
= G/Z with maximal torus T ′

= T/Z, which identifies

the quotient map π : G → G ′ as the universal covering homomorphism, and Z ∼=
π1(G ′). (Recall that all non-simply connected, compact, simple Lie groups G ′ are of

this form.)

Let Λ = ker expT be the integer lattice for G, and let Λ ′
= ker expT ′ be the integer

lattice for G ′, so that Λ ⊂ Λ
′ and Z ∼= Λ

′/Λ.
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Let B( · , · ) denote the basic inner product, the invariant inner product on g nor-

malized to make short co-roots have length
√

2.

Following [6], throughout this paper we fix a real number s > 1. For a given

manifold X (possibly with boundary) and p ≤ dim X, let Ωp(X; g) be the space of

g-valued p-forms on X of Sobolev class s − p + dim X/2. For a compact Lie group

K with Lie algebra k, the space Ω
0(X; k) = Map(X, k) is the Lie algebra of the group

Map(X,K) of maps of Soboloev class s + dim X/2.

Loop Groups and Central Extensions

For a compact Lie group K with Lie algebra k, let LK denote the (free) loop space

Map(S1,K), viewed as an infinite dimensional Lie group, with Lie algebra Lk =

Map(S1, k).

Given an invariant inner product ( · , · ) on k, define the central extension L̂k :=

Lk ⊕ R with Lie bracket

[
(ξ1, t1), (ξ2, t2)

]
:=

(
[ξ1, ξ2],

∫

S1

(ξ1, dξ2)
)
.

If it exists, let L̂K denote a U (1)-central extension of LK with Lie algebra L̂k.

For K = G, it is well known (see [7, Theorem 4.4.1]) that central extensions L̂G

are classified by their level l—the unique multiple of the basic inner product that

coincides with the chosen inner product—which is required to be a positive integer.

(Since G is simple, any invariant inner product on g is necessarily of the form lB( · , · )

for some l > 0, called the level.)

For K = G ′, however, central extensions L̂G ′ are classified by their level l, which

is required to be an integer multiple of lb(G ′), and a character χ : Z → U (1) (see

[9, Proposition 3.4]). The integer lb(G ′) is defined as follows.

Definition 2.1 Let G ′ be a compact simple Lie group with integer lattice Λ
′. The

basic level lb(G ′) is the smallest integer l such that the restriction of lB( · , · ) to Λ
′ is

integral.

As mentioned in the introduction, lb(G ′) = l0(G ′), which appears in Table 1.1 for

each non-simply connected, compact, simple Lie group G ′.

Let Lg∗ = Ω
1(S1; g), sometimes called the smooth dual of Lg. The pairing

Lg × Lg∗ → R given by (ξ,A) 7→
∫

S1 (ξ,A) induces an inclusion Lg∗ ⊂ (Lg)∗. Ad-

ditionally, define L̂g
∗

:= Lg∗ ⊕ R and consider the pairing L̂g × L̂g
∗ → R given

by
(

(ξ, a), (A, t)
)
=

∫

S1

(ξ,A) + at.

Since the central subgroup U (1) ⊂ L̂G acts trivially on L̂g, the coadjoint rep-

resentation of L̂G factors through LG. The coadjoint action of LG on L̂g
∗

is (see

[7, Proposition 4.3.3]),

g · (A, t) =
(

Adg(A) − tg∗θR, t
)
,
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where θR denotes the right-invariant Maurer–Cartan form on G.

Notice that for each real number λ, the hyperplanes t = λ are fixed. Identifying

Lg∗ with Lg∗ × {λ} ⊂ L̂g
∗

yields an action of LG on Lg∗, called the (affine) level λ
action.

3 The Moduli Space of Flat Connections M ′(Σ)

In this section, we review the construction of the moduli space of flat connections

following [1], with special attention to the case where G ′ is a non-simply connected,

compact, simple Lie group. The reader may wish to consult [1,2,6] and the references

therein for more details.

Let Σ denote a compact oriented surface of genus h with 1 boundary component.

