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Central Extensions of Loop Groups and
Obstruction to Pre-Quantization

Derek Krepski

Abstract. An explicit construction of a pre-quantum line bundle for the moduli space of flat G-bundles
over a Riemann surface is given, where G is any non-simply connected compact simple Lie group. This
work helps to explain a curious coincidence previously observed between Toledano Laredo’s work
classifying central extensions of loop groups LG and the author’s previous work on the obstruction to
pre-quantization of the moduli space of flat G-bundles.

1 Introduction

The moduli space M(X) of flat G-bundles over a surface 3 with one boundary com-
ponent is known to admit a pre-quantization at integer level{] when the structure
group G is a simply connected compact simple Lie group. If the structure group is
not simply connected, however, integrality of the level does not guarantee the exis-
tence of a pre-quantization. It was found in [5] that for non-simply connected G,
M(X) admits a pre-quantization if and only if the underlying level is an integer mul-
tiple of Io(G) listed in Table [LLT] for all non-simply connected, compact, simple Lie

groups G.
G SU(n)/Zx | PSp(n) | SO(n) | PO(2n) Ss(4n) | PEg | PE;
n>2 n>1 n>7 n>4 n>?2
" 1, neven 2,neven | 1,neven
b(G) Ordk(ﬁ) 2, nodd 1 4, nodd | 2,nodd 3 2

Table 1.1: The integer Iy(G). Here, ordi(x) denotes the order of x mod k in Zx = Z/kZ.

A curiosity observed in [5] is that the integer I(G) also appears in Toledano
Laredo’s work [9], which classifies positive energy projective representations of loop
groups LG for non-simply connected, compact, simple Lie groups G. To be more
specific, Toledano Laredo classifies central extensions

1—>U(1)—>ZE;—>LG—>1,
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showing they can only exist at levels that are integer multiples of the so-called basic
level I,(G), which is then computed for each non-simply connected G (see [9} Propo-
sition 3.5]). By inspection, it is easy to see that [,(G) = I,(G), and this paper aims to
understand this coincidence.

The main result of this work, which helps to account for the observed coincidence,
is an explicit construction of a pre-quantum line bundle over the moduli space M(32)
of flat G-bundles in the case when the structure group G is non-simply connected.
The construction is an extension of the well-known constructions in the case when
G is simply connected (see [6}(8]]). It also appears in [1]] for non-simply connected G,
although using unnecessary assumptions on the underyling level. The necessary and
sufficient condition for pre-quantization, found in [5], is that the underlying level
must be an integer multiple of [j(G). Using the equality [,(G) = I,(G), we show that
the construction appearing in [[1]] applies at these levels.

The obstruction to applying this construction of the pre-quantum line bundle in
the case of non-simply connected structure group G is related to a central extension

(1.1) 15U1) =T =T =1,

where I' & m,(G) x m;(G) (see in). The proof of Theorem [4.2] shows that this
extension is trivial precisely when the underlying level is an integer multiple of the
basic level [,(G). As a consequence, when the level is an integer multiple of the basic
level, the well-known construction of the pre-quantum line bundle applies.

This paper is organized as follows. Section 2] reviews some of the relevant back-
ground material about loop groups and establishes some notation used throughout
the paper. Section [l reviews the construction of the moduli space, paying special
attention to the fact that the underlying structure group is not simply connected. Fi-
nally, Section [ contains the main results of this work, which include a careful study
of the central extensions of the gauge groups and Theorem [4.2l whose proof shows
that non-triviality of the central extension (L.I]) is the obstruction to constructing
the pre-quantum line bundle. This last section also contains the construction of the
pre-quantum line bundle under the conditions when the above central extension is
trivial.

2 Preliminaries and Notation

In this section, we establish notation that will be used in the rest of this paper and
review some relevant background material.

Let G be a simply connected, compact, simple Lie group with Lie algebra g, and
let T C G be a maximal torus with Lie algebra t C g. For a non-trivial subgroup Z
of the center Z(G), let G’ = G/Z with maximal torus T’ = T/Z, which identifies
the quotient map 7: G — G’ as the universal covering homomorphism, and Z =
m1(G’). (Recall that all non-simply connected, compact, simple Lie groups G’ are of
this form.)

