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Abstract
We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex
affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the
t-exactness of Gabber-Loeser’s Mellin transformation. As an intermediate step, we obtain vanishing results for the
Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of
Bieri-Eckmann, generalising results of Denham-Suciu.
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1. Introduction

The geometry and topology of a complex algebraic or analytic variety can be studied via the cohomology
groups of its coherent and constructible sheaves. The Fourier-Mukai transformation on the coherent
side and the Mellin transformation on the constructible side are functors that allow one to compute
the cohomology groups of a coherent or constructible sheaf twisted by all (topologically trivial) line
bundles or local systems. As the Fourier-Mukai transformation has become an essential tool in birational
geometry, the Mellin transformation has also proved useful in the study of perverse sheaves, especially
on complex affine tori [9, 14], abelian varieties [20, 3] and, more generally, semi-abelian varieties [12,
13, 15]. In particular, whether a constructible complex is a perverse sheaf can be completely determined
by its Mellin transformation.
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In this paper, we establish non-abelian generalisations of the t-exactness result of Gabber-Loeser [9]
to certain families of Stein manifolds, such as complements of essential hyperplane arrangements. In this
general setting, we reduce the global t-exactness of the Mellin transformation to a certain local vanishing
result for the multivariable Sabbah specialisation functor [19]. In fact, we show the t-exactness of the
multivariable Sabbah specialisation functor, generalising the well-known result about the t-exactness of
the nearby cycle functor. As a special case of this local vanishing result, we prove a local version of the
t-exactness result of Gabber-Loeser. Using the t-exactness of the non-abelian Mellin transformations,
we construct new families of duality spaces that generalise those of Denham-Suciu [7].

Let A be a Noetherian commutative ring of finite cohomological dimension. Let U be a complex
analytic variety with fundamental group G. Let L𝑈 be the universal 𝐴[𝐺]-local system on U (as defined
in Section 2.1). Denote by 𝑞 : 𝑈 → pt the projection to a point space. For an 𝐴-constructible complex
F on U, we define its Mellin transformations by

𝔐𝑈
∗ (F) � 𝑅𝑞∗(F ⊗𝐴 L𝑈 ) and 𝔐𝑈

! (F) � 𝑅𝑞!(F ⊗𝐴 L𝑈 ).

We omit the uppercase U when there is no risk of confusion. These are non-abelian counterparts of
similar transformations introduced by Gabber-Loeser [9] on complex affine tori.

Our main result is a generalisation to the non-abelian context of Gabber-Loeser’s t-exactness of the
Mellin transformation 𝔐∗ (see [9, Theorem 3.4.1], [14, Theorem 3.2]).

Theorem 1.1. Let U be a complex manifold with a smooth compactification 𝑈 ⊂ 𝑋 , such that the
boundary divisor 𝐸 =

⋃
1≤𝑘≤𝑛 𝐸𝑘 is a simple normal crossing divisor. Assume that the following

properties hold:

1. For any subset 𝐼 ⊂ {1, . . . , 𝑛}, 𝐸◦
𝐼 :=

⋂
𝑘∈𝐼 𝐸𝑘 \

⋃
𝑙∉𝐼 𝐸𝑙 is either empty or a Stein manifold. When

𝐼 = ∅, this means 𝑈 = 𝑋 \ 𝐸 is a Stein manifold.
2. For any point 𝑥 ∈ 𝐸 , the local fundamental group of U at x maps injectively into the fundamental

group of U: that is, the homomorphism 𝜋1 (𝑈𝑥) → 𝜋1 (𝑈) induced by inclusion is injective, where
𝑈𝑥 = 𝐵𝑥 ∩𝑈 with 𝐵𝑥 a small enough complex ball in X centred at x.

Then for any 𝐴-perverse sheaf P on X, the Mellin transformation 𝔐∗(P |𝑈 ) is concentrated in degree
zero. In other words, the functor

F ↦→ 𝔐∗(F |𝑈 ) : 𝐷𝑏
𝑐 (𝑋, 𝐴) → 𝐷𝑏 (𝐴[𝐺])

is t-exact with respect to the perverse t-structure on 𝐷𝑏
𝑐 (𝑋, 𝐴) and the standard t-structure on 𝐷𝑏 (𝐴[𝐺]).

Remark 1.2. If U is algebraic, the conclusion of the above theorem can be reformulated as the assertion
that the functor

𝔐∗ : 𝐷𝑏
𝑐 (𝑈, 𝐴) → 𝐷𝑏 (𝐴[𝐺])

is t-exact. Indeed, if we choose an algebraic compactification 𝑗 : 𝑈 ↩→ 𝑋 satisfying the properties of
the theorem, then a constructible complex F in U is the restriction of the constructible complex 𝑅 𝑗∗F
on X. A similar statement holds in the analytic category, provided that one works with a fixed Whitney
stratification S of the pair (𝑋, 𝐸) and constructibility is taken with respect to S (e.g., see [18, Theorem
2.6(c)]).

Examples of varieties 𝑈 ⊂ 𝑋 satisfying the above conditions include complements of essential
hyperplane arrangements, toric arrangements and elliptic arrangements in their respective wonderful
compactifications, as well as complements of at least 𝑛 + 1 general hyperplane sections in a projective
manifold of dimension n (see [7, Section 2.3]).

Notice that the standard inclusion (C∗)𝑛 ↩→ P𝑛 satisfies both conditions in Theorem 1.1. Thus we
get the following generalisation of Gabber-Loeser’s t-exactness theorem from field coefficients to more
general ring coefficients, where constructibility is taken in the algebraic sense. We also remark that
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the original proof of Gabber-Loeser does not apply to this general setting since it uses in an essential
way the artinian and noetherian properties of the category of perverse sheaves with field coefficients.
Moreover, our result cannot be directly deduced from that of Gabber-Loeser. Indeed, given an A-perverse
sheaf P , it is possible that P

𝐿
⊗𝐴 𝐴/𝑚 is not perverse for some maximal ideal m of A.

Corollary 1.3. The Mellin transformation

𝔐∗ : 𝐷𝑏
𝑐 ((C

∗)𝑛, 𝐴) → 𝐷𝑏 (𝐴[Z𝑛])

is t-exact with respect to the perverse t-structure on 𝐷𝑏
𝑐 ((C

∗)𝑛, 𝐴) and the standard t-structure on
𝐷𝑏 (𝐴[Z𝑛]).

As another application of Theorem 1.1, we obtain new examples of duality spaces (in the sense of
Bieri-Eckmann [4]) that are non-affine or singular varieties. In particular, we recast the fact, initially
proved by Denham-Suciu [7] by different methods, that linear, toric and elliptic arrangement comple-
ments are duality spaces.

As a key step in proving Theorem 1.1, we obtain local vanishing results about Sabbah’s specialisation
functors (Theorem 4.2). As a special case, we obtain a local version of the t-exactness result of Gabber-
Loeser, where constructibility is taken in the analytic category.

Theorem 1.4. Let P be an A-perverse sheaf defined in a neighbourhood of 0 ∈ C𝑛. Let 𝐵 ⊂ C𝑛 be a
small ball centred at the origin, and let 𝐵◦ be the complement of all coordinate hyperplanes in B. Let
L𝐵◦ be the universal 𝜋1 (𝐵

◦)-local system on 𝐵◦. Then

𝐻𝑘 (𝐵◦,P |𝐵◦ ⊗𝐴 L𝐵◦

)
= 0 for any 𝑘 ≠ 0.

In this paper, we make essential use of the language of derived categories and perverse sheaves (see,
e.g., [11], [21], [8], [17] and [18] for comprehensive references).

2. Preliminaries

2.1. Universal local system

Let X be a connected locally contractible topological space with base point x. Let 𝐺 = 𝜋1 (𝑋, 𝑥), and let
𝑝 : �̃� → 𝑋 be the universal covering map. We regard the universal cover �̃� as the space of homotopy
classes of paths from the base point x to a variable point in X, with the natural action of G on the right. Let

L𝑋 := 𝑝! 𝐴�̃� ,

where 𝐴�̃� is the constant sheaf with stalk A on �̃� . Then L𝑋 is a local system of rank-one free right
𝐴[𝐺]-modules. Equivalently, L𝑋 can be defined as the rank-one 𝐴[𝐺]-local system such that the stalk
at x is equal to 𝐴[𝐺] and the monodromy action is defined as the left multiplication of G on 𝐴[𝐺].

Remark 2.1. We call L𝑋 the universal local system of X for the following reason. Given any A-module
representation 𝜌 : 𝐺 → Aut𝐴(𝑉), we can regard V as a left 𝐴[𝐺]-module. Then we have an 𝐴-local
system L𝑋 ⊗𝐴[𝐺 ] 𝑉 whose monodromy action is precisely 𝜌. Moreover, every A-local system on X can
be obtained uniquely in this way.