The affine space of connections A(Σ) = Ω
1(Σ, g) on the trivial G ′-bundle over Σ

admits an action of Map(Σ,G ′), the space of maps g : Σ → G ′, by gauge transfor-

mations g · A = AdgA − g∗θR. The kernel of the restriction map

Map(Σ,G ′) → Map(∂Σ,G ′), g 7→ g|∂Σ
will be denoted Map∂(Σ,G ′). Define the moduli space of flat G ′-connections up

gauge transformations whose restriction to ∂Σ is trivial by

M
′(Σ) := Aflat(Σ)/Map∂(Σ,G ′).

The Atiyah–Bott [2] symplectic structure on M
′(Σ) is obtained by symplectic re-

duction (as in [4, Chapter 23]), viewing the moduli space as a symplectic quotient of

the affine space of connections A(Σ). Recall that the affine space A(Σ) carries a sym-

plectic form ωA(a1, a2) =
∫
Σ

lB(a1, a2) and a Hamiltonian action of Map∂(Σ,G ′)

with momentum map the curvature; therefore, the zero level set of the moment map

is the space of flat connections Aflat(Σ), and hence the resulting symplectic quotient

is the moduli space M ′(Σ).

The moduli space M ′(Σ) carries an action by LG that can be described as follows.

For g ∈ Map(Σ,G ′), the restriction g|∂Σ is a contractible loop in G ′, since π1(G ′) is

Abelian and ∂Σ is homotopic to a product of commutators
∏

aibia
−1
i b−1

i for loops

ai , bi representing generators of π1(Σ). Thus the restriction map takes values in the

identity component Map0(∂Σ,G ′), which, after choosing a parametrization ∂Σ ∼=
S1, can be identified with the identity component L0G ′ of the loop group LG ′. The

LG action on M
′(Σ) is then defined using the natural projection Lπ : LG → LG ′ that

takes values in L0G ′, and the identification Map(Σ,G ′)/Map∂(Σ,G ′) ∼= L0G ′. The

LG action is Hamiltonian, with momentum map Φ
′ : M ′(Σ) → Lg∗ given by pulling

back the connection to the boundary.

The corresponding moduli space M(Σ) = Aflat/Map∂(Σ,G) with simply con-

nected structure group G is a finite covering of M ′(Σ). This is a consequence of the

following proposition found in [1].

Proposition 3.1 The following sequences are exact:

1 → Z → Map(Σ,G) → Map(Σ,G ′) → Z2h → 1,(3.1)

1 → Map∂(Σ,G) → Map∂(Σ,G ′) → Z2h → 1.(3.2)
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In sequences (3.1) and (3.2), the maps into Z2h are defined by sending g 7→
g♯ in Hom(π1(Σ), π1(G ′)) ∼= Z2h. Since A ∈ A(Σ) may be viewed as either a

G-connection or a G ′-connection on the corresponding trivial bundle over Σ, the

moduli space M(Σ) admits a residual Z2h ∼= Map∂(Σ,G ′)/Map∂(Σ,G) action, iden-

tifying M
′(Σ) = M(Σ)/Z2h. Also, the momentum map Φ : M(Σ) → Lg∗ is clearly

invariant under the Z2h-action and descends to the momentum map Φ
′ : M ′(Σ) →

Lg∗ above. Viewed this way, Φ ′ sends an equivalence class of G ′-connections to its

restriction to the boundary, considered as a G-connection on ∂Σ.

For µ ∈ Lg∗, the symplectic quotient

M(Σ)µ := Φ
−1(LG · µ)/LG

represents the moduli space of flat connections on the trivial G bundle over Σ whose

restriction to the boundary is gauge equivalent to µ. Equivalently, M(Σ)µ is the

moduli space of flat connections on the trivial G-bundle whose holonomy along

the boundary is conjugate to Hol(µ). Similarly, the symplectic quotient M ′(Σ)µ =

(Φ ′)−1(LG · µ)/LG represents the moduli space of flat connections on the trivial

G ′-bundle over Σ whose holonomy along the boundary, when viewed as a G-con-

nection on ∂Σ, is conjugate to Hol(µ).