Let A = ker exp; be the integer lattice for G, and let A’ = ker exp;, be the integer
lattice for G’, so that A C A’ and Z = A’ /A.
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Let B( -, -) denote the basic inner product, the invariant inner product on g nor-
malized to make short co-roots have length /2.

Following [6], throughout this paper we fix a real number s > 1. For a given
manifold X (possibly with boundary) and p < dim X, let Q?(X;g) be the space of
g-valued p-forms on X of Sobolev class s — p + dim X/2. For a compact Lie group
K with Lie algebra f, the space Q°(X;t) = Map(X, 1) is the Lie algebra of the group
Map(X, K) of maps of Soboloev class s + dim X /2.

Loop Groups and Central Extensions

For a compact Lie group K with Lie algebra f, let LK denote the (free) loop space
Map(S!, K), viewed as an infinite dimensional Lie group, with Lie algebra Lt =
Map(S!, 1).

Given an invariant inner product (-, -) on f, define the central extension It :=
Lt & R with Lie bracket

[(&1,1), (&, 1)] = ([51,52],/(517d§2))~
Sl

If it exists, let LK denote a U (1)-central extension of LK with Lie algebra I

For K = G, it is well known (see [[7, Theorem 4.4.1]) that central extensions G
are classified by their level —the unique multiple of the basic inner product that
coincides with the chosen inner product—which is required to be a positive integer.
(Since G is simple, any invariant inner product on g is necessarily of the form IB( -, -)
for some [ > 0, called the level.) -

For K = G’, however, central extensions LG’ are classified by their level [, which
is required to be an integer multiple of I,(G’), and a character x: Z — U(1) (see
[9} Proposition 3.4]). The integer 1,(G’) is defined as follows.

Definition 2.1 Let G’ be a compact simple Lie group with integer lattice A’. The
basic level I,(G’) is the smallest integer / such that the restriction of IB(-, - ) to A’ is
integral.

As mentioned in the introduction, 1,(G’) = lp(G’), which appears in Table[L.T]for
each non-simply connected, compact, simple Lie group G’.

Let Lg* = Q!(S';g), sometimes called the smooth dual of Lg. The pairing
Lg x Lg* — R given by (¢,A) — fsl (&, A) induces an inclusion Lg* C (Lg)*. Ad-
ditionally, define LAg* = Lg* & R and consider the pairing Lg x LAg* — R given
by

((€,a),(A, 1) = / (€, 4) + at.
Sl

Since the central subgroup U(1) C LG acts trivially on Lg, the coadjoint rep-

resentation of LG factors through LG. The coadjoint action of LG on LAg>k is (see
[7, Proposition 4.3.3]),

g (A1) = (Adg(A) —1g70% 1),
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where O denotes the right-invariant Maurer—Cartan form on G.

Notice that for each real number ), the hyperplanes t = A are fixed. Identifying
Lg* with Lg* x {A} C Lg" yields an action of LG on Lg*, called the (affine) level A
action.

3 The Moduli Space of Flat Connections M'(X)

In this section, we review the construction of the moduli space of flat connections
following [T]], with special attention to the case where G’ is a non-simply connected,
compact, simple Lie group. The reader may wish to consult [1}2J6] and the references
therein for more details.

Let ¥ denote a compact oriented surface of genus h with 1 boundary component.
The affine space of connections A(X) = Q!(3, g) on the trivial G’-bundle over &
admits an action of Map(X, G’), the space of maps g: ¥ — G’, by gauge transfor-
mations g - A = AdgA — g*0%. The kernel of the restriction map

Map(%, G") — Map(9%,G’), g+~ glos

will be denoted Map, (%, G"). Define the moduli space of flat G’-connections up
gauge transformations whose restriction to 90X is trivial by

M'(2) = Aga(X)/Map, (2, G).

The Atiyah—Bott [2] symplectic structure on M’(X) is obtained by symplectic re-
duction (as in [4}, Chapter 23]), viewing the moduli space as a symplectic quotient of
the affine space of connections A(X). Recall that the affine space A(X) carries a sym-
plectic form w4 (ay,a;) = fz IB(a1, a,) and a Hamiltonian action of Map, (2, G')
with momentum map the curvature; therefore, the zero level set of the moment map
is the space of flat connections Ag, (3), and hence the resulting symplectic quotient
is the moduli space M'(X).