Lemma 2.2. Let (𝑌, 𝑦) and (𝑍, 𝑧) be two path-connected locally contractible pointed topological spaces.
Let L𝑌 and L𝑍 be the universal 𝐴[𝜋1 (𝑌, 𝑦)]- and 𝐴[𝜋1 (𝑍, 𝑧)]-local systems on Y and Z, respectively.
Let 𝑔 : 𝑌 → 𝑍 be a continuous map with 𝑔(𝑦) = 𝑧. If 𝑔∗ : 𝜋1 (𝑌, 𝑦) → 𝜋1 (𝑍, 𝑧) is injective, then
as an 𝐴[𝜋1 (𝑌, 𝑦)]-local system, 𝑔∗(L𝑍 ) is a direct sum of copies of L𝑌 indexed by the right cosets
𝑔∗𝜋1 (𝑌 )\𝜋1 (𝑍).
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Proof. By definition, the local system 𝑔∗(L𝑍 ) has stalk 𝐴[𝜋1 (𝑍, 𝑧)] at y, and the monodromy action
of 𝛼 ∈ 𝜋1 (𝑌, 𝑦) is equal to the left multiplication of 𝑔∗𝛼. As a left 𝐴[𝜋1 (𝑌, 𝑦)]-module, 𝐴[𝜋1 (𝑍, 𝑧)] is
free, and the summands are parametrised by the right cosets 𝑔∗𝜋1 (𝑌 )\𝜋1 (𝑍). Thus the assertion of the
lemma follows. �

2.2. (Weakly) constructible complexes, perverse sheaves and Artin’s vanishing.

Recall that a sheaf F of A-modules on a complex algebraic, respectively, analytic variety X is said to be
weakly constructible if there is an algebraic, respectively, analytic Whitney stratification S of X so that
the restriction F |𝑆 of F to every stratum 𝑆 ∈ S is an A-local system. We say that F is constructible if,
moreover, the stalks F𝑥 for all 𝑥 ∈ 𝑋 are finitely generated A-modules. Let 𝐷𝑏 (𝑋, 𝐴) be the bounded
derived category of complexes of sheaves of A-modules on X. A bounded complex F ∈ 𝐷𝑏 (𝑋, 𝐴)
is called (weakly) constructible if all its cohomology sheaves H 𝑗 (F) are (weakly) constructible. Let
𝐷𝑏

(𝑤)𝑐
(𝑋, 𝐴) be the full triangulated subcategory of 𝐷𝑏 (𝑋, 𝐴) consisting of (weakly) constructible

complexes.
The category 𝐷𝑏

(𝑤)𝑐
(𝑋, 𝐴) is endowed with the perverse t-structure: that is, two strictly full sub-

categories 𝑝𝐷≤0
(𝑤)𝑐

(𝑋, 𝐴) and 𝑝𝐷≥0
(𝑤)𝑐

(𝑋, 𝐴) defined by stalk and, respectively, costalk vanishing con-
ditions; see [2] or [11, Chapter X] for details. The heart of the perverse t-structure is the category of
(weakly) A-perverse sheaves on X.

Artin’s vanishing theorem for perverse sheaves is a key ingredient of both the local and global
vanishing results in this paper. We recall here the version for weakly constructible complexes.

Theorem 2.3 ([11, Theorem 10.3.8]). Let X be a Stein manifold.

1. For any F ∈ 𝑝𝐷≤0
𝑤𝑐 (𝑋, 𝐴), 𝐻𝑘 (𝑋,F) = 0 for 𝑘 > 0.

2. For any F ∈ 𝑝𝐷≥0
𝑤𝑐 (𝑋, 𝐴), 𝐻𝑘

𝑐 (𝑋,F) = 0 for 𝑘 < 0.

2.3. Sabbah specialisation complex

In this subsection, let X be a connected complex manifold. For 1 ≤ 𝑘 ≤ 𝑛, let 𝑓𝑘 : 𝑋 → C be holomorphic
functions, and let 𝐷𝑘 = 𝑓 −1

𝑘 (0) be the corresponding divisors. Set
⋃

1≤𝑘≤𝑛 𝐷𝑘 = 𝐷, with complement
𝑋 \ 𝐷 = 𝑈. Let

𝐹 = ( 𝑓1, . . . , 𝑓𝑛) : 𝑋 → C𝑛,

and denote by 𝐹𝑈 : 𝑈 → (C∗)𝑛 the restriction of F to U. Let 𝑖 : 𝐷 ↩→ 𝑋 and 𝑗 : 𝑈 ↩→ 𝑋 be the closed
and open embeddings, respectively. Let L(C∗)𝑛 be the universal local system on (C∗)𝑛, and let

L𝐹
𝑈 = 𝐹∗

𝑈 (L(C∗)𝑛 ).

We make the following.

Definition 2.4. The Sabbah specialisation functor is defined as

Ψ𝐹 : 𝐷𝑏
(𝑤)𝑐 (𝑋, 𝐴) → 𝐷𝑏

(𝑤)𝑐 (𝐷, 𝑅), F ↦→ 𝑖∗𝑅 𝑗∗
(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
,

where 𝑅 = 𝐴[𝜋1 ((C
∗)𝑛)].

Remark 2.5. (i) The above definition is similar to that of [6, Definition 3.2], and it differs slightly from
Sabbah’s initial definition [19, Definition 2.2.7], where one has to restrict further to ∩𝑘𝐷𝑘 . Both [6] and
[19] assume 𝐴 = C.

(ii) When 𝑛 = 1 and A is a field, the functor Ψ𝐹 is noncanonically isomorphic to Deligne’s
(shifted/perverse) nearby cycle functor 𝜓𝐹 [−1]. In this case, Ψ𝐹 is an exact functor with respect to the
perverse t-structures (see [5, Theorem 1.2], as well as the discussion in [19, Section 2.2.9]).
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3. t-exactness of the Sabbah specialisation functor

As already mentioned in Remark 2.5, it is known that when defined over a field, the univariate Sabbah
specialisation functor is exact with respect to the perverse t-structures. The proof uses the (stalkwise)
isomorphism between the univariate Sabbah specialisation functor and the perverse nearby cycle functor
to conclude the right t-exactness and then uses Verdier duality to deduce the left t-exactness. However,
this proof does not work when the ground field is replaced by a general ring since the Verdier duality
may no longer exchange the subcategories 𝑝𝐷≤0 and 𝑝𝐷≥0. Instead, one needs to also compute costalks.
In this section, we prove the t-exactness of the univariate Sabbah specialisation functor over a general
ring (Theorem 3.1) by showing a costalk formula (Proposition 3.3). Consequently, we prove that the
Sabbah specialisation functor in any number of variables is also t-exact (Corollary 3.4). Throughout
this section, we work with bounded weakly constructible complexes.

Let X be a complex manifold, and let 𝑓 : 𝑋 → C be a holomorphic function. Let 𝐷 = 𝑓 −1(0), and
set 𝑈 = 𝑓 −1(C∗). Let 𝑖 : 𝐷 ↩→ 𝑋 and 𝑗 : 𝑈 ↩→ 𝑋 be the closed and open embeddings, respectively.

Fixing, as before, a commutative Noetherian ring A of finite cohomological dimension, we let LC∗
be the universal 𝐴[𝜋1 (C

∗)]-local system on C∗ and denote its pullback to U by

L 𝑓
𝑈 := 𝑓 ∗LC∗ .

Given a weakly A-constructible complex F on X, the univariate Sabbah specialisation complex of F is
the following object in 𝐷𝑏

𝑤𝑐 (𝐷, 𝐴[𝜋1 (C
∗)]):

Ψ 𝑓 (F) = 𝑖∗𝑅 𝑗∗
(
F |𝑈 ⊗𝐴 L 𝑓

𝑈

)
.

Theorem 3.1. The Sabbah specialisation functor

Ψ 𝑓 : 𝐷𝑏
𝑤𝑐 (𝑋, 𝐴) → 𝐷𝑏

𝑤𝑐

(
𝐷, 𝐴[𝜋1 (C

∗)]
)

is t-exact with respect to the perverse t-structures.

Fixing a chart of X near 𝑥 ∈ 𝐷, we consider two real-valued functions on this chart: r is the Euclidean
distance to x, and d is the function given by 𝑑 (𝑦) = | 𝑓 (𝑦) − 𝑓 (𝑥) |.

Lemma 3.2. Let F be a weakly A-constructible complex on X. Choose 0 < 𝜖 << 𝛿 << 1. Define

Π𝜖 , 𝛿 � {𝑦 ∈ 𝑋 | 𝑟 (𝑦) < 𝛿, 0 < 𝑑 (𝑦) < 𝜖} and Δ∗
𝜖 � {𝑧 ∈ C∗ | |𝑧 | < 𝜖}.