The connected components of the moduli space of flat G ′-bundles over a closed

surface may then be described in terms of the symplectic quotients M
′(Σ)µ with

Hol(µ) ∈ Z. To see this, let Σ̂ be the closed surface obtained by gluing a disc D to

Σ by identifying boundaries. Recall that there is a bijective correspondence between

isomorphism classes of principal G ′-bundles P → Σ̂ and π1(G ′) ∼= Z: every such

bundle P → Σ̂ is isomorphic to one that can be constructed by gluing together trivial

bundles over both Σ and D with some transition function f : S1
= Σ ∩ D → G ′. By

[3, Proposition 4.33], the holonomy around ∂Σ of a flat connection on P coincides

with [ f ] ∈ π1(G ′) ∼= Z. It follows that the moduli space MG ′(Σ̂) of flat G ′-bundles

over a closed surface Σ̂ up to gauge transformations may be written as the (disjoint)!

union of the symplectic quotients M ′(Σ)µ, where Hol(µ) ∈ Z.

4 The Pre-Quantum Line Bundle L ′(Σ) → M
′(Σ)

In this section, we construct a pre-quantum line bundle L ′(Σ) → M
′(Σ), which is

an adaptation of a well-known construction in the case where the underlying struc-

ture group is simply connected (see [6, 8]). The construction appears in [1] (using

unnecessary assumptions on the underlying level). The main contribution here is

to verify that this construction applies under the necessary and sufficient conditions

obtained in [5]. For simplicity, we consider the case of genus h = 1.

Central Extensions of the Gauge Group

An important part of the construction of the pre-quantum line bundle is a careful

discussion of certain central extensions of various gauge groups.

Recall that the cocycle defined by the formula c(g1, g2) = exp iπ
∫
Σ

lB(g∗1 θ
L, g∗2 θ

R)
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defines central extensions

(4.1)
1 → U (1) → M̂ap(Σ,G) → Map(Σ,G) → 1,

1 → U (1) → M̂ap(Σ,G ′) → Map(Σ,G ′) → 1.

It is known (see [6, p. 431]) that when l is an integer, the restriction of the central ex-

tension M̂ap(Σ,G) to the subgroup Map∂(Σ,G) is trivial; that is, the exact sequence

(4.2) 1 → U (1) → M̂ap∂(Σ,G) → Map∂(Σ,G) → 1

splits, and we may view Map∂(Σ,G) as a subgroup of M̂ap(Σ,G).

More precisely, the section σ : Map∂(Σ,G) → M̂ap∂(Σ,G), g 7→ (g, α(g)) com-

posed with the inclusion M̂ap∂(Σ,G) →֒ M̂ap(Σ,G) embeds Map∂(Σ,G) as a nor-

mal subgroup in M̂ap(Σ,G), where α : Map∂(Σ,G) → U (1) is defined as follows.

For g ∈ Map∂(Σ,G), choose a homotopy H : Σ × [0, 1] → G with H0 = g, H1 = e

and Ht |∂Σ = e for 0 ≤ t ≤ 1 and define

α(g) = exp
−iπ

6
· l

∫

Σ×[0,1]

H∗η,

where η = B(θL, [θL, θL]) denotes the canonical invariant 3-form on G. It is straight-

forward to check that α is well defined and satisfies the coboundary relation

α(g1g2) = α(g1)α(g2)c(g1, g2)

so that σ is indeed a section. That we may view Map∂(Σ,G) as a normal subgroup of

M̂ap(Σ,G) is also straightforward (cf. Lemma 4.1 and the proof of Corollary 4.3).

Therefore, one obtains the central extension

1 → U (1) → M̂ap(Σ,G)/Map∂(Σ,G) → LG → 1

using the identification LG ∼= Map(Σ,G)/Map∂(Σ,G).

Assume that l is an integer. Under additional restrictions on l described in Theo-

rem 4.2, the same holds for the central extension M̂ap(Σ,G ′) in (4.1) and we obtain

a central extension

1 → U (1) → M̂ap(Σ,G ′)/Map∂(Σ,G ′) → L0G ′ → 1

using the identification L0G ′ ∼= Map(Σ,G ′)/Map∂(Σ,G ′).