The moduli space M'(X) carries an action by LG that can be described as follows.
For g € Map(X, G'), the restriction g|gy is a contractible loop in G, since m(G’) is
Abelian and 9 is homotopic to a product of commutators [ [ a;b;a; 'b;" for loops
ai, b; representing generators of 7 (X). Thus the restriction map takes values in the
identity component Map, (03, G’), which, after choosing a parametrization 0¥ =
S', can be identified with the identity component LyG’ of the loop group LG’. The
LG action on M'(X) is then defined using the natural projection Lw: LG — LG’ that
takes values in LyG’, and the identification Map(X, G’)/Map, (3, G') = LyG’. The
LG action is Hamiltonian, with momentum map ®’: M’(X) — Lg* given by pulling
back the connection to the boundary.

The corresponding moduli space M(X) = Ag,/Map, (X, G) with simply con-
nected structure group G is a finite covering of M’ (X). This is a consequence of the
following proposition found in [I].

Proposition 3.1 The following sequences are exact:
(3.1) 1 — Z — Map(2,G) — Map(2, G') — 2 — 1,
(3.2) 1 — Map,(X, G) — Mapy(%,G) — Z*" — 1.
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In sequences (3.0) and (3.2), the maps into Z*" are defined by sending g +
g in Hom(m(X),m(G")) = 7%, Since A € A(X) may be viewed as either a
G-connection or a G’-connection on the corresponding trivial bundle over ¥, the
moduli space M(X) admits a residual Z* 22 Map 5(X, G")/Map, (X, G) action, iden-
tifying M/(Z) = M(X)/Z?". Also, the momentum map ®: M(X) — Lg* is clearly
invariant under the Z?"-action and descends to the momentum map ®': M'(X) —
Lg* above. Viewed this way, ®’ sends an equivalence class of G’-connections to its
restriction to the boundary, considered as a G-connection on 0%.

For v € Lg*, the symplectic quotient

M(E), =@ (LG n)/LG

represents the moduli space of flat connections on the trivial G bundle over ¥ whose
restriction to the boundary is gauge equivalent to u. Equivalently, M(X), is the
moduli space of flat connections on the trivial G-bundle whose holonomy along
the boundary is conjugate to Hol(x). Similarly, the symplectic quotient M'(X), =
(®)"Y(LG - p)/LG represents the moduli space of flat connections on the trivial
G’-bundle over ¥ whose holonomy along the boundary, when viewed as a G-con-
nection on 9%, is conjugate to Hol().

The connected components of the moduli space of flat G’-bundles over a closed
surface may then be described in terms of the symplectic quotients M’(X), with
Hol() € Z. To see this, let 3 be the closed surface obtained by gluing a disc D to
3 by identifying boundaries. Recall that there is a bijective correspondence between
isomorphism classes of principal G'-bundles P — ¥ and m;(G’) = Z: every such
bundle P — 3 is isomorphic to one that can be constructed by gluing together trivial
bundles over both ¥ and D with some transition function f: S' = ¥ N D — G’. By
[3) Proposition 4.33], the holonomy around 0¥ of a flat connection on P coincides
with [f] € m1(G") = Z. It follows that the moduli space Mg/ () of flat G’-bundles
over a closed surface 3 up to gauge transformations may be written as the (disjoint)!
union of the symplectic quotients M’(X),,, where Hol(y) € Z.

4 The Pre-Quantum Line Bundle L'(X) — M'(X)

In this section, we construct a pre-quantum line bundle L’(3) — M’(X), which is
an adaptation of a well-known construction in the case where the underlying struc-
ture group is simply connected (see [6,[8]). The construction appears in [If] (using
unnecessary assumptions on the underlying level). The main contribution here is
to verify that this construction applies under the necessary and sufficient conditions
obtained in [5]. For simplicity, we consider the case of genus h = 1.

Central Extensions of the Gauge Group

An important part of the construction of the pre-quantum line bundle is a careful
discussion of certain central extensions of various gauge groups.
Recall that the cocycle defined by the formula c(g;, &) = expin [, IB(gf 60", g5 6")
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defines central extensions

1 = U(1) = Map(Z, G) = Map(E, G) — 1,
(4.1) _
1 —-U() = Map(%,G’) = Map(%,G') — 1.

