INDEPENDENCE IN COMBINATORIAL GEOMETRIES OF RANK THREE

BY JAPHETH HALL, Jr.

1. Introduction. The class of all combinatorial geometries of rank three shall coincide with the class of all pairs (V, S) such that V is a set and S is a collection of non-empty subsets of V such that each pair of distinct elements of V belong to exactly one member of S. (See [3].)

Consider a combinatorial geometry (V, S) of rank three. The *line structure* for (V, S) is the function $P: 2^V \to 2^V$ defined as follows: If $X \subseteq V$, then P(X) = X if X is a singleton set, and P(X) is the union of all $Y \in S$ such that Y contains at least two elements of X if X is not a singleton set. Associated with P is a sequence $\{P^n\}_{n \in N}$ of functions (with N being the set of all positive integers) and a function P^{∞} defined as follows: $P^1 = P$; if $n \in N$ then $P^{n+1} = PP^n$; and $P^{\infty}(X) = \bigcup \{P^n(X) : n \in N\}$ for each $X \subseteq V$.

The notion of independence treated in this paper is the notion of independence with respect to the line structure P for a combinatorial geometry (V, S) of rank three. Consider an element n of $N \cup \{\infty\}$ and a subset X of V. By definition, X is P^n -independent if $x \notin P^n(X-\{x\})$ for each $x \in C$, where $S-T=\{y \in S: y \notin T\}$ if S is a set and T is a set. Also, if $Y \subseteq V$, then Y is a P^n -generator of X if $P^n(Y)=X$; and Y is a P^n -basis of X if Y is a P^n -independent P^n -generator of X.

This notion of independence is defined for an arbitrary structure in a set, that is, a function $P:2^V \to 2^V$ for some set V. (See [5] and [6].) The notion of P-independence is studied in [1], [2], [4] and [6], based on the following properties: P is monotone [if $X \subseteq Y \subseteq V$, then $P(X) \subseteq P(Y)$], P is extensive [if $X \subseteq V$, then $X \subseteq P(X)$], P is idempotent [if $X \subseteq V$, then P(P(X)) = P(X)], P is a closure structure [P is monotone, extensive and idempotent], P has the exchange property [if $X \subseteq V$, $Y \in V$, $Y \in V$, $Y \in V$, and $Y \in V$, then $Y \in P(X \cup \{x\})$], $Y \in V$ and $Y \in V$, where $Y \in V$ and $Y \in V$, then $Y \in V$ and $Y \in V$ and Y

In Section 2, some properties of the sequence $\{P^n\}_{n\in\mathbb{N}}$ and the function P^{∞} associated with the line structure P for a combinatorial geometry (V, S) of rank

three are developed. A characterization of line-closed subset of V [a subset X of V such that $P(X) \subseteq X$] is given in terms of values of P^{∞} . Independence and generation with respect to P^{∞} and the terms of $\{P^n\}_{n\in N}$ is treated. Results from [2], [4], and [6] are applied. If $X \subseteq V$, then any two P^{∞} -bases of $P^{\infty}(X)$ are in one-to-one correspondence. Finally, in Section 3, a non-trivial vector space V over a division ring F is interpreted as a combinatorial geometry (V, S) of rank three. It follows that if P is the characteristic of P, P is the dimension of P and either P = 0, then P^{∞} is the linear variety structure in P (and that the condition $P < \infty$ is relevant).

2. Main results. Unless the contrary is indicated, the symbols V, S, P and L will be used with the understanding that (V, S) is a combinatorial geometry of rank three, P is the line structure for (V, S) and L is the function defined on V^2 such that if $x \in V$ and $y \in V$, then $L(x, y) = \{x\}$ if x = y and L(x, y) is the member of S which contains x and y if $x \neq y$. If Q_1 is a structure in a set W and Q_2 is a structure in W, then $Q_1 \subseteq Q_2$ if $Q_1(X) \subseteq Q_2(X)$ for each $X \subseteq W$, and $Q_1 = Q_2$ if $Q_1 \subseteq Q_2 \subseteq Q_1$. If S is a set, the symbol |S| shall denote the cardinal number of S.

Proposition 1. Let P be a line structure.

- (a) If $n \in \mathbb{N}$, then P^n is extensive, monotone, normal and has (2^n+1) -character.
- (b) P^{∞} is a finitary, normal closure structure.
- (c) If $n \in \mathbb{N}$, then $P^n \subseteq P^{n+1} \subseteq P^{\infty}$.

Proof. It follows by induction that if $n \in N$, then P^n is extensive, monotone and has (2^n+1) -character (so that P^n is finitary). Hence, (c) follows, and it follows that P^{∞} is extensive, monotone, and finitary. It is easy to show that every finitary structure is normal. Therefore, P^{∞} and each P^n is normal. Since each P^n is normal, it follows from (c) that P^{∞} is idempotent. This completes a proof of the proposition.

COROLLARY. A subset X of V is line-closed if and only if $X=P^{\infty}(Y)$ for some $Y\subseteq V$.