Lemma 4.1 Let M̂ap∂(Σ,G ′) denote the restriction of the central extension (4.1) to

Map∂(Σ,G ′). Using the section σ : Map∂(Σ,G) → M̂ap∂(Σ,G) above and the inclu-

sion M̂ap∂(Σ,G) → M̂ap∂(Σ,G ′) induced from the inclusion in (3.2), we may embed

Map∂(Σ,G) as a normal subgroup in M̂ap∂(Σ,G ′).
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Proof The inclusion Map∂(Σ,G) → M̂ap∂(Σ,G ′) is given by g 7→ (πg, α(g)), where

π : G → G ′ is the universal covering homomorphism. To verify that this includes

Map∂(Σ,G) as a normal subgroup, a direct calculation shows that it suffices to verify

that for g ∈ Map∂(Σ,G) and h ∈ Map∂(Σ,G ′),

α(hπgh−1) = c(h, πgh−1)c(πg, h−1)α(g).(4.3)

(Note that c(h, h−1) = 1, since (h∗θL, (h−1)∗θR) = −h∗(θL, θL) = 0.) Note that

hπgh−1 is clearly in Map∂(Σ,G) (using the inclusion of (3.2)) so that α(hπgh−1) is

defined.

To compute α(hπgh−1), let F : Σ × [0, 1] → G be a homotopy for g such that

F0 = g, F1 = e, and Ft |∂Σ = e and let H : Σ × [0, 1] → G ′ be the homotopy

H(p, t) = h(p)πF(p, t)h(p)−1. Since π : G → G ′ is a covering projection, we may

lift H to a homotopy H̃ : Σ× [0, 1] → G, and find that

α(hπgh−1) = exp
−iπ

6
· l

∫

Σ×[0,1]

H̃∗η = exp
−iπ

6
· l

∫

Σ×[0,1]

(hπFh−1)∗η.

A direct calculation now verifies that equation (4.3) holds. (See the proof of Corol-

lary 4.3 for a sketch of a similar calculation.)

Theorem 4.2 The restriction of the central extension (4.1) to Map∂(Σ,G ′) splits if

the underlying level l is a multiple of the basic level lb(G ′).

Proof It will be useful in what follows to choose representative loops in T ′ ⊂ G ′

for elements of Z ∼= π1(G ′). For each z ∈ Z ∼= Λ
′/Λ let ζz ∈ Λ

′ be a (minimal

dominant co-weight) representative for z. In particular, exp ζz = z ∈ T ⊂ G, and

the loop ζz(t) = exp(tζz) in T ′ ⊂ G ′ represents z viewed as an element of π1(G ′).

For z = (z1, z2) ∈ Z ×Z, construct a map gz : Σ → G ′ in Map∂(Σ,G ′) as follows.

View the surface Σ as the quotient of the pentagon with oriented sides identified ac-

cording to the word aba−1b−1c. Define g : S1 → T ′ on the boundary of the pentagon

so that g|a = ζz1
, g|b = ζz2

and g|c = 1. Since π1(T) is abelian, g is null homotopic

and can be extended to the pentagon, defining gz : Σ → T ′ → G ′. Note that the

induced map (gz)♯ : π1(Σ) → π1(G ′) satisfies (gz)♯(a) = z1 and (gz)♯(b) = z2, and

hence (gz)♯ = z in sequence (3.2).

Since sequence (4.2) splits, and by Lemma 4.1 we may view Map∂(Σ,G) as a

normal subgroup of M̂ap∂(Σ,G ′), the restriction of the central extension (4.1) to

Map∂(Σ,G ′). Hence, by the exact sequence (3.2), we obtain a central extension

(4.4) 1 → U (1) → M̂ap∂(Σ,G ′)/Map∂(Σ,G) → Z × Z → 1.

Therefore, the central extension M̂ap∂(Σ,G ′) fits in the following pullback diagram:

M̂ap∂(Σ,G ′) //

��

M̂ap∂(Σ,G ′)/Map∂(Σ,G)

��

Map∂(Σ,G ′) // Z × Z
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where the map on the bottom of the square is the one appearing in (3.2). It follows

that the central extension M̂ap∂(Σ,G ′) splits if the central extension (4.4) is trivial.