Let 𝑓 ′ : Π𝜖 , 𝛿 → Δ∗
𝜖 be the restriction of f, which is the Milnor fibration of f at x. Then 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 ) is

locally constant on Δ∗
𝜖 : that is, it has locally constant cohomology sheaves.

Proof. It is a well-known fact that (see, e.g., [21, Corollary 4.2.2])

𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 ) � D 𝑅 𝑓 ′∗ D(F |Π𝜖 , 𝛿 ),

where D denotes the Verdier dualising functor. By [21, Definition 5.1.1 and Example 5.1.4],
𝑅 𝑓 ′∗ D(F |Π𝜖 , 𝛿 ) is locally constant. Hence, 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 ) is also locally constant. �

The following result shows that the Sabbah specialisation functor Ψ 𝑓 has the same costalks as
Deligne’s perverse nearby cycle functor 𝜓 𝑓 [−1]. In view of Remark 2.5(2), one would expect that there
is a noncanonical isomorphism between these two functors. However, this fact, if true, is not needed in
this paper.

Proposition 3.3. Let F be a weakly A-constructible complex on X. Then

𝐻𝑘
𝑥

(
𝐷,Ψ 𝑓 (F)

)
= 𝐻𝑘−1

𝑐

(
𝑀 𝑓 ,F |𝑀 𝑓

)
, (3.1)
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where 𝑀 𝑓 is a local Milnor fibre of f at 𝑥 ∈ 𝐷 and 𝐻∗
𝑥 (−) denotes the local cohomology at 𝑥 ∈ 𝑋 . Here,

𝑀 𝑓 can be identified with the fibre of 𝑓 ′ from the preceding lemma.

Proof. By applying the attaching triangle

𝑗! 𝑗 ! → 𝑖𝑑 → 𝑖∗𝑖
∗ +1
−−→

to 𝑅 𝑗∗(F |𝑈 ⊗ L 𝑓
𝑈 ), we get the distinguished triangle

𝑗!(F |𝑈 ⊗ L 𝑓
𝑈 ) → 𝑅 𝑗∗(F |𝑈 ⊗ L 𝑓

𝑈 ) → 𝑖∗𝑖
∗𝑅 𝑗∗(F |𝑈 ⊗ L 𝑓

𝑈 )
+1
−−→ . (3.2)

Let 𝑖𝑥 : {𝑥} ↩→ 𝑋 and 𝑘𝑥 : {𝑥} ↩→ 𝐷 be the inclusion maps with 𝑖𝑥 = 𝑖 ◦ 𝑘𝑥 . Applying the functor
𝑖!
𝑥 to the triangle (3.2) and using the fact that 𝑖!

𝑥𝑅 𝑗∗ = 0, we get from the corresponding cohomology
long exact sequence that for any 𝑘 ∈ Z,

𝐻𝑘 (𝑖!
𝑥𝑖∗𝑖

∗𝑅 𝑗∗(F |𝑈 ⊗ L 𝑓
𝑈 )

)
� 𝐻𝑘+1 (𝑖!

𝑥 𝑗! (F |𝑈 ⊗ L 𝑓
𝑈 )

)
.

Since

𝑖!
𝑥𝑖∗𝑖

∗𝑅 𝑗∗(F |𝑈 ⊗ L 𝑓
𝑈 ) = 𝑘 !

𝑥𝑖
!𝑖∗𝑖

∗𝑅 𝑗∗(F |𝑈 ⊗ L 𝑓
𝑈 ) = 𝑘 !

𝑥Ψ 𝑓 (F),

we get, for any 𝑘 ∈ Z, an isomorphism

𝐻𝑘
𝑥

(
𝐷,Ψ 𝑓 (F)

)
:= 𝐻𝑘 (𝑘 !

𝑥Ψ 𝑓 (F)) � 𝐻𝑘+1 (𝑖!
𝑥 𝑗!(F |𝑈 ⊗ L 𝑓

𝑈 )
)
. (3.3)

For 0 < 𝜖 << 𝛿 << 1, we have

𝐻𝑘+1 (𝑖!
𝑥 𝑗! (F |𝑈 ⊗ L 𝑓

𝑈 )
)
� 𝐻𝑘+1

𝑐

(
{𝑦 ∈ 𝑋 | 𝑟 (𝑦) < 𝛿, 𝑑 (𝑦) < 𝜖}, 𝑗!(F |𝑈 ⊗ L 𝑓

𝑈 )
)

� 𝐻𝑘+1
𝑐

(
{𝑦 ∈ 𝑋 | 𝑟 (𝑦) < 𝛿, 0 < 𝑑 (𝑦) < 𝜖},F |𝑈 ⊗ L 𝑓

𝑈

)
� 𝐻𝑘+1

𝑐

(
Δ◦
𝜖 , 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 ) ⊗ LC∗ |Δ∗

𝜖

)
,

(3.4)

where the first isomorphism can be deduced, for example, from [17, Proposition 7.2.5], and the last
follows from the projection formula.

Let Exp : C→ C∗ be the universal covering map, and let Exp𝜖 : Exp−1(Δ◦
𝜖 ) → Δ◦

𝜖 be its restriction.
Then LC∗ � Exp! 𝐴

C
. By the projection formula, we have

𝐻𝑘+1
𝑐

(
Δ◦
𝜖 , 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 ) ⊗ LC∗ |Δ∗

𝜖

)
� 𝐻𝑘+1

𝑐

(
Exp−1(Δ◦

𝜖 ), Exp∗𝜖 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 ) ⊗ 𝐴Exp−1 (Δ◦
𝜖 )

)
� 𝐻𝑘+1

𝑐

(
Exp−1(Δ◦

𝜖 ), Exp∗𝜖 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 )
)
.

(3.5)

Since Exp−1(Δ◦
𝜖 ) is a real two-dimensional contractible manifold, 𝐻2

𝑐 (Exp−1(Δ◦
𝜖 ), 𝐴) � 𝐴 and

𝐻𝑘
𝑐 (Exp−1(Δ◦

𝜖 ), 𝐴) = 0 for 𝑘 ≠ 2. Since 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 ) is locally constant and its stalk is isomorphic to
𝑅Γ𝑐 (𝑀 𝑓 ,F |𝑀 𝑓 ), we get by the Künneth formula that

𝐻𝑘+1
𝑐

(
Exp−1(Δ◦

𝜖 ), Exp∗𝜖 𝑅 𝑓 ′! (F |Π𝜖 , 𝛿 )
)
� 𝐻𝑘−1

𝑐 (𝑀 𝑓 ,F |𝑀 𝑓 ). (3.6)

Now the desired formula given by equation (3.1) follows from equations (3.3), (3.4), (3.5) and (3.6). �

Proof of Theorem 3.1. Since L 𝑓
𝑈 is a local system of free A-modules, the tensor product ⊗𝐴L 𝑓

𝑈 is t-
exact. Since j is an open embedding of a hypersurface complement, it is a quasi-finite Stein morphism,
and hence 𝑅 𝑗∗ is also t-exact (see, e.g., [18, Proposition 3.29, Example 3.67, Theorem 3.70]). The right
t-exactness of Ψ 𝑓 follows now from the right t-exactness of 𝑖∗.
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For the left t-exactness of Ψ 𝑓 , we need to check the costalk vanishing conditions on each stratum. By
Proposition 3.3, we notice that Ψ 𝑓 has the same costalks as the Deligne perverse nearby cycle functor
𝜓 𝑓 [−1]; see, for example, [21, Lemma 5.4.2] or [18, Proposition 4.11] for the costalk calculation of the
latter. Then the assertion follows from the corresponding result for the (left) t-exact functor 𝜓 𝑓 [−1];
see, for example, [21, Theorem 6.0.2] or [18, Theorem 4.22(2)]. �

Next, we show how to derive the t-exactness of the multivariate Sabbah specialisation functor from
the univariate case of Theorem 3.1.

Corollary 3.4. Under the notations of Definition 2.4, the multivariate Sabbah specialisation functor
Ψ𝐹 : 𝐷𝑏

𝑤𝑐 (𝑋, 𝐴) → 𝐷𝑏
𝑤𝑐 (𝐷, 𝑅) is t-exact with respect to the perverse t-structures.

