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INDEPENDENCE IN COMBINATORIAL 
GEOMETRIES OF RANK THREE 

BY 

JAPHETH HALL, Jr. 

1. Introduction. The class of all combinatorial geometries of rank three shall 
coincide with the class of all pairs (V, S) such that Fis a set and S is a collection 
of non-empty subsets of V such that each pair of distinct elements of V belong to 
exactly one member of S. (See [3].) 

Consider a combinatorial geometry (V, S) of rank three. The line structure for 
(V, S) is the function P:2V->2V defined as follows: If X^ V, then P ( Z ) = X if X 
is a singleton set, and P(X) is the union of all Ye S such that F contains at least two 
elements of X if X is not a singleton set. Associated with P is a sequence {Pn}neN 

of functions (with N being the set of all positive integers) and a function P00 de­
fined as follows: P*=P; ifneN then p«+i=pp" ; andP°°(Z)=u{Pn(Z):« e N} 
for each X^ V. 

The notion of independence treated in this paper is the notion of independence 
with respect to the line structure P for a combinatorial geometry (V, S) of rank 
three. Consider an element n of N u {oo} and a subset X of V. By definition, 
X is Pr'-independent if x <£Pn(X-{x}) for each xeC, where S—T={yeS: 
j £ T} if 5 is a set and T is a set. Also, if F £ V, then Y is a Pn-generator of X if 
P n ( F ) = Z ; and F is a Pn-basis ofX if F is a Pn-independent Pn-generator of X. 

This notion of independence is defined for an arbitrary structure in a set, that is, 
a function P:2 F ->2 F for some set V. (See [5] and [6].) The notion of P-
independence is studied in [1], [2], [4] and [6], based on the following properties: 
P is monotone [if X £ F ^ F , then P(X)^P(Y)], P is extensive [if I ç F , then 
XçP(X)], P is idempotent [if JTs F, then P(P(Z))=P(Z)], P is a c/aywre structure 
[P is monotone, extensive and idempotent], P has //ze exchange property [if Z ^ F, 
j e F , x e P ( Z u {y}) and x$P(X), then j eP(X u {*})], P has ^-character 
(with oc being a cardinal number) [if X^ V, then P(X)c u {P(Y):Y^Xand | F | < 
a}, where \S\ denotes the cardinal number of a set S], P isfinitary [P has oc-character 
with a being the first infinite cardinal number], P is normal [if G is a chain of sub­
sets of V, then P ( U ( J ) Ç U {P(X):XEG}], and P has the equivalence covering 
property [if X^V, F ç F and P(X)=P(Y), thenP(X)<= U {P(Z):Zç= Fand | Z | ^ 
|X|}]. (These definitions appear in [1], [2], [4], [5] and [6].) 

In Section 2, some properties of the sequence {Pn}neN and the function P00 

associated with the line structure P for a combinatorial geometry (V, S) of rank 
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three are developed. A characterization of line-closed subset of V [a subset X 
of Fsuch that P(X)^X] is given in terms of values of P00. Independence and gener­
ation with respect to P00 and the terms of {Pn}neN is treated. Results from [2], 
[4], and [6] are applied. If X^ V, then any two P^-bases of P°°(Z) are in one-to-one 
correspondence. Finally, in Section 3, a non-trivial vector space V over a division 
ring F is interpreted as a combinatorial geometry (V, S) of rank three. It follows 
that if/? is the characteristic of P, a is the dimension of F and either l<p<cc or 
/?=0, then P°° is the linear variety structure in V (and that the condition p< a is 
relevant). 

2. Main results. Unless the contrary is indicated, the symbols V, S9 P and L 
will be used with the understanding that (V, S) is a combinatorial geometry of rank 
three, P is the line structure for (V, S) and L is the function defined on V2 such that 
if x E V and y e V, then L(x, y)={x} if x=y and L(x, y) is the member of S 
which contains x and y if x ?£y. If Qx is a structure in a set JFand £>2 is a structure 
in JF, then Q1^Q2 if 2 i W ^ Ô 2 W for each X^ W, and Ô x = e 2 if ôi<= Ô 2 ^ô i -
If S is a set, the symbol \S\ shall denote the cardinal number of S. 

PROPOSITION 1. Let P be a line structure. 

