INDEPENDENCE IN COMBINATORIAL GEOMETRIES OF RANK THREE ## BY JAPHETH HALL, Jr. 1. Introduction. The class of all combinatorial geometries of rank three shall coincide with the class of all pairs (V, S) such that V is a set and S is a collection of non-empty subsets of V such that each pair of distinct elements of V belong to exactly one member of S. (See [3].) Consider a combinatorial geometry (V, S) of rank three. The *line structure* for (V, S) is the function $P: 2^V \to 2^V$ defined as follows: If $X \subseteq V$, then P(X) = X if X is a singleton set, and P(X) is the union of all $Y \in S$ such that Y contains at least two elements of X if X is not a singleton set. Associated with P is a sequence $\{P^n\}_{n \in N}$ of functions (with N being the set of all positive integers) and a function P^{∞} defined as follows: $P^1 = P$; if $n \in N$ then $P^{n+1} = PP^n$; and $P^{\infty}(X) = \bigcup \{P^n(X) : n \in N\}$ for each $X \subseteq V$. The notion of independence treated in this paper is the notion of independence with respect to the line structure P for a combinatorial geometry (V, S) of rank three. Consider an element n of $N \cup \{\infty\}$ and a subset X of V. By definition, X is P^n -independent if $x \notin P^n(X-\{x\})$ for each $x \in C$, where $S-T=\{y \in S: y \notin T\}$ if S is a set and T is a set. Also, if $Y \subseteq V$, then Y is a P^n -generator of X if $P^n(Y)=X$; and Y is a P^n -basis of X if Y is a P^n -independent P^n -generator of X. This notion of independence is defined for an arbitrary structure in a set, that is, a function $P:2^V \to 2^V$ for some set V. (See [5] and [6].) The notion of P-independence is studied in [1], [2], [4] and [6], based on the following properties: P is monotone [if $X \subseteq Y \subseteq V$, then $P(X) \subseteq P(Y)$], P is extensive [if $X \subseteq V$, then $X \subseteq P(X)$], P is idempotent [if $X \subseteq V$, then P(P(X)) = P(X)], P is a closure structure [P is monotone, extensive and idempotent], P has the exchange property [if $X \subseteq V$, $Y \in V$, $Y \in V$, $Y \in V$, and $Y \in V$, then $Y \in P(X \cup \{x\})$], $Y \in V$ and $Y \in V$, where $Y \in V$ and $Y \in V$, then $Y \in V$ and Y In Section 2, some properties of the sequence $\{P^n\}_{n\in\mathbb{N}}$ and the function P^{∞} associated with the line structure P for a combinatorial geometry (V, S) of rank three are developed. A characterization of line-closed subset of V [a subset X of V such that $P(X) \subseteq X$] is given in terms of values of P^{∞} . Independence and generation with respect to P^{∞} and the terms of $\{P^n\}_{n\in N}$ is treated. Results from [2], [4], and [6] are applied. If $X \subseteq V$, then any two P^{∞} -bases of $P^{\infty}(X)$ are in one-to-one correspondence. Finally, in Section 3, a non-trivial vector space V over a division ring F is interpreted as a combinatorial geometry (V, S) of rank three. It follows that if P is the characteristic of P, P is the dimension of P and either P = 0, then P^{∞} is the linear variety structure in P (and that the condition $P < \infty$ is relevant). 2. Main results. Unless the contrary is indicated, the symbols V, S, P and L will be used with the understanding that (V, S) is a combinatorial geometry of rank three, P is the line structure for (V, S) and L is the function defined on V^2 such that if $x \in V$ and $y \in V$, then $L(x, y) = \{x\}$ if x = y and L(x, y) is the member of S which contains x and y if $x \neq y$. If Q_1 is a structure in a set W and Q_2 is a structure in W, then $Q_1 \subseteq Q_2$ if $Q_1(X) \subseteq Q_2(X)$ for each $X \subseteq W$, and $Q_1 = Q_2$ if $Q_1 \subseteq Q_2 \subseteq Q_1$. If S is a set, the symbol |S| shall denote the cardinal number of S. Proposition 1. Let P be a line structure. - (a) If $n \in \mathbb{N}$, then P^n is extensive, monotone, normal and has (2^n+1) -character. - (b) P^{∞} is a finitary, normal closure structure. - (c) If $n \in \mathbb{N}$, then $P^n \subseteq P^{n+1} \subseteq P^{\infty}$. **Proof.** It follows by induction that if $n \in N$, then P^n is extensive, monotone and has (2^n+1) -character (so that P^n is finitary). Hence, (c) follows, and it follows that P^{∞} is extensive, monotone, and finitary. It is easy to show that every finitary structure is normal. Therefore, P^{∞} and each P^n is normal. Since each P^n is normal, it follows from (c) that P^{∞} is idempotent. This completes a proof of the proposition. COROLLARY. A subset X of V is line-closed if and only if $X=P^{\infty}(Y)$ for some $Y\subseteq V$. Proposition 2. P has the exchange and equivalence covering properties. **Proof.