It is known (see [6, p. 431]) that when [ is an integer, the restriction of the central ex-
tension Map(X, G) to the subgroup Map, (X, G) is trivial; that is, the exact sequence

(4.2) 1 — U(1) = Map,(%, G) — Map,(3, G) — 1

splits, and we may view Map, (%, G) as a subgroup of1\7[a\p(2, G).

More precisely, the section o: Map, (3, G) — 1\7[a\pa(2, G), g — (g, a(g)) com-
posed with the inclusion I\Za\pa(z, G) — I\Za\p(Z, G) embeds Map, (2, G) as a nor-
mal subgroup in I\Za\p(E7 G), where a: Map, (X, G) — U(1) is defined as follows.
For g € Map,(X, G), choose a homotopy H: 3 x [0,1] = GwithHy =g, H; = e
and H,|py, = efor 0 <t < 1 and define

—iT "
a(g)=eXpT-l/Z [ ]H n,
x[0,1

where 7 = B(0, [6F, 6F]) denotes the canonical invariant 3-form on G. It is straight-
forward to check that « is well defined and satisfies the coboundary relation

alg1g) = alg)a(g)c(g, )

so that o is indeed a section. That we may view Map, (2, G) as a normal subgroup of

Map(X, G) is also straightforward (cf. LemmaIland the proof of Corollary@3).
Therefore, one obtains the central extension

1 — U(1) = Map(Z, G) /Map, (2, G) — LG — 1

using the identification LG = Map(X, G)/Map,(Z, G).

Assume that / is an integer. Under additional restrictions on [ described in Theo-
rem[4.2] the same holds for the central extension 1\7[a\p(2, G’) in (1)) and we obtain
a central extension

1 = U(1) = Map(%, G')/Map, (%, G') — LG’ — 1
using the identification LyG’' = Map(3, G')/Map, (2, G').

Lemma 4.1 Let I\Za\pa(E, G') denote the restriction of the central extension (&) to
Map, (2, G'). Using the section o: Mapy (2, G) — I\Za\pa(E, G) above and the inclu-
sion I\Za\pa(Z, G) — @8(27 G') induced from the inclusion in (3.2), we may embed
Map, (X, G) as a normal subgroup in I\Za\pa(Z, G).
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Proof The inclusion Map, (%, G) — I\Za\pa(E, G')isgivenby g > (7g, a(g)), where
m: G — G’ is the universal covering homomorphism. To verify that this includes
Map, (X, G) as a normal subgroup, a direct calculation shows that it suffices to verify
that for g € Map, (X, G) and h € Map, (X, G'),

(4.3) alhngh™") = c(h, mgh™")c(rg, ™ Ha(yg).

(Note that c(h,h=1) = 1, since (h*0F, (h=1)*0%) = —h*(#L,0) = 0.) Note that
hrgh™! is clearly in Map,(X, G) (using the inclusion of (32)) so that a(hwgh™") is
defined.

To compute au(hmgh™!), let F: 3 x [0,1] — G be a homotopy for g such that
Fy = g FI = e, and F|spx = eandlet H: ¥ x [0,1] — G’ be the homotopy
H(p,t) = h(p)wF(p,t)h(p)~". Since 7: G — G’ is a covering projection, we may
lift H to a homotopy H: ¥ x [0, 1] — G, and find that

alhngh™) = exp %”r . z/ ' = exp %”T - l/ (hwFh=)* 1.
©x[0,1] £x[0,1]

A direct calculation now verifies that equation (4.3]) holds. (See the proof of Corol-
lary[4.3]for a sketch of a similar calculation.) ]

Theorem 4.2 The restriction of the central extension (A1) to Map, (X, G) splits if
the underlying level | is a multiple of the basic level I,(G).

Proof It will be useful in what follows to choose representative loops in T’ C G’
for elements of Z = 7;(G’). Foreachz € Z =2 A’/Alet {, € A’ be a (minimal
dominant co-weight) representative for z. In particular, exp(, = z € T C G, and
the loop ,(t) = exp(t(,) in T’ C G’ represents z viewed as an element of 71 (G’).