(a) If ne N, then Pn is extensive•, monotone, normal and has (2n+l)-character. 
(b) P°° is afinitary, normal closure structure. 
(c) Ifn E N, then p ^ c ^ + i ç p ^ . 

Proof. It follows by induction that if n e iV, then P n is extensive, monotone 
and has (2W+l)-character (so that Pn is finitary). Hence, (c) follows, and it follows 
that P00 is extensive, monotone, and finitary. It is easy to show that every finitary 
structure is normal. Therefore, P00 and each Pn is normal. Since each P n is normal, 
it follows from (c) that P00 is idempotent. This completes a proof of the proposition. 

COROLLARY. A subset X of V is line-closed if and only if X=Pco(Y)for some 
Y^V. 

PROPOSITION 2. P has the exchange and equivalence covering properties. 

Proof. Assume that XÇ V, y E V, x E P(X U {y}) and x $ P(X). It is clear that 
y E P(X U {x}) if X= 0. Consider the case that X?£ 0. Let z and w be distinct 
elements of X U {y} such that x E L(Z, W). One of z and w must be y, say w=y. If 
x=y, then y EP(X U {X}) [since P is extensive]. If x^y, then y E L(Z, X) [since 
(V, S) is a combinatorial geometry of rank three] while L(z, x)^P(X U {x}), 
so that y E P(X U {X}). It follows that P has the exchange property. Since P has 
(21+l)-character, it follows that P has the equivalence covering property. The 
proposition follows. 

The following proposition is an immediate consequence of (c) of Proposition 1, 
the definition of {Pn}neN and the definition of P00. 
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PROPOSITION 3. Ifne(NU {co}), then Pn has the exchange property if and only 
if the following condition is satisfied: 

IfX^V,yeVandxe [Pm(X U {y})-Pn(X)]for some meN such that rn<n, 
then y e Pm(X U {y})for some meN such that m<n. 

PROPOSITION 4. Suppose that ne (N u {oo}). 
(a) If X^ V such that \X\<2 or I g Y for some Pn-independent subset Y of V, 

then X is Pn-independent. 
(b) If Pn has the exchange property, then every Pn-independent subset X of V 

satisfies the following conditions: 
x e [F—Pn(X)] implies that X U {x} is Pn-independent. 

Proof, (a) is an immediate consequence of the definitions. Assume that Pn 

has the exchange property while X is a Pn-independent subset of V, x e V and 
x $ Pn(X). Suppose that X U {x} is not Pn-independent. Choose an element y 
of X U {x} such that yePn([X U {*}]-{j}). Then x^y [since x$Pn(X) and 
Pn is extensive]. Hence,y e Pn([X—{y}] U {x}) while Pn has the exchange property 
and y $ Pn(X-{y}) [since X is Pn-independent and y e X]. Therefore, x e Pn([X— 
{y}] V{y})=Pn(X). But x$Pn(x). It follows that X U {x} is Pw-independent. 
(b) follows. The proof is complete. 

Propositions 5 and 6 are immediate consequences of (c) of Proposition 1 and the 
definitions of {Pn}neN and P00. 

PROPOSITION 5. Ifne(NU {oo}), meN such that m<n, and X^ V, then each 
Pm-generator ofPm(X) is a Pn-generator ofPn(X). 

PROPOSITION 6. 

(a) If neN9 meN and m<n, then each Pn-independent subset of V is Pm-
independent. 

(b) Ifne(N\J {oo}), then a subset X of V is Pn-independent if and only if X 
is Pm-independent for each meN such that m<n. 

The converse of (a) of Proposition 6 is not a theorem. Let R be the residue class 
ring of integers modulo a prime number/?, W=R2 and T be the collection of all 
sets {r(x— y)+y:r e R}. Then (W, T) is a combinatorial geometry of rank three. 
Let Q be the line structure for (W9 T). Let X={(0, 0), (1, 0), (0, 1), (1, 1)}. Then 
X is g-independent. Also, g2(X-{(0, 0)}) contains (0, 0), so that X is not Q2-
independent. 

PROPOSITION 7. Suppose that U^ V, and that ne (N u {oo}). 
(a) IfX^V such that X is a Pn-basis ofPn(U)9 then X is a maximal Pn- inde­

pendent subset of U. 
(b) If Pn has the exchange property, then every maximal Pn-independent subset 

of U is a Pn-generator ofPn(U). 
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Proof. Since P n is monotone, (a) follows. Assume that Pn has the exchange 
property while X is a maximal PMndependent subset of U. It follows from (b) 
of Proposition 4 that U^Pn(X) while Pn(X)^Pn(U) [since Pn is monotone] 
and P°°(J7) is line-closed [corollary to Proposition 1], Therefore, it follows that 
Pa>(Z)=PC0(C7). (b) follows. The proof is complete. 