Central U (1)-extensions over the abelian group Γ = Z × Z are determined

by their commutator pairing q : Γ × Γ → U (1). (In general, a trivial commuta-

tor pairing would only show that the given extension is abelian. However, abelian

U (1)-extensions are necessarily trivial, since U (1) is divisible.) For z and w in Z ×Z,

recall that the commutator pairing is defined by

q(z,w) = ẑŵẑ−1ŵ−1,

where ẑ and ŵ in M̂ap∂(Σ,G ′)/Map∂(Σ,G) are arbitrary lifts of z and w respectively.

Next, we compute the commutator pairing q and determine when it is trivial.

To that end, let gz and gw be constructed as above. Then since gz and gw lie in T ′,

gzgw = gwgz, and

(gz, 1)(gw, 1)(gz, 1)−1(gw, 1)−1
=

(
1, c(gz, gw)c(gw, gz)−1

)
.

Therefore,

q(z,w) = c(gz, gw)c(gw, gz)−1
= expπi

∫

Σ

(
lB(g∗z θ

L, g∗wθ
R) − lB(g∗wθ

L, g∗z θ
R)
)

= exp 2πi

∫

Σ

lB(g∗z θ, g∗wθ),

where θ denotes the Maurer–Cartan form on the torus T ′.

By collapsing the boundary of Σ to a point, we map view the maps gz and gw as

maps from the 2-torus T2 → T ′. If ω denotes the standard symplectic form on

T2 with unit symplectic volume, then lB(g∗z θ, g∗wθ) = (lB(ζz1
, ζw2

) − lB(ζz2
, ζw1

))ω.

Indeed,

(g∗z θ, g∗wθ)((u1, u2), (v1, v2))

= lB
(
θ
(

gz∗(u1, u2)
)
, θ
(

gw∗(v1, v2)
))

− lB
(
θ
(

gz∗(v1, v2)
)
, θ
(

gw∗(u1, u2)
))

= lB(u1ζz1
+ u2ζz2

, v1ζw1
+ v2ζw2

) − lB(v1ζz1
+ v2ζz2

, u1ζw1
+ u2ζw2

)

=
(

lB(ζz1
, ζw2

) − lB(ζz2
, ζw1

)
)

(u1v2 − v1u2).

Therefore,

q(z,w) = exp 2πi
(

lB(ζz1
, ζw2

) − lB(ζw1
, ζz2

)
)
,

and q is trivial if and only if l is a multiple of the basic level lb(G ′).

Corollary 4.3 If the level is an integer multiple of the basic level, there is a central

extension

1 → U (1) → M̂ap(Σ,G ′)/Map∂(Σ,G ′) → L0G ′.
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Proof As in the proof of Theorem 4.2, at any integer level, the central extension

1 → U (1) → M̂ap∂(Σ,G ′) → Map∂(Σ,G ′) → 1

is the pullback of the central extension (4.4) over the abelian group Z ×Z. Moreover,

if the underlying level is a multiple of the basic level, the proof of Theorem 4.2 shows

that this extension is abelian and hence split.

Each choice of section δ : Z × Z → M̂ap∂(Σ,G ′)/Map∂(Σ,G) of the central ex-

tension (4.4) induces a canonical section s : Map∂(Σ,G ′) → M̂ap∂(Σ,G ′) as follows.

For g ∈ Map∂(Σ,G ′), write δ(g♯) = [(h, z)]. Since h♯ = g♯, by the exactness of (3.2),

there is a unique a ∈ Map∂(Σ,G) with hπa = g. Define

s(g) =
(

g, c(h, πa)zα(a)
)
.

It is easy to check that s is well-defined and is indeed a section. It remains to verify

that the induced inclusion

Map∂(Σ,G ′)
s

−→ M̂ap∂(Σ,G ′) →֒ M̂ap(Σ,G ′)

includes Map∂(Σ,G ′) as a normal subgroup.

To that end, observe first that it suffices to check that Map∂(Σ,G ′) is closed under

conjugation by elements of M̂ap(Σ,G ′) in the image of M̂ap(Σ,G) → M̂ap(Σ,G ′)

induced from (3.1). Indeed, sequences (3.1) and (3.2) show that each k in Map(Σ,G ′)

can be expressed as k = πx f , where f ∈ Map∂(Σ,G ′) satisfies k♯ = f♯ and x ∈
Map(Σ,G).