Proof. Without loss of generality, we assume that 𝑛 ≥ 2. Let 𝑓 = 𝑓1 · · · 𝑓𝑛, and let 𝑓𝑈 : 𝑈 → C∗ be the
restriction of f to U. As before, denote 𝑓 ∗𝑈 (LC∗ ) and 𝐹∗

𝑈 (L(C∗)𝑛 ) by L 𝑓
𝑈 and L𝐹

𝑈 , respectively.
Using the natural isomorphisms 𝜋1 ((C

∗)𝑛) � Z𝑛 and 𝜋1 (C
∗) � Z, the holomorphic map

Π : (C∗)𝑛 → C∗, (𝑧1, . . . , 𝑧𝑛) ↦→ 𝑧1 · · · 𝑧𝑛

induces the homomorphism

𝜉 : Z𝑛 → Z, (𝑎1, . . . , 𝑎𝑛) ↦→ 𝑎1 + · · · + 𝑎𝑛

on the fundamental groups. Then we have a natural isomorphism of rank one 𝐴[Z]-local systems,

L 𝑓
𝑈 � L𝐹

𝑈 ⊗𝐴[Z𝑛 ] 𝐴[Z],

where the 𝐴[Z𝑛]-module structure on 𝐴[Z] is induced by 𝜉.
Fix a splitting Z𝑛 = Ker(𝜉) ⊕ Z of the short exact sequence

0 → Ker(𝜉) → Z𝑛
𝜉
−→ Z→ 0,

which induces a splitting of the short exact sequence of affine tori

1 → Ker(Π) → (C∗)𝑛
Π
−→ C∗ → 1.

By the definition of the universal local system, the above splitting of affine tori induces an isomorphism
of A-local systems

L(C∗)𝑛 � LKer(Π) ⊗𝐴 LC∗ .

We denote the pullback 𝐹∗LKer(Π) by L′
𝑈 . Then taking the pullback of the above isomorphism, we have

L𝐹
𝑈 � L′

𝑈 ⊗𝐴 L 𝑓
𝑈

as A-local systems.
Since F is a weakly A-constructible complex on X and L′

𝑈 is a local system of free A-modules,
𝑅 𝑗∗(F |𝑈 ⊗𝐴 L′

𝑈 ) is a weakly A-constructible complex on X (see [18, Theorem 2.6(c)]). Therefore,
considering Ψ𝐹 (F) as an object in 𝐷𝑏

𝑤𝑐 (𝐷, 𝐴[Z]) under the functor between group algebras induced
by 𝜉 : Z𝑛 → Z, we have

Ψ𝐹 (F) � 𝑖∗𝑅 𝑗∗
(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
� 𝑖∗𝑅 𝑗∗

( (
F |𝑈 ⊗𝐴 L′

𝑈

)
⊗𝐴 L 𝑓

𝑈

)
� Ψ 𝑓

(
𝑅 𝑗∗

(
F |𝑈 ⊗𝐴 L′

𝑈

) )
.

Since F is a weakly A-perverse sheaf on X and L′
𝑈 is a local system of free A-modules, the tensor

product F |𝑈 ⊗𝐴L′
𝑈 is a weakly A-perverse sheaf on U. Since 𝑗 : 𝑈 ↩→ 𝑋 is an open embedding whose
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complement is a divisor, j is a quasi-finite Stein mapping, and hence the pushforward 𝑅 𝑗∗
(
F |𝑈 ⊗𝐴L′

𝑈

)
is a weakly A-perverse sheaf on X. By Theorem 3.1, Ψ 𝑓 (𝑅 𝑗∗(F |𝑈 ⊗𝐴L′

𝑈 )) is a weakly A-perverse sheaf.
Since the definition of the perverse t-structure does not involve the ring of coefficients, we conclude that
Ψ𝐹 (F) is also perverse as a (weakly) R-constructible complex. �

4. Local vanishing of the multivariate Sabbah specialisation functor

Let X be a complex manifold. For 1 ≤ 𝑘 ≤ 𝑛, let 𝑓𝑘 : 𝑋 → C be holomorphic functions as in Section 2.3,
with 𝐷𝑘 = 𝑓 −1

𝑘 (0) the corresponding divisors. Set

𝐹 = ( 𝑓1, . . . , 𝑓𝑛) : 𝑋 → C𝑛.

For any subset 𝐼 ⊂ {1, . . . , 𝑛}, let

𝐷 𝐼 =
⋂
𝑘∈𝐼

𝐷𝑘 and 𝐷◦
𝐼 = 𝐷 𝐼 \

⋃
𝑚∉𝐼

𝐷𝑚.

For a subset 𝐽 ⊂ {1, . . . , 𝑛}, we let 𝐷>𝐽 =
⋃

𝐼�𝐽 𝐷 𝐼 . We also let

𝐷≥𝑚 =
⋃
|𝐼 |=𝑚

𝐷 𝐼 and 𝐷◦
≥𝑚 = 𝐷≥𝑚 \ 𝐷≥𝑚+1.

Let 𝐷 = 𝐷≥1 and 𝑈 = 𝑋 \ 𝐷. Let 𝐹𝑈 : 𝑈 → (C∗)𝑛 be the restriction of F to U.
If S is an open submanifold of X, we denote the open embedding by 𝑗𝑆 : 𝑆 ↩→ 𝑋 . If S is a locally

closed, but not open, subvariety of X, we denote the inclusion map by 𝑖𝑆 : 𝑆 ↩→ 𝑋 .

Remark 4.1. Here we do not assume that the divisors 𝐷𝑘 define a local complete intersection. So the
codimension of 𝐷◦

𝐼 is only ≤ |𝐼 |. In fact, 𝐷◦
𝐼 may not be equidimensional.

Given any weakly A-constructible complex F on X and any nonempty subset 𝐼 ⊂ {1, . . . , 𝑛}, we
define

Ψ𝐷◦
𝐼
(F) � 𝑖∗𝐷◦

𝐼
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
,

that is, the restriction of the Sabbah specialisation complex Ψ𝐹 (F) to 𝐷◦
𝐼 . Here, L𝐹

𝑈 is defined as in
Section 2.3. While, of course, Ψ𝐷◦

𝐼
(F) also depends on F, we drop this dependence from our notation

to avoid clutter.
In this section, we prove the following.

Theorem 4.2. Let 𝑅 = 𝐴[𝜋1 ((C
∗)𝑛)]. Then the functor

Ψ𝐷◦
𝐼

: 𝐷𝑏
𝑤𝑐 (𝑋, 𝐴) → 𝐷𝑏

𝑤𝑐 (𝐷
◦
𝐼 , 𝑅)

is t-exact with respect to the perverse t-structures.

First, we show that the functor Ψ𝐷◦
𝐼

is right t-exact.

Lemma 4.3. The functor Ψ𝐷◦
𝐼

is right t-exact: that is, it maps 𝑝𝐷≤0
𝑤𝑐 (𝑋, 𝐴) to 𝑝𝐷≤0

𝑤𝑐 (𝐷
◦
𝐼 , 𝑅).

Proof. By definition, for any weakly constructible complex F on X, we have Ψ𝐷◦
𝐼
(F) � 𝑖∗

𝐷◦
𝐼 ,𝐷

Ψ𝐹 (F),
where 𝑖𝐷◦

𝐼 ,𝐷
: 𝐷◦

𝐼 ↩→ 𝐷 is the inclusion map. The right t-exactness of Ψ𝐷◦
𝐼

follows from Corollary 3.4,
together with the fact that the pullback functor 𝑖∗

𝐷◦
𝐼 ,𝐷

is right t-exact (here we write 𝑖𝐷◦
𝐼 ,𝐷

as a composition
of the closed inclusion of 𝐷 𝐼 into D, followed by the open inclusion of 𝐷◦

𝐼 into 𝐷 𝐼 ); see [2, 1.4.10,
1.4.12] �
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The left t-exactness of Ψ𝐷◦
𝐼

along zero-dimensional strata can be formulated as the following local
vanishing result. In particular, the proposition is weaker than Theorem 4.2.

Proposition 4.4. Let 𝑥 ∈ 𝐷◦
𝐼 be an arbitrary point, and denote the closed embedding by 𝑖𝑥 : {𝑥} ↩→ 𝐷◦

𝐼 .
Then for any constructible complex F in 𝑝𝐷≥0

𝑤𝑐 (𝑋, 𝐴), we have

𝐻𝑘 (𝑖!
𝑥Ψ𝐷◦

𝐼
(F)

)
= 0 for any 𝑘 < 0. (4.1)

Before proving the remaining left t-exactness of the functor Ψ𝐷◦
𝐼
, we need the following lemma,

which is a local cohomology version of [1, spectral sequence (10)]. We give here a different proof, and
we will use similar arguments later to show Lemma 5.2. Here, we use local cohomology instead of
the cohomology of the exceptional pullback to avoid introducing more notations for the inclusion maps
from x to various spaces.

Lemma 4.5. Assume |𝐼 | = 𝑚. There is a spectral sequence

𝐸 𝑝𝑞
1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝐻 𝑝+𝑞+1
𝑥

(
𝑋, (𝑖𝐷◦

≥−𝑞
)!𝑖

∗
𝐷◦

≥−𝑞
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

) )
, when 1 − 𝑚 ≤ 𝑞 ≤ −1

𝐻 𝑝
𝑥

(
𝑋, 𝑖𝐷∗𝑖

∗
𝐷𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

) )
, when 𝑞 = 0

0, otherwise

=⇒ 𝐻 𝑝+𝑞
𝑥

(
𝐷◦
𝐼 ,Ψ𝐷◦

𝐼
(F)

)
.