PROPOSITION 8. Suppose that ne(N u {oo}). 

(a) Every subset of V has a maximal Pn-independent subset. 
(b) If U^ V, then every Pn-independent subset of U can be extended to a maximal 

Pn-independent subset of U. 

Proof. Assume that t / c V, and that X is a Pn-independent subset of U. Let F 
be the collection of all Pn-independent subsets of U, and let F± be the collection 
of all Pn-independent subsets Y of U such that X^ Y. Then F contains <f> and Fx 

contains X. Since Pn is monotone and normal, it follows that each chain of F 
(ordered by set inclusion) has its union as an upper bound, and that each chain of 
F1 has its union as an upper bound. Hence, it follows from Zorn's lemma that F 
and Fx have maximal elements. The proposition follows. 

Consider a structure g in a set W. We shall say that g has the Steinitz exchange 
property if the following condition is satisfied: If X^ W, Y and Z are g-bases of 
Q(X) and A is a finite subset of X, then there is a finite subset B of Y such that 
|2?| = |i4| and (X—A) u B is a g-basis of Q(X). Also, we shall say that g has 
the dimension property if the following condition is satisfied: If Xç= W, then any 
two g-bases of Q(X) are in one-to-one correspondence. It is known (See, e.g., [2] 
and [6]) that 

I. If g is a closure structure having the exchange property, then g has the 
Steinitz exchange property. 

It is known ([4] and [6]) that the following conditions are satisfied: 
II. If g is a closure structure having the equivalence covering property, X^ W 

and F is a g-basis of g(Z) , then | r | < | Z | 2 . 
III. If each subset X of PFhas a g-basis of g(Z) , and if each two g-independent 

subsets Tand Z of fl^such that Z is a g-generator of g ( Y) are in one-to-one 
correspondence, then g has the equivalence covering property. 

Therefore, it follows from I, II and III that 
IV. If g is a closure structure having the exchange property, then g has the 

dimension property if and only if g has the equivalence covering property. 

PROPOSITION 9. If P00 has the exchange property, then P00 has the equivalence 
covering property. 

Proof. Suppose that P00 has the exchange property, and that X^ V. Recall that 
P00 is a closure structure [(b) of Proposition 1]. If P°°(Z) has a finite P°°-basis, 
then it follows from / that any two P°°-bases of PQO(X) are in one-to-one corre­
spondence. If P°°(X) has an infinite P°°-basis, then it follows from II that any two 
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P°°-bases of P°°(X) are in one-to-one correspondence. Therefore, P00 has the dimen­
sion property. It follows from IV that P00 has the equivalence covering property. 

It was shown in [5] that monotonicity, extensiveness, idempotence, oc-character 
(with a being a cardinal number), the exchange property and the equivalence 
covering property are independent. Therefore, Proposition 9 is not valid for all 
closure structures. 

3. Closing remarks. Let F be a non-trivial vector space over a division ring 
Pand S be the collection of all {r(x—y)+y:r ePsuch that* e V,y e V and xj£y}. 
Then (V, S) is a combinatorial geometry of rank three. Let P be the line structure 
for (V, S). Let g :2 F ->2 F be the structure in V such that if J c V, then Q(X) 
is the set of all finite linear combinations of elements of X whose coefficients sum 
to the multiplicative identity in F. Let p be the characteristic of F and a be the 
dimension of V. Then 

IVa. If /?=0, then P°° = ô . If p^O, then P™(X)=Q(X) for each X<= V such 
that \X\<p; hence, if l<a<p, thenP°° = g. 

It is obvious that P ^ g , and that Q(X) is line-closed for each Z £ V. So P°°SÔ-
An inductive argument can be used to complete a proof of the assertion. 

The following example shows that the condition p< a is needed. Let F be the 
residue class ring of integers modulo 2. Let V=F2. Let X={(0, 0), (1, 0), (0, 1)}. 
Then P ° ° ( r ) = P ( Z ) = Z while Q(X)=V. 
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