Forz = (z1,2,) € Z X Z, constructamap g,: ¥ — G’ in Map, (X, G’) as follows.
View the surface ¥ as the quotient of the pentagon with oriented sides identified ac-
cording to the word aba~'b~!c. Define g: S' — T’ on the boundary of the pentagon
so that gl, = (,,» gl» = (,, and g|. = 1. Since 7, (T) is abelian, g is null homotopic
and can be extended to the pentagon, defining g,: ¥ — T’ — G’. Note that the
induced map (g,);: m(X) — m(G’) satisfies (g,);(a) = z; and (g,);(b) = 2z, and
hence (g,); = z in sequence (3.2).

Since sequence (4.2) splits, and by Lemma [£.1] we may view Map, (2, G) as a
normal subgroup of 1\@6(2, G’), the restriction of the central extension (&) to
Map, (X, G’). Hence, by the exact sequence (3.2)), we obtain a central extension

(4.4) 1 = U(1) = Map, (%, G')/Map, (%, G) — Z x Z — 1.

Therefore, the central extension Map 9(2, G’) fits in the following pullback diagram:

Map,(%, G') —— Map, (%, G')/Map,(%, G)

| |

Map,(2,G') —————> Zx Z
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where the map on the bottom of the square is the one appearing in (3.2)). It follows
that the central extension Ma\p 9(X, G") splits if the central extension (4.4) is trivial.

Central U(1)-extensions over the abelian group I' = Z x Z are determined
by their commutator pairing q: I' x I' — U(1). (In general, a trivial commuta-
tor pairing would only show that the given extension is abelian. However, abelian
U (1)-extensions are necessarily trivial, since U(1) is divisible.) For zand win Z x Z,
recall that the commutator pairing is defined by

1 1

q(z,w) =zwz 'w ',

whereZand w in @3(27 G’)/Map, (3, G) are arbitrary lifts of z and w respectively.
Next, we compute the commutator pairing g and determine when it is trivial.
To that end, let g, and g, be constructed as above. Then since g, and g lie in T,

828w = Ewz> and
(82, D(gw> V(g D7 (gw, D71 = (1, ¢(ges gw)c(gw:82) ') -

Therefore,
q(z,w) = c(g;, gw)c(gw, &)~ = exp Wi/(lB(gZGL7g$9R) — IB(g0", g 0"))
¥
= exp27ri/ IB(g;0,g:0),
)

where 6 denotes the Maurer—Cartan form on the torus T”.

By collapsing the boundary of X to a point, we map view the maps g, and g, as
maps from the 2-torus T2 — T’. If w denotes the standard symplectic form on
T? with unit symplectic volume, then IB(g}0,g%0) = (IB((,,, Cw,) — IB(Cyy s Gy )
Indeed,

(&0, g0 (11, 12), (v1,72))
= IB<9(gz*(u1,uz)) 79<gw*(V17V2))) - IB(G(gz*(VhVZ)) >€(gw*(”1;u2)))
= lB(uICm + uZCZz» VICW1 + VZCWz) - lB(Vlgm + VZCZz? MICWl + uZCWz)

- (ZB(<217€W2) - ZB(CZN CW[)) (1/[11/2 - V1u2)~

Therefore,
q(z,w) = exp 27i (IB(Czy, Cuy) — IB(Cuy, C2))

and q is trivial if and only if ! is a multiple of the basic level I,(G’). ]

Corollary 4.3 If the level is an integer multiple of the basic level, there is a central
extension
1 — U(1) — Map(%, G")/Map, (%, G") — LyG'.
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Proof As in the proof of Theorem[4.2 at any integer level, the central extension
1 = U(1) = Map,(, G') — Map,(2,G’) — 1

is the pullback of the central extension (4.4) over the abelian group Z x Z. Moreover,
if the underlying level is a multiple of the basic level, the proof of Theorem[4.2]shows
that this extension is abelian and hence split.

Each choice of section §: Z x Z — 1\7Ia\p8(2, G')/Map,4 (%, G) of the central ex-
tension (4.4) induces a canonical section s: Map, (X, G’) — Mﬁ)a(Z, G') as follows.
For ¢ € Map, (X, G'), write 6(g;) = [(h,2)]. Since hy = g, by the exactness of (3.2)),
there is a unique a € Map, (2, G) with hma = g. Define

s(g) = (g, c(h, ma)zal(a)) .