Proof. Consider the double complex A•,• of weakly constructible sheaves on X defined by

A𝑝,𝑞 = (𝑖𝐷≥𝑝+1 )∗𝑖
∗
𝐷≥𝑝+1

𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈 )

when 0 ≤ 𝑝 = −𝑞 ≤ 𝑚 − 1 and when 0 ≤ 𝑝 = −1 − 𝑞 ≤ 𝑚 − 2. For other 𝑝, 𝑞, we let A𝑝,𝑞 = 0.
By base change, we have a natural isomorphism

(𝑖𝐷≥𝑝+1 )∗𝑖
∗
𝐷≥𝑝+1

(𝑖𝐷≥𝑝 )∗𝑖
∗
𝐷≥𝑝

𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈 ) � (𝑖𝐷≥𝑝+1 )∗𝑖
∗
𝐷≥𝑝+1

𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈 ),

and hence the adjunction distinguished triangle can be written as

(𝑖𝐷◦
≥𝑝
)!𝑖

∗
𝐷◦

≥𝑝
𝑅 𝑗𝑈∗

(
F ⊗𝐴 L𝐹

𝑈

)
→ (𝑖𝐷≥𝑝 )∗𝑖

∗
𝐷≥𝑝

𝑅 𝑗𝑈∗

(
F ⊗𝐴 L𝐹

𝑈

)

→ (𝑖𝐷≥𝑝+1 )∗𝑖
∗
𝐷≥𝑝+1

𝑅 𝑗𝑈∗

(
F ⊗𝐴 L𝐹

𝑈

) +1
−−→ .

(4.2)

Now we define all the horizontal differentials 𝑑 ′ to be zero except 1 ≤ 𝑝 ≤ 𝑚 − 1, where we let
𝑑 ′ : A𝑝−1,−𝑝 → A𝑝,−𝑝 be the second map in equation (4.2). Similarly, we define all the vertical
differentials 𝑑 ′′ to be zero except 0 ≤ 𝑝 ≤ 𝑚 − 2, when we let 𝑑 ′′ : A𝑝,−𝑝−1 → A𝑝,−𝑝 be the identity
maps.

Since all column complexes (A𝑝,•, 𝑑 ′′) are exact except 𝑝 = 𝑚 − 1, and the (𝑚 − 1)th column is
equal to (𝑖𝐷≥𝑚 )∗𝑖

∗
𝐷≥𝑚

𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
[𝑚 − 1], we have an isomorphism

tot(A•,•) � (𝑖𝐷≥𝑚 )∗𝑖
∗
𝐷≥𝑚

𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)

in 𝐷𝑏
𝑤−𝑐 (𝑋, 𝑅), where tot(A•,•) is the total complex of A•,• considered an object in 𝐷𝑏

𝑤−𝑐 (𝑋, 𝑅).
Consider the filtration 𝐹𝑞 � A•,≤𝑞 of A•,• by row truncations. The graded pieces of the filtration

are the rows in A•,•. Using the adjunction distinguished triangle, we have

tot
(
Gr𝑞 (A•,•)

)
�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(𝑖𝐷◦
≥−𝑞

)!𝑖
∗
𝐷◦

≥−𝑞
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
[1] when 1 − 𝑚 ≤ 𝑞 ≤ −1

𝑖𝐷∗𝑖
∗
𝐷𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
when 𝑞 = 0

0 otherwise,

(4.3)
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where tot(Gr𝑞 (A•,•)) is the total complex of Gr𝑞 (A•,•) viewed as an object in 𝐷𝑏
𝑤−𝑐 (𝑋, 𝑅).

Since 𝑥 ∈ 𝐷◦
𝐼 and 𝐷◦

𝐼 is open in 𝐷≥𝑚, the complexes 𝑅(𝑖𝐷≥𝑚 )∗𝑖
∗
𝐷≥𝑚

𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
and

𝑅
(
𝑖𝐷◦

𝐼

)
∗
𝑖∗
𝐷◦

𝐼
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

)
are quasi-isomorphic in a neighbourhood of x. Hence we have isomor-

phisms

𝐻 𝑝+𝑞
𝑥

(
𝑋, (𝑖𝐷≥𝑚 )∗𝑖

∗
𝐷≥𝑚

𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

) )
� 𝐻 𝑝+𝑞

𝑥

(
𝑋, 𝑅(𝑖𝐷◦

𝐼
)∗𝑖

∗
𝐷◦

𝐼
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

) )

� 𝐻 𝑝+𝑞
𝑥

(
𝐷◦
𝐼 ,Ψ𝐷◦

𝐼
(F)

)
.

(4.4)

Taking local cohomology of the filtered complex tot(A•,•), we have a spectral sequence

𝐸 𝑝𝑞
1 = 𝐻 𝑝+𝑞

𝑥

(
𝑋, tot

(
Gr𝑞 (A•,•)

) )
→ 𝐻 𝑝+𝑞

𝑥

(
𝑋, tot(A•,•)

)
.

The isomorphisms given by equations (4.3) and (4.4) yield the spectral sequence in the lemma. �

Proof of Theorem 4.2 and Proposition 4.4. We simultaneously prove the theorem and the proposition
using induction on |𝐼 |, the cardinality of I. When |𝐼 | = 1, Theorem 4.2, and hence Proposition 4.4,
follow from Corollary 3.4 (since restriction to opens is t-exact). Fixing an integer 𝑚 ≥ 2, we assume
that Theorem 4.2, and hence Proposition 4.4, hold for all I with |𝐼 | < 𝑚, and we want to show that they
both hold for I with |𝐼 | = 𝑚.

To prove Proposition 4.4, we notice that the statement can be reduced to the case when D is a simple
normal crossing divisor. In fact, consider the multivariate graph embedding

𝐹† : 𝑋 → 𝑋 × C𝑛, 𝑥 ↦→ (𝑥, 𝐹 (𝑥)),

which restricts to a closed embedding 𝑈 → 𝑋× (C∗)𝑛. The local vanishing in equation (4.1) of Sabbah’s
specialisation functor for 𝐹 : 𝑋 → C𝑛 can be reduced to the local vanishing of the Sabbah specialisation
functor for the projection 𝑝2 : 𝑋 × C𝑛 → C𝑛. This is due to the following natural isomorphism

𝑅�̂�†
∗Ψ𝐹 (F) � Ψ𝑝2 (𝑅𝐹†

∗F),

where �̂�† is the restriction of 𝐹† to D.
Now we prove Proposition 4.4, assuming that D is a simple normal crossing divisor. We identify

𝐴[𝜋1 ((C
∗)𝑛)] with 𝐴[𝑡±1 , . . . , 𝑡±𝑛 ] using the standard isomorphisms

𝐴[𝜋1 ((C
∗)𝑛)] � 𝐴[Z𝑛] � 𝐴[𝑡±1 , . . . , 𝑡±𝑛 ] .

Let 𝐵𝑥 be a small polydisc in X centred at x, and let 𝑈𝑥 = 𝐵𝑥 ∩𝑈. Without loss of generality, we assume
that 𝐼 = {1, . . . , 𝑚}. Since D is a normal crossing divisor, we have a natural isomorphism 𝐴[𝜋1 (𝑈𝑥)] �
𝐴[𝑡±1 , . . . , 𝑡±𝑚]. Let L𝑈𝑥 be the universal 𝐴[𝑡±1 , . . . , 𝑡±𝑚]-local system on 𝑈𝑥 . As 𝐴[𝑡±1 , . . . , 𝑡±𝑚]-local
systems on 𝑈𝑥 , we have a noncanonical isomorphism

L𝐹
𝑈 |𝑈𝑥 � L𝑈𝑥 ⊗𝐴 𝐴[𝑡±𝑚+1, . . . , 𝑡±𝑛 ] .

Therefore,

𝐻𝑘 (𝑖!
𝑥Ψ𝐷◦

𝐼
(F)

)
= 𝐻𝑘 (𝑖!

𝑥𝑖
∗
𝐷◦

𝐼
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐹

𝑈

) )
� 𝐻𝑘

𝑥

(
𝐵𝑥 , 𝑖∗𝐷◦

𝐼
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈𝑥

) )
⊗𝐴 𝐴[𝑡±𝑚+1, . . . , 𝑡±𝑛 ] .