Proposition 2. P has the exchange and equivalence covering properties.

Proof. Assume that $X \subseteq V$, $y \in V$, $x \in P(X \cup \{y\})$ and $x \notin P(X)$. It is clear that $y \in P(X \cup \{x\})$ if $X = \emptyset$. Consider the case that $X \neq \emptyset$. Let z and w be distinct elements of $X \cup \{y\}$ such that $x \in L(z, w)$. One of z and w must be y, say w = y. If x = y, then $y \in P(X \cup \{x\})$ [since P is extensive]. If $x \neq y$, then $y \in L(z, x)$ [since (V, S) is a combinatorial geometry of rank three] while $L(z, x) \subseteq P(X \cup \{x\})$, so that $y \in P(X \cup \{x\})$. It follows that P has the exchange property. Since P has (2^1+1) -character, it follows that P has the equivalence covering property. The proposition follows.

The following proposition is an immediate consequence of (c) of Proposition 1, the definition of $\{P^n\}_{n\in\mathbb{N}}$ and the definition of P^{∞} .

PROPOSITION 3. If $n \in (N \cup \{\infty\})$, then P^n has the exchange property if and only if the following condition is satisfied:

If $X \subseteq V$, $y \in V$ and $x \in [P^m(X \cup \{y\}) - P^n(X)]$ for some $m \in N$ such that $m \le n$, then $y \in P^m(X \cup \{y\})$ for some $m \in N$ such that $m \le n$.

Proposition 4. Suppose that $n \in (N \cup \{\infty\})$.

- (a) If $X \subseteq V$ such that $|X| \le 2$ or $X \subseteq Y$ for some P^n -independent subset Y of V, then X is P^n -independent.
- (b) If P^n has the exchange property, then every P^n -independent subset X of V satisfies the following conditions:
 - $x \in [V-P^n(X)]$ implies that $X \cup \{x\}$ is P^n -independent.
- **Proof.** (a) is an immediate consequence of the definitions. Assume that P^n has the exchange property while X is a P^n -independent subset of V, $x \in V$ and $x \notin P^n(X)$. Suppose that $X \cup \{x\}$ is not P^n -independent. Choose an element y of $X \cup \{x\}$ such that $y \in P^n([X \cup \{x\}] \{y\})$. Then $x \neq y$ [since $x \notin P^n(X)$ and P^n is extensive]. Hence, $y \in P^n([X \{y\}] \cup \{x\})$ while P^n has the exchange property and $y \notin P^n(X \{y\})$ [since X is P^n -independent and $y \in X$]. Therefore, $x \in P^n([X \{y\}] \cup \{y\}) = P^n(X)$. But $x \notin P^n(x)$. It follows that $X \cup \{x\}$ is P^n -independent. (b) follows. The proof is complete.

Propositions 5 and 6 are immediate consequences of (c) of Proposition 1 and the definitions of $\{P^n\}_{n\in\mathbb{N}}$ and P^{∞} .

PROPOSITION 5. If $n \in (N \cup \{\infty\})$, $m \in N$ such that m < n, and $X \subseteq V$, then each P^m -generator of $P^m(X)$ is a P^n -generator of $P^n(X)$.

Proposition 6.

- (a) If $n \in \mathbb{N}$, $m \in \mathbb{N}$ and m < n, then each P^n -independent subset of V is P^m -independent.
- (b) If $n \in (N \cup \{\infty\})$, then a subset X of V is P^n -independent if and only if X is P^m -independent for each $m \in N$ such that $m \le n$.

The converse of (a) of Proposition 6 is not a theorem. Let R be the residue class ring of integers modulo a prime number p, $W=R^2$ and T be the collection of all sets $\{r(x-y)+y:r\in R\}$. Then (W,T) is a combinatorial geometry of rank three. Let Q be the line structure for (W,T). Let $X=\{(0,0), (1,0), (0,1), (1,1)\}$. Then X is Q-independent. Also, $Q^2(X-\{(0,0)\})$ contains (0,0), so that X is not Q^2 -independent.

PROPOSITION 7. Suppose that $U \subseteq V$, and that $n \in (N \cup \{\infty\})$.

- (a) If $X \subseteq V$ such that X is a P^n -basis of $P^n(U)$, then X is a maximal P^n independent subset of U.
- (b) If P^n has the exchange property, then every maximal P^n -independent subset of U is a P^n -generator of $P^n(U)$.

Proof. Since P^n is monotone, (a) follows. Assume that P^n has the exchange property while X is a maximal P^n -independent subset of U. It follows from (b) of Proposition 4 that $U \subseteq P^n(X)$ while $P^n(X) \subseteq P^n(U)$ [since P^n is monotone] and $P^{\infty}(U)$ is line-closed [corollary to Proposition 1]. Therefore, it follows that $P^{\infty}(X) = P^{\infty}(U)$. (b) follows. The proof is complete.

PROPOSITION 8. Suppose that $n \in (N \cup \{\infty\})$.