It is easy to check that s is well-defined and is indeed a section. It remains to verify
that the induced inclusion

Map,(3, G') — Map, (%, G') < Map(3, G')

includes Map, (X, G’) as a normal subgroup.

To that end, observe first that it suffices to check that Map, (X, G’) is closed under
conjugation by elements of 1\@(2, G') in the image ofl\@(z, G) — Ma\p(E, G')
induced from (B)). Indeed, sequences (3.1 and show that each k in Map(%, G')
can be expressed as k = mxf, where f € Map,(X,G’) satisfies k; = f; and x €
Map(%, G).

Let g € Map, (X, G’) and choose x € Map(X, G). Then

(mx, w)s(g)(mx, w)l = (wxgmfl,c(wxg, 7rx*1)c(7rx,g)c(h,wa)za(a)),

where §(gy) = [(h,z)] and hra = g for a € Map, (X, G). Since (mxgmx~ ')y = g,
s(mxgmx') = (mxgmx~!, c(h,a’)za(a’)), where mxgmx~! = ha’. Therefore we must
verify that

c(nxg, mx e(nx, g)c(h, ma)ala) = c(h,a’)a(a’),

which, since a’ = a - g”'mxgmx~!, simplifies to
(4.5) c(mx, gﬂ'x_l)c(ﬂx, g) = c(g, g_lwxgmc_l)a(g_lﬂ'xgﬂx_l).

In order to compute a(g™ ' mxgmx ') in (&3), let F: ¥ x [0,1] — G be a homo-
topy such that Fy = x and F; = e. (Such a homotopy exists, since G is 2-connected.)
Let H: ¥ x [0,1] — G’ be defined by H(p,t) = g(p)~'wF(p,t)g(p)wF(p,t)~!, and
argue as in the proof of Lemma 4Tl that

a(g 'mxgnx!) = exp - (gnFg 'mF~1)*n.

6 Jsxion

A direct calculation verifies that equation (£.3) holds.
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The main strategy to verify (£3)) is to recognize p = (gnFg 'mF~1)*n as a
coboundary p = d7 and use Stokes” Theorem, so that

[ oef e ef
£x[0,1] 0 x[0,1] £X0 vx1

where

Lr = B((xF)*0", (gnF~")*6") + B((xF)*6",g*0") — B(g*0", (g~ 'mFgnF~')*6").
The first term does not contribute because g|gs, = e, and the third term above does
not contribute because F; = e. [ |

The Pre-Quantum Line Bundle

As mentioned in the introduction, the construction of the pre-quantum line bundle
over M/(X) appears in [[I]. Nevertheless, the main steps in the construction are
summarized next, focussing on the obstruction related to central extensions of the
gauge group.

The pre-quantum line bundle L'(X) — M'(X) is obtained through a reduction
procedure. Recall that l\fa\p(E, G’) acts on the trivial bundle A(X) x C by

(g,w) - (A,a) = (g.A,exp(—iw/ lB(g*HL,A)) wa) .
b

The 1-form o +— %fz IB(A, ) on A(X) defines an invariant connection, whose
curvature can be verified to be wy.

By Corollary[?i_fﬂ when [ is a multiple of I,(G’) (see Definition 1)), the central
extension Mapa(E G') C Map(E G’) splits, and we may define the pre-quantum
line bundle over M'(X) by

L'(X) = (Apu(X) x €)/Mapy (%, G).

As in the proof of Corollary[4.3] each choice of splitting of the central extension
([A.4) induces a splitting of the central extension I\Za\p 2(2, G") over Map, (3, G') used
in the above construction. Since any two sections of the central extension (4.4)) differ
by a character Z x Z — U(1), it is not hard to see that the set of pre-quantum
line bundles are therefore in one-to-one correspondence with a group of characters
Hom(Z x Z,U(1)) (cf. [1} Theorem 4.1(b)]).

Finally, note that since the symplectic quotients M’(X),,, where Hol(p1) € Z, are
the connected components of the moduli space Mg (f)) of flat G’-bundles over the
closed surface 3 (see the end of Section[3)), the pre-quantum line bundle L’(X) de-
scends to a pre-quantization of M- (i).
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