Thus it suffices to prove the vanishing in equation (4.1) under the following assumption, which we will
make for the remainder of the proof of Proposition 4.4.
Assumption. The space 𝑋 = 𝐵𝑥 = Δ 𝑙 is a small polydisc in C𝑙 centred at the origin x, and 𝑛 = 𝑚 and
𝑓1, . . . , 𝑓𝑚 are the first m coordinate functions. In particular, L𝐹

𝑈 = L𝑈 and 𝑈 = 𝑈𝑥 .
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We claim that

𝐻 𝑝+𝑞+1
𝑥

(
𝑋,

(
𝑖𝐷◦

≥−𝑞

)
!𝑖
∗
𝐷◦

≥−𝑞
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

) )
= 0 (4.5)

for 1 − 𝑚 ≤ 𝑞 ≤ −1 and 𝑝 + 𝑞 < 0. In fact, let 𝐽 ⊂ {1, . . . , 𝑚} with |𝐽 | = −𝑞. To show equation (4.5), it
suffices to show that for 1 − 𝑚 ≤ 𝑞 ≤ −1 and 𝑝 + 𝑞 < 0,

𝐻 𝑝+𝑞+1
𝑥

(
𝑋, (𝑖𝐷◦

𝐽
)!𝑖

∗
𝐷◦

𝐽
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

) )
= 0. (4.6)

Without loss of generality, we assume that 𝐽 = {1, . . . ,−𝑞}. By the above assumptions, 𝑈 = (Δ◦)𝑚 ×

Δ 𝑙−𝑚, where Δ is a small disc in C centred at the origin, and Δ◦ = Δ \ {0}. We further decompose U as
𝑈 = (Δ◦)−𝑞 × (Δ◦)𝑚+𝑞 × Δ 𝑙−𝑚, and we let L𝐽

𝑈 and L𝐽 𝑐

𝑈 be the pullback of the universal local systems
L(Δ◦)−𝑞 and L(Δ◦)𝑚+𝑞×Δ𝑙−𝑚 to U, respectively. Then as 𝐴[𝑡±1 , . . . , 𝑡±𝑚]-local systems,

L𝑈 � L𝐽
𝑈 ⊗𝐴 L𝐽 𝑐

𝑈 ,

where the 𝐴[𝑡±1 , . . . , 𝑡±𝑚]-module structures on L𝐽
𝑈 and L𝐽 𝑐

𝑈 are induced by the natural projections
𝜋1 (𝑈) → 𝜋1 ((Δ◦)−𝑞) and 𝜋1 (𝑈) → 𝜋1 ((Δ◦)𝑚+𝑞), respectively. Thus, we have

𝑖∗𝐷◦
𝐽
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

)
� 𝑖∗𝐷◦

𝐽
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐽

𝑈 ⊗𝐴 L𝐽 𝑐

𝑈

)
� 𝑖∗𝐷◦

𝐽
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐽

𝑈

)
⊗𝐴 L𝐷◦

𝐽
,

(4.7)

where L𝐷◦
𝐽

is the universal local system on 𝐷◦
𝐽 , and the second isomorphism follows from the fact that

L𝐽 𝑐

𝑈 extends as an 𝐴[𝑡±
−𝑞+1, . . . , 𝑡±𝑚]-local system to 𝑋 \ (𝐷−𝑞+1 ∪ · · · ∪ 𝐷𝑚), and the restriction of the

extension to 𝐷◦
𝐽 is isomorphic to L𝐷◦

𝐽
.

Applying the inductive hypothesis in Theorem 4.2 to the space 𝑋 \ (𝐷−𝑞+1 ∪ · · · ∪𝐷𝑚) and functions
𝑓1, . . . , 𝑓−𝑞 , it follows that

G � 𝑖∗𝐷◦
𝐽
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝐽

𝑈

)
∈ 𝑝𝐷≥0

𝑤−𝑐

(
𝐷◦
𝐽 , 𝐴[𝑡±1 , . . . , 𝑡±−𝑞]

)
.

By equation (4.7), we have

𝐻 𝑝+𝑞+1
𝑥

(
𝑋, (𝑖𝐷◦

𝐽
)!𝑖

∗
𝐷◦

𝐽
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

) )
� 𝐻 𝑝+𝑞+1

𝑥

(
𝑋, (𝑖𝐷◦

𝐽
)!
(
G ⊗𝐴 L𝐷◦

𝐽

) )
. (4.8)

Consider the distinguished triangle

(𝑖𝐷◦
𝐽
)!
(
G ⊗𝐴 L𝐷◦

𝐽

)
→ 𝑅(𝑖𝐷◦

𝐽
)∗
(
G ⊗𝐴 L𝐷◦

𝐽

)
→ (𝑖𝐷>𝐽 )∗𝑖

∗
𝐷>𝐽

𝑅(𝑖𝐷◦
𝐽
)∗
(
G ⊗𝐴 L𝐷◦

𝐽

) +1
−−→ .

Since 𝑖!
𝑥𝑅(𝑖𝐷◦

𝐽
)∗
(
G ⊗𝐴 L𝐷◦

𝐽

)
= 0, the local cohomology long exact sequence implies that

𝐻 𝑝+𝑞+1
𝑥

(
𝑋, (𝑖𝐷◦

𝐽
)!
(
G ⊗𝐴 L𝐷◦

𝐽

) )
� 𝐻 𝑝+𝑞

𝑥

(
𝑋, (𝑖𝐷>𝐽 )∗𝑖

∗
𝐷>𝐽

𝑅(𝑖𝐷◦
𝐽
)∗
(
G ⊗𝐴 L𝐷◦

𝐽

) )
� 𝐻 𝑝+𝑞

𝑥

(
𝐷>𝐽 , 𝑖∗𝐷>𝐽

𝑅(𝑖𝐷◦
𝐽
)∗
(
G ⊗𝐴 L𝐷◦

𝐽

) )
.

(4.9)

Notice that the last term of the above isomorphism is equal to the (𝑝 + 𝑞)th cohomology of the costalk
at x of the multivariate Sabbah specialisation functor applied to G with respect to the holomorphic
functions 𝑓𝑖 |𝐷𝐽 on 𝐷𝐽 for 𝑖 ∈ {1, . . . , 𝑚} \ 𝐽. Thus, by Corollary 3.4,

𝐻 𝑝+𝑞
𝑥

(
𝑋, (𝑖𝐷>𝐽 )∗𝑖

∗
𝐷>𝐽

𝑅(𝑖𝐷◦
𝐽
)∗
(
G ⊗𝐴 L𝐷◦

𝐽

) )
= 0 (4.10)
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when 𝑝 + 𝑞 < 0. Combining equations (4.8), (4.9) and (4.10), we have

𝐻 𝑝+𝑞+1
𝑥

(
𝑋, (𝑖𝐷◦

𝐽
)!𝑖

∗
𝐷◦

𝐽
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

) )
= 0 (4.11)

when 𝑝 + 𝑞 < 0.
Notice that

𝐻 𝑝+𝑞
𝑥

(
𝑋, 𝑖𝐷∗𝑖

∗
𝐷𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

) )
� 𝐻 𝑝+𝑞

𝑥

(
𝐷, 𝑖∗𝐷𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

) )
,

and the right-hand side is equal to the (𝑝+𝑞)th cohomology of the costalk at x of the Sabbah specialisation
Ψ𝐹 (F). Thus, by Corollary 3.4, we have

𝐻 𝑝+𝑞
𝑥

(
𝑋, 𝑖𝐷∗𝑖

∗
𝐷𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

) )
= 0 (4.12)

when 𝑝 + 𝑞 < 0.
Therefore, the vanishing in equation (4.1) follows from Lemma 4.5 and equations (4.11), (4.12). We

have finished the proof of Proposition 4.4.
We now complete the proof of Theorem 4.2. In Lemma 4.3, we have proved the right t-exactness of

Ψ𝐷◦
𝐼
. By Proposition 4.4, we know the left t-exactness of the functor Ψ𝐷◦

𝐼
at zero-dimensional strata. The

proof of the left t-exactness at higher-dimensional strata can be reduced to the case of zero-dimensional
strata by using the standard normal slice arguments (see, e.g., [21, page 427]). �

The next corollary shows that Theorem 4.2 can be considered a generalisation of the t-exactness of
the Sabbah specialisation functor.
Corollary 4.6. Let 𝑅 = 𝐴[𝜋1 ((C

∗)𝑛)], and define the functor Ψ𝐷𝐼 by

Ψ𝐷𝐼 : 𝐷𝑏
𝑤𝑐 (𝑋, 𝐴) → 𝐷𝑏

𝑤𝑐 (𝐷 𝐼 , 𝑅), F ↦→ 𝑖∗𝐷𝐼
𝑅 𝑗𝑈∗

(
F |𝑈 ⊗𝐴 L𝑈

)
.