- (a) Every subset of V has a maximal P^n -independent subset.
- (b) If $U \subseteq V$, then every P^n -independent subset of U can be extended to a maximal P^n -independent subset of U.

Proof. Assume that $U \subseteq V$, and that X is a P^n -independent subset of U. Let F be the collection of all P^n -independent subsets of U, and let F_1 be the collection of all P^n -independent subsets Y of U such that $X \subseteq Y$. Then F contains ϕ and F_1 contains X. Since P^n is monotone and normal, it follows that each chain of F (ordered by set inclusion) has its union as an upper bound, and that each chain of F_1 has its union as an upper bound. Hence, it follows from Zorn's lemma that F and F_1 have maximal elements. The proposition follows.

Consider a structure Q in a set W. We shall say that Q has the Steinitz exchange property if the following condition is satisfied: If $X \subseteq W$, Y and Z are Q-bases of Q(X) and A is a finite subset of X, then there is a finite subset B of Y such that |B| = |A| and $(X - A) \cup B$ is a Q-basis of Q(X). Also, we shall say that Q has the dimension property if the following condition is satisfied: If $X \subseteq W$, then any two Q-bases of Q(X) are in one-to-one correspondence. It is known (See, e.g., [2] and [6]) that

I. If Q is a closure structure having the exchange property, then Q has the Steinitz exchange property.

It is known ([4] and [6]) that the following conditions are satisfied:

- II. If Q is a closure structure having the equivalence covering property, $X \subseteq W$ and Y is a Q-basis of Q(X), then $|Y| \le |X|^2$.
- III. If each subset X of W has a Q-basis of Q(X), and if each two Q-independent subsets Y and Z of W such that Z is a Q-generator of Q(Y) are in one-to-one correspondence, then Q has the equivalence covering property.

Therefore, it follows from I, II and III that

IV. If Q is a closure structure having the exchange property, then Q has the dimension property if and only if Q has the equivalence covering property.

PROPOSITION 9. If P^{∞} has the exchange property, then P^{∞} has the equivalence covering property.

Proof. Suppose that P^{∞} has the exchange property, and that $X \subseteq V$. Recall that P^{∞} is a closure structure [(b) of Proposition 1]. If $P^{\infty}(X)$ has a finite P^{∞} -basis, then it follows from I that any two P^{∞} -bases of $P^{\infty}(X)$ are in one-to-one correspondence. If $P^{\infty}(X)$ has an infinite P^{∞} -basis, then it follows from II that any two

 P^{∞} -bases of $P^{\infty}(X)$ are in one-to-one correspondence. Therefore, P^{∞} has the dimension property. It follows from IV that P^{∞} has the equivalence covering property.

It was shown in [5] that monotonicity, extensiveness, idempotence, α -character (with α being a cardinal number), the exchange property and the equivalence covering property are independent. Therefore, Proposition 9 is not valid for all closure structures.

3. Closing remarks. Let V be a non-trivial vector space over a division ring F and S be the collection of all $\{r(x-y)+y:r\in F \text{ such that } x\in V,y\in V \text{ and } x\neq y\}$. Then (V,S) is a combinatorial geometry of rank three. Let P be the line structure for (V,S). Let $Q:2^V\to 2^V$ be the structure in V such that if $X\subseteq V$, then Q(X) is the set of all finite linear combinations of elements of X whose coefficients sum to the multiplicative identity in F. Let P be the characteristic of F and P0 be the dimension of P1. Then

IVa. If p=0, then $P^{\infty}=Q$. If $p\neq 0$, then $P^{\infty}(X)=Q(X)$ for each $X\subseteq V$ such that |X|< p; hence, if $1<\alpha< p$, then $P^{\infty}=Q$.

It is obvious that $P \subseteq Q$, and that Q(X) is line-closed for each $X \subseteq V$. So $P^{\infty} \subseteq Q$. An inductive argument can be used to complete a proof of the assertion.

The following example shows that the condition $p < \alpha$ is needed. Let F be the residue class ring of integers modulo 2. Let $V = F^2$. Let $X = \{(0, 0), (1, 0), (0, 1)\}$. Then $P^{\infty}(X) = P(X) = X$ while Q(X) = V.

REFERENCES

- 1. M. N. Bleicher and E. Marczewski, Remarks on dependence relations and closure operators, Colloquium Mathematicum IX (1962), 209-211.
- 2. and B. B. Preston, Abstract linear dependence relations, Publ. Math. Debrecen 8 (1961), 55-63.
 - 3. Crapo-Rota, Combinatorial Geometries, MIT Press, 1970.
- 4. J. Hall, Jr., A condition for equality of cardinals of minimal generators under closure operators, Canad. Math. Bull. 14 (4), 1971.
- 5. —, The independence of certain axions of structures in sets, Proceedings of the Amer. Math. Soc. 31 (2) (1972), 317-325.
- 6. —, On the Theory of Structures in Sets, Dissertation Abstracts International XXXI (10), 1971.

STILLMAN COLLEGE
P.O. Box 1430
TUSCALOOSA, ALABAMA 34501
U.S.A.