Let g ∈ Map∂(Σ,G ′) and choose x ∈ Map(Σ,G). Then

(πx,w)s(g)(πx,w)−1
=

(
πxgπx−1, c(πxg, πx−1)c(πx, g)c(h, πa)zα(a)

)
,

where δ(g♯) = [(h, z)] and hπa = g for a ∈ Map∂(Σ,G). Since (πxgπx−1)♯ = g♯,

s(πxgπx−1) = (πxgπx−1, c(h, a ′)zα(a ′)), where πxgπx−1
= ha ′. Therefore we must

verify that

c(πxg, πx−1)c(πx, g)c(h, πa)α(a) = c(h, a ′)α(a ′),

which, since a ′
= a · g−1πxgπx−1, simplifies to

c(πx, gπx−1)c(πx, g) = c(g, g−1πxgπx−1)α(g−1πxgπx−1).(4.5)

In order to compute α(g−1πxgπx−1) in (4.5), let F : Σ × [0, 1] → G be a homo-

topy such that F0 = x and F1 = e. (Such a homotopy exists, since G is 2-connected.)

Let H : Σ× [0, 1] → G ′ be defined by H(p, t) = g(p)−1πF(p, t)g(p)πF(p, t)−1, and

argue as in the proof of Lemma 4.1 that

α(g−1πxgπx−1) = exp
−iπ

6

∫

Σ×[0,1]

(gπFg−1πF−1)∗η.

A direct calculation verifies that equation (4.5) holds.
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The main strategy to verify (4.5) is to recognize ρ = (gπFg−1πF−1)∗η as a

coboundary ρ = dτ and use Stokes’ Theorem, so that

∫

Σ×[0,1]

ρ =

∫

∂Σ×[0,1]

τ +

∫

Σ×0

τ +

∫

Σ×1

τ ,

where

1
6
τ = B

(
(πF)∗θL, (gπF−1)∗θR

)
+ B

(
(πF)∗θL, g∗θR) − B(g∗θL, (g−1πFgπF−1)∗θR

)
.

The first term does not contribute because g|∂Σ = e, and the third term above does

not contribute because F1 = e.

The Pre-Quantum Line Bundle

As mentioned in the introduction, the construction of the pre-quantum line bundle

over M
′(Σ) appears in [1]. Nevertheless, the main steps in the construction are

summarized next, focussing on the obstruction related to central extensions of the

gauge group.

The pre-quantum line bundle L ′(Σ) → M
′(Σ) is obtained through a reduction

procedure. Recall that M̂ap(Σ,G ′) acts on the trivial bundle A(Σ) × C by

(g,w) · (A, a) =
(

g · A, exp
(
−iπ

∫

Σ

lB(g∗θL,A)
)

wa
)
.

The 1-form α 7→ 1
2

∫
Σ

lB(A, α) on A(Σ) defines an invariant connection, whose

curvature can be verified to be ωA.

By Corollary 4.3, when l is a multiple of lb(G ′) (see Definition 2.1), the central

extension M̂ap∂(Σ,G ′) ⊂ M̂ap(Σ,G ′) splits, and we may define the pre-quantum

line bundle over M ′(Σ) by

L ′(Σ) = (Aflat(Σ) × C)/Map∂(Σ,G ′).

As in the proof of Corollary 4.3, each choice of splitting of the central extension

(4.4) induces a splitting of the central extension M̂ap∂(Σ,G ′) over Map∂(Σ,G ′) used

in the above construction. Since any two sections of the central extension (4.4) differ

by a character Z × Z → U (1), it is not hard to see that the set of pre-quantum

line bundles are therefore in one-to-one correspondence with a group of characters

Hom(Z × Z,U (1)) (cf. [1, Theorem 4.1(b)]).

Finally, note that since the symplectic quotients M ′(Σ)µ, where Hol(µ) ∈ Z, are

the connected components of the moduli space MG ′(Σ̂) of flat G ′-bundles over the

closed surface Σ̂ (see the end of Section 3), the pre-quantum line bundle L ′(Σ) de-

scends to a pre-quantization of MG ′(Σ̂).
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