Then Ψ𝐷𝐼 is t-exact with respect to the perverse t-structures.
Proof. It suffices to show that if P is a weakly constructible A-perverse sheaf on X, then Ψ𝐷𝐼 (P)

is perverse. Notice that Ψ𝐷𝐼 (P) is equal to an iterated extension of constructible complexes
(𝑖𝐷𝐽 ,𝐷𝐼 )∗(𝑖𝐷◦

𝐽 ,𝐷𝐽 )!Ψ𝐷◦
𝐽
(P) for 𝐽 ⊃ 𝐼. Since 𝐷◦

𝐽 is a hypersurface complement in 𝐷𝐽 and 𝐷𝐽 is closed
in 𝐷 𝐼 , Theorem 4.2 implies that (𝑖𝐷𝐽 ,𝐷𝐼 )∗(𝑖𝐷◦

𝐽 ,𝐷𝐽 )!Ψ𝐷◦
𝐽
(P) is a perverse sheaf supported on 𝐷𝐽. Since

extensions of perverse sheaves are also perverse, Ψ𝐷𝐼 (P) is a perverse sheaf on 𝐷 𝐼. �

5. Non-abelian Mellin transformations

First, we recall and extend the notations of Theorem 1.1.
Let X be a compact complex manifold. Let 𝐸 =

⋃
1≤𝑘≤𝑑 𝐸𝑘 be a normal crossing divisor on X, and let

𝑈 = 𝑋 \ 𝐸 with inclusion map 𝑗 : 𝑈 ↩→ 𝑋 . For any nonempty subset 𝐼 ⊂ {1, . . . , 𝑑}, let 𝐸𝐼 =
⋂

𝑖∈𝐼 𝐸𝑖

and 𝐸◦
𝐼 = 𝐸𝐼 \

⋃
𝑗∉𝐼 𝐸 𝑗 . Let 𝐸≥𝑚 =

⋃
|𝐼 |=𝑚 𝐸𝐼 , and let 𝐸◦

≥𝑚 = 𝐸≥𝑚 \𝐸≥𝑚+1.1 For any open submanifold
S of X, we denote the open embedding by 𝑗𝑆 : 𝑆 ↩→ 𝑋 . For a locally closed, but not open, submanifold S
of X, we denote the inclusion map by 𝑖𝑆 : 𝑆 ↩→ 𝑋 . Let L𝑈 be the universal 𝐴[𝜋1 (𝑈)]-local system on U.
Proposition 5.1. Under the above notations, let P ∈ 𝐷𝑏

𝑐 (𝑋, 𝐴) be an 𝐴-perverse sheaf. Given a
nonempty subset 𝐼 ⊂ {1, . . . , 𝑑}, assume that at every point 𝑥 ∈ 𝐸◦

𝐼 , the local fundamental group maps
injectively to the global fundamental group: that is, the condition (2) in Theorem 1.1 holds. Then

𝑖∗𝐸◦
𝐼
𝑅 𝑗∗(P |𝑈 ⊗ L𝑈 )

is a weakly constructible A-perverse sheaf on 𝐸◦
𝐼 .

1Here we denote divisors by E, as opposed to D in the earlier sections, since no defining equations are present in this case.
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Proof. It suffices to check the statement locally on 𝐸◦
𝐼 . For an arbitrary point 𝑥 ∈ 𝐸◦

𝐼 , let 𝐵𝑥 be
a small ball in X centred at x, and let 𝑈𝑥 = 𝐵𝑥 ∩ 𝑈. By Lemma 2.2, L𝑈 |𝑈𝑥 is a direct sum of
possibly infinitely many copies of L𝑈𝑥 . Let 𝑖𝐸◦

𝐼∩𝐵𝑥 ,𝐵𝑥 : 𝐸◦
𝐼 ∩ 𝐵𝑥 → 𝐵𝑥 and 𝑗𝑈𝑥 ,𝐵𝑥 : 𝑈𝑥 → 𝐵𝑥 be

the closed and open embeddings, respectively. The restriction of the complex 𝑖∗
𝐸◦
𝐼
𝑅 𝑗∗(P |𝑈 ⊗ L𝑈 ) to

𝐸◦
𝐼 ∩ 𝐵𝑥 is equal to (𝑖𝐸◦

𝐼∩𝐵𝑥 ,𝐵𝑥 )
∗𝑅( 𝑗𝑈𝑥 ,𝐵𝑥 )∗(P |𝑈𝑥 ⊗ L𝑈 |𝑈𝑥 ), which is just a direct sum of copies

of (𝑖𝐸◦
𝐼∩𝐵𝑥 ,𝐵𝑥 )

∗𝑅( 𝑗𝑈𝑥 ,𝐵𝑥 )∗(P |𝑈𝑥 ⊗ L𝑈𝑥 ). Hence, by Theorem 4.2, the weakly constructible complex
(𝑖𝐸◦

𝐼∩𝐵𝑥 ,𝐵𝑥 )
∗𝑅( 𝑗𝑈𝑥 ,𝐵𝑥 )∗(P |𝑈𝑥 ⊗ L𝑈 |𝑈𝑥 ) is an A-perverse sheaf on 𝐸◦

𝐼 ∩ 𝐵𝑥 . �

Before proving Theorem 1.1, we need the following lemma, similar to Lemma 4.5.

Lemma 5.2. There exists a spectral sequence

𝐸 𝑝𝑞
1 =

⎧⎪⎨
⎪⎩

𝐻 𝑝+𝑞
(
𝑋,

(
𝑖𝐸◦

≥−𝑞+1

)
!𝑖
∗
𝐸◦
≥−𝑞+1

𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

) )
when 𝑞 ≤ 0

0 when 𝑞 > 0

=⇒ 𝐻 𝑝+𝑞 (𝑋, 𝑖∗𝑖
∗𝑅 𝑗∗

(
P |𝑈 ⊗𝐴 L𝑈

) )
.

Here, if 𝐸◦
≥−𝑞+1 = ∅, our convention is that both

(
𝑖𝐸◦

≥−𝑞+1

)
! and 𝑖∗

𝐸◦
≥−𝑞+1

are zero functors.

Proof. As in the proof of Lemma 4.5, we define a double complex B•,• by

B𝑝,𝑞 = (𝑖𝐸≥𝑝 )∗𝑖
∗
𝐸≥𝑝

𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

)

when 𝑝 = −𝑞 ≥ 0 or 𝑝 − 1 = −𝑞 ≥ 0. For other values of 𝑝, 𝑞, we let B𝑝,𝑞 = 0. Consider the adjunction
distinguished triangle

(
𝑖𝐸◦

≥𝑝

)
!𝑖
∗
𝐸◦
≥𝑝

𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

)
→

(
𝑖𝐸≥𝑝

)
∗
𝑖∗𝐸≥𝑝

𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

)

→
(
𝑖𝐸≥𝑝+1

)
∗
𝑖∗𝐸≥𝑝+1

𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

) +1
−−→ .

(5.1)

We define all horizontal differentials 𝑑 ′ to be zero except 𝑝 ≥ 0, in which case we let 𝑑 ′ : B𝑝,−𝑝 →

B𝑝+1,−𝑝 be the second map in equation (5.1). We define all vertical differential 𝑑 ′′ to be zero except
𝑝 ≥ 1, when we let 𝑑 ′′ : B𝑝,−𝑝 → B𝑝,−𝑝+1 be the identity map. For the rest of the proof, we can use the
same arguments as in the proof of Lemma 4.5, with local cohomology replaced by hypercohomology. �

We now have all the ingredients for proving our main result, Theorem 1.1.

Proof of Theorem 1.1. Given any A-perverse sheaf P on X, we need to show that

𝐻𝑘 (𝔐∗(P |𝑈 )) = 0 for 𝑘 ≠ 0.

By assumption, U is a Stein manifold. Since P |𝑈 ⊗𝐴 L𝑈 is a weakly constructible A-perverse sheaf, by
Artin’s vanishing Theorem 2.3, we get

𝐻𝑘 (𝔐∗(P)) � 𝐻𝑘 (𝑈,P |𝑈 ⊗𝐴 L𝑈
)
= 0 for 𝑘 > 0.