** Assume that $X \subseteq V$, $y \in V$, $x \in P(X \cup \{y\})$ and $x \notin P(X)$. It is clear that $y \in P(X \cup \{x\})$ if $X = \emptyset$. Consider the case that $X \neq \emptyset$. Let z and w be distinct elements of $X \cup \{y\}$ such that $x \in L(z, w)$. One of z and w must be y, say w = y. If x = y, then $y \in P(X \cup \{x\})$ [since P is extensive]. If $x \neq y$, then $y \in L(z, x)$ [since (V, S) is a combinatorial geometry of rank three] while $L(z, x) \subseteq P(X \cup \{x\})$, so that $y \in P(X \cup \{x\})$. It follows that P has the exchange property. Since P has (2^1+1) -character, it follows that P has the equivalence covering property. The proposition follows. The following proposition is an immediate consequence of (c) of Proposition 1, the definition of $\{P^n\}_{n\in\mathbb{N}}$ and the definition of P^{∞} . PROPOSITION 3. If $n \in (N \cup \{\infty\})$, then P^n has the exchange property if and only if the following condition is satisfied: If $X \subseteq V$, $y \in V$ and $x \in [P^m(X \cup \{y\}) - P^n(X)]$ for some $m \in N$ such that $m \le n$, then $y \in P^m(X \cup \{y\})$ for some $m \in N$ such that $m \le n$. Proposition 4. Suppose that $n \in (N \cup \{\infty\})$. - (a) If $X \subseteq V$ such that $|X| \le 2$ or $X \subseteq Y$ for some P^n -independent subset Y of V, then X is P^n -independent. - (b) If P^n has the exchange property, then every P^n -independent subset X of V satisfies the following conditions: - $x \in [V-P^n(X)]$ implies that $X \cup \{x\}$ is P^n -independent. - **Proof.** (a) is an immediate consequence of the definitions. Assume that P^n has the exchange property while X is a P^n -independent subset of V, $x \in V$ and $x \notin P^n(X)$. Suppose that $X \cup \{x\}$ is not P^n -independent. Choose an element y of $X \cup \{x\}$ such that $y \in P^n([X \cup \{x\}] \{y\})$. Then $x \neq y$ [since $x \notin P^n(X)$ and P^n is extensive]. Hence, $y \in P^n([X \{y\}] \cup \{x\})$ while P^n has the exchange property and $y \notin P^n(X \{y\})$ [since X is P^n -independent and $y \in X$]. Therefore, $x \in P^n([X \{y\}] \cup \{y\}) = P^n(X)$. But $x \notin P^n(x)$. It follows that $X \cup \{x\}$ is P^n -independent. (b) follows. The proof is complete. Propositions 5 and 6 are immediate consequences of (c) of Proposition 1 and the definitions of $\{P^n\}_{n\in\mathbb{N}}$ and P^{∞} . PROPOSITION 5. If $n \in (N \cup \{\infty\})$, $m \in N$ such that m < n, and $X \subseteq V$, then each P^m -generator of $P^m(X)$ is a P^n -generator of $P^n(X)$. Proposition 6. - (a) If $n \in \mathbb{N}$, $m \in \mathbb{N}$ and m < n, then each P^n -independent subset of V is P^m -independent. - (b) If $n \in (N \cup \{\infty\})$, then a subset X of V is P^n -independent if and only if X is P^m -independent for each $m \in N$ such that $m \le n$. The converse of (a) of Proposition 6 is not a theorem. Let R be the residue class ring of integers modulo a prime number p, $W=R^2$ and T be the collection of all sets $\{r(x-y)+y:r\in R\}$. Then (W,T) is a combinatorial geometry of rank three. Let Q be the line structure for (W,T). Let $X=\{(0,0), (1,0), (0,1), (1,1)\}$. Then X is Q-independent. Also, $Q^2(X-\{(0,0)\})$ contains (0,0), so that X is not Q^2 -independent. **PROPOSITION** 7. Suppose that $U \subseteq V$, and that $n \in (N \cup \{\infty\})$. - (a) If $X \subseteq V$ such that X is a P^n -basis of $P^n(U)$, then X is a maximal P^n independent subset of U. - (b) If P^n has the exchange property, then every maximal P^n -independent subset of U is a P^n -generator of $P^n(U)$. **Proof.** Since P^n is monotone, (a) follows. Assume that P^n has the exchange property while X is a maximal P^n -independent subset of U. It follows from (b) of Proposition 4 that $U \subseteq P^n(X)$ while $P^n(X) \subseteq P^n(U)$ [since P^n is monotone] and $P^{\infty}(U)$ is line-closed [corollary to Proposition 1]. Therefore, it follows that $P^{\infty}(X) = P^{\infty}(U)$. (b) follows. The proof is complete. **PROPOSITION** 8. Suppose that $n \in (N \cup \{\infty\})$. - (a) Every subset of V has a maximal P^n -independent subset. - (b) If $U \subseteq V$, then every P^n -independent subset of U can be extended to a maximal P^n -independent subset of U. **Proof.** Assume that $U \subseteq V$, and that X is a P^n -independent subset of U. Let F be the collection of all P^n -independent subsets of U, and let F_1 be the collection of all P^n -independent subsets Y of U such that $X \subseteq Y$. Then F contains ϕ and F_1 contains X. Since P^n is monotone and normal, it follows that each chain of F (ordered by set inclusion) has its union as an upper bound, and that each chain of F_1 has its union as an upper bound. Hence, it follows from Zorn's lemma that F and F_1 have maximal elements. The proposition follows. Consider a structure Q in a set W. We shall say that Q has the Steinitz exchange property if the following condition is satisfied: If $X \subseteq W$, Y and Z are Q-bases of Q(X) and A is a finite subset of X, then there is a finite subset B of Y such that |B| = |A| and $(X - A) \cup B$ is a Q-basis of Q(X). Also, we shall say that Q has the dimension property if the following condition is satisfied: If $X \subseteq W$, then any two Q-bases of Q(X) are in one-to-one correspondence. It is known (See, e.g., [2] and [6]) that I. If Q is a closure structure having the exchange property, then Q has the Steinitz exchange property. It is known ([4] and [6]) that the following conditions are satisfied: - II. If Q is a closure structure having the equivalence covering property, $X \subseteq W$ and Y is a Q-basis of Q(X), then $|Y| \le |X|^2$. - III. If each subset X of W has a Q-basis of Q(X), and if each two Q-independent subsets Y and Z of W such that Z is a Q-generator of Q(Y) are in one-to-one correspondence, then Q has the equivalence covering property. Therefore, it follows from I, II and III that IV. If Q is a closure structure having the exchange property, then Q has the dimension property if and only if Q has the equivalence covering property. PROPOSITION 9. If P^{∞} has the exchange property, then P^{∞} has the equivalence covering property. **Proof.** Suppose that P^{∞} has the exchange property, and that $X \subseteq V$. Recall that P^{∞} is a closure structure [(b) of Proposition 1]. If $P^{\infty}(X)$ has a finite P^{∞} -basis, then it follows from I that any two P^{∞} -bases of $P^{\infty}(X)$ are in one-to-one correspondence. If $P^{\infty}(X)$ has an infinite P^{∞} -basis, then it follows from II that any two P^{∞} -bases of $P^{\infty}(X)$ are in one-to-one correspondence. Therefore, P^{∞} has the dimension property. It follows from IV that P^{∞} has the equivalence covering property. It was shown in [5] that monotonicity, extensiveness, idempotence, α -character (with α being a cardinal number), the exchange property and the equivalence covering property are independent. Therefore, Proposition 9 is not valid for all closure structures. 3. Closing remarks. Let V be a non-trivial vector space over a division ring F and S be the collection of all $\{r(x-y)+y:r\in F \text{ such that } x\in V,y\in V \text{ and } x\neq y\}$. Then (V,S) is a combinatorial geometry of rank three. Let P be the line structure for (V,S). Let $Q:2^V\to 2^V$ be the structure in V such that if $X\subseteq V$, then Q(X) is the set of all finite linear combinations of elements of X whose coefficients sum to the multiplicative identity in F. Let P be the characteristic of F and P0 be the dimension of P1. Then IVa. If p=0, then $P^{\infty}=Q$. If $p\neq 0$, then $P^{\infty}(X)=Q(X)$ for each $X\subseteq V$ such that |X|< p; hence, if $1<\alpha< p$, then $P^{\infty}=Q$. It is obvious that $P \subseteq Q$, and that Q(X) is line-closed for each $X \subseteq V$. So $P^{\infty} \subseteq Q$. An inductive argument can be used to complete a proof of the assertion. The following example shows that the condition $p < \alpha$ is needed. Let F be the residue class ring of integers modulo 2. Let $V = F^2$. Let $X = \{(0, 0), (1, 0), (0, 1)\}$. Then $P^{\infty}(X) = P(X) = X$ while Q(X) = V. ## REFERENCES - 1. M. N. Bleicher and E. Marczewski, Remarks on dependence relations and closure operators, Colloquium Mathematicum IX (1962), 209-211. - 2. and B. B. Preston, Abstract linear dependence relations, Publ. Math. Debrecen 8 (1961), 55-63. - 3. Crapo-Rota, Combinatorial Geometries, MIT Press, 1970. - 4. J. Hall, Jr., A condition for equality of cardinals of minimal generators under closure operators, Canad. Math. Bull. 14 (4), 1971. - 5. —, The independence of certain axions of structures in sets, Proceedings of the Amer. Math. Soc. 31 (2) (1972), 317-325. - 6. —, On the Theory of Structures in Sets, Dissertation Abstracts International XXXI (10), 1971. STILLMAN COLLEGE P.O. Box 1430 TUSCALOOSA, ALABAMA 34501 U.S.A.