To show the vanishing in negative degrees, we consider the following distinguished triangle:

𝑗!
(
P |𝑈 ⊗𝐴 L𝑈

)
→ 𝑅 𝑗∗

(
P |𝑈 ⊗𝐴 L𝑈

)
→ 𝑖∗𝑖

∗𝑅 𝑗∗
(
P |𝑈 ⊗𝐴 L𝑈

) +1
−−→,

where 𝑖 : 𝐸 ↩→ 𝑋 and 𝑗 : 𝑈 ↩→ 𝑋 are the closed and open embeddings, respectively. Since X and E are
compact, the associated hypercohomology long exact sequence reads as

· · · → 𝐻𝑘
𝑐

(
𝑈,P |𝑈 ⊗𝐴 L𝑈

)
→ 𝐻𝑘 (𝑈,P |𝑈 ⊗𝐴 L𝑈

)
→ 𝐻𝑘 (𝐸, 𝑖∗𝑅 𝑗∗

(
P |𝑈 ⊗𝐴 L𝑈

) )
→ · · · (5.2)
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By Proposition 5.1, as a weakly constructible complex on 𝐸◦
≥−𝑞+1, 𝑖∗

𝐸◦
≥−𝑞+1

𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

)
is

perverse. By assumption, 𝐸◦
≥−𝑞+1 is a disjoint union of Stein manifolds. Thus, by Artin’s vanishing

Theorem 2.3, we have that

𝐻 𝑝+𝑞
(
𝑋,

(
𝑖𝐸◦

≥−𝑞+1

)
!𝑖
∗
𝐸◦
≥−𝑞+1

𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

) )
� 𝐻 𝑝+𝑞

𝑐

(
𝐸◦
≥−𝑞+1, 𝑖∗𝐸◦

≥−𝑞+1
𝑅 𝑗𝑈∗

(
P |𝑈 ⊗𝐴 L𝑈

) )

vanishes for 𝑞 ≤ 0 and 𝑝 + 𝑞 < 0. Therefore, by Lemma 5.2, we have

𝐻𝑘 (𝑋, 𝑖∗𝑖
∗𝑅 𝑗∗

(
P |𝑈 ⊗𝐴 L𝑈

) )
= 0, for 𝑘 < 0. (5.3)

Furthermore, since P |𝑈 ⊗𝐴 L𝑈 is a weakly constructible A-perverse sheaf on the Stein manifold U, we
get by Artin’s vanishing Theorem 2.3 that

𝐻𝑘
𝑐

(
𝑈,P |𝑈 ⊗𝐴 L𝑈

)
= 0, for 𝑘 < 0. (5.4)

By plugging equations (5.3) and (5.4) into the long exact sequence (5.2), we conclude that

𝐻𝑘 (𝔐∗(P)) � 𝐻𝑘 (𝑈,P |𝑈 ⊗𝐴 L𝑈
)
= 0, for 𝑘 < 0,

thus completing the proof of Theorem 1.1. �

6. Some applications

One of our motivations for studying the t-exactness of the non-abelian Mellin transformation is to extend
results of Denham-Suciu [7] concerning duality spaces (in the sense of Bieri and Eckmann [4]). Let us
first recall the following definition.

Definition 6.1. Let U be a topological space with fundamental group G, which is homotopy equivalent
to a connected, finite-type CW-complex. Let L𝑈 be the universal Z[𝐺]-local system on U. We say that U
is a duality space of dimension n if 𝐻𝑘 (𝑈,L𝑈 ) = 0 for 𝑘 ≠ 𝑛 and 𝐻𝑛 (𝑈,L𝑈 ) is a torsion-free Z-module.

It is proved in [7] that for any smooth, connected, complex quasi-projective variety U satisfying the
conditions of Theorem 1.1, the topological space U is a duality space of dimension dimC𝑈. In particular,
complements of essential hyperplane arrangements, elliptic arrangements or toric arrangements are
examples of duality spaces. The aim of this section is to construct new examples of duality spaces that
are non-affine or singular varieties (see Proposition 6.4 and Corollary 6.6). In fact, our results apply
more generally to complex analytic varieties.

We begin with the following general result.

Proposition 6.2. Let 𝑈 ⊂ 𝑋 be complex manifolds satisfying the conditions of Theorem 1.1. Let
𝑓 : 𝑌 → 𝑈 be a proper map from a pure d-dimensional complex analytic variety Y, satisfying the
following assumptions:

(i) f induces an isomorphism on fundamental groups.
(ii) 𝑅 𝑓∗(Q𝑌 [𝑑]) and 𝑅 𝑓∗(F𝑌 [𝑑]) are perverse sheaves on U, where F = F𝑝 is a field of prime

characteristic p.
(iii) 𝑅 𝑓∗(Z𝑌 [𝑑]) ∈

𝑝𝐷≤0
𝑐 (𝑈,Z) is semi-perverse.

Then Y is a duality space of dimension 𝑑 = dimC𝑌 . In particular, when f is the identity map of U, we
get that U itself is a duality space of dimension dimC𝑈.

Proof. We follow similar arguments as in the proof of [14, Theorem 4.11(1)]. First, by definition, we
have that

𝐻𝑘 (𝑌,L𝑌 ) � 𝐻𝑘 (𝔐𝑌
∗ (Z𝑌 )).
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By (i), we get that L𝑌 � 𝑓 ∗L𝑈 with coefficients in 𝐴 = Z,Q or F. By the properness of f and projection
formulas, we have

𝔐𝑌
∗ (Z𝑌 ) � 𝔐𝑈

∗ (𝑅 𝑓∗Z𝑌 )

as well as

𝔐𝑌
∗ (Z𝑌 ) ⊗Z Q � 𝔐𝑌

∗ (Q𝑌 ) � 𝔐𝑈
∗ (𝑅 𝑓∗Q𝑌 ) (6.1)

and

𝔐𝑌
∗ (Z𝑌 )

𝐿
⊗Z F � 𝔐𝑌

∗ (F𝑌 ) � 𝔐𝑈
∗ (𝑅 𝑓∗F𝑌 ). (6.2)

By Theorem 1.1, the assumptions (ii) and (iii) and the isomorphisms in equations (6.1) and (6.2),
the complexes 𝔐𝑌

∗ (Z𝑌 [𝑑]) ⊗Z Q and 𝔐𝑌
∗ (Z𝑌 [𝑑])

𝐿
⊗Z F are concentrated in degrees zero and the

cohomology of 𝔐𝑌
∗ (Z𝑌 [𝑑]) vanishes in positive degrees. Thus, by Lemma 6.3 below, the complex

𝔐𝑌
∗ (Z𝑌 [𝑑]) is also concentrated in degree zero, and its cohomology in degree zero is a torsion-free
Z-module. In other words, Y is a duality space of dimension d. �

Lemma 6.3. Let 𝑁• be a bounded complex of free Z-modules. Suppose that

1. 𝐻𝑘 (𝑁• ⊗Z Q) = 𝐻𝑘 (𝑁• ⊗Z F𝑝) = 0 for any 𝑘 ≠ 0 and for any prime number p;
2. 𝐻𝑘 (𝑁•) = 0 for 𝑘 > 0.

Then 𝐻𝑘 (𝑁•) = 0 for 𝑘 ≠ 0, and 𝐻0(𝑁•) is a torsion-free Z-module.

Proof. By (2), it suffices to show that 𝐻𝑘 (𝑁•) = 0 for 𝑘 < 0 and 𝐻0 (𝑁•) is torsion-free. For any 𝑘 < 0,
since 𝐻𝑘 (𝑁• ⊗Z Q) = 0, 𝐻𝑘 (𝑁•) is a torsion Z-module. Thus it suffices to show that 𝐻𝑘 (𝑁•) is torsion
free for all 𝑘 ≤ 0.

Suppose that for some 𝑘 ≤ 0, 𝐻𝑘 (𝑁•) has nonzero torsion elements. Let 𝑘0 be the smallest such
k, and let p be a prime number such that 𝐻𝑘0 (𝑁•) has nonzero p-torsion elements. Here, notice that if
𝜂 ∈ 𝐻𝑘0 (𝑁•) has order 𝑚 > 0, and if p is a prime divisor of m, then 𝑚

𝑝 𝜂 is a p-torsion element. The
p-torsion element in 𝐻𝑘0 (𝑁•) induces a short exact sequence

0 → F𝑝 → 𝐻𝑘0 (𝑁•) → 𝐻𝑘0 (𝑁•)/F𝑝 → 0.

Then as part of the associated long exact sequence, we have

0 = TorZ2
(
𝐻𝑘0 (𝑁•)/F𝑝 , F𝑝

)
→ TorZ1 (F𝑝 , F𝑝) = F𝑝 → TorZ1 (𝐻

𝑘0 (𝑁•), F𝑝),

which implies that TorZ1 (𝐻
𝑘0 (𝑁•), F𝑝) ≠ 0. By the universal coefficient theorem, there is a noncanonical

isomorphism

𝐻𝑘0−1(𝑁• ⊗Z F𝑝) � 𝐻𝑘0−1(𝑁•) ⊗Z F𝑝 ⊕ TorZ1 (𝐻
𝑘0 (𝑁•), F𝑝).

Thus 𝐻𝑘0−1(𝑁• ⊗Z F𝑝) ≠ 0. Since 𝑘0 ≤ 0, this contradicts our assumption (1). �

The following are consequences of Proposition 6.2.

Corollary 6.4. Assume 𝑈 ⊂ 𝑋 are complex manifolds satisfying the conditions of Theorem 1.1. Let
𝑓 : 𝑌 → 𝑈 be a proper birational semi-small map from a pure d-dimensional complex manifold Y. Then
Y is a duality space of dimension d. In particular, blowing up U along any codimension-two submanifold
gives rise to a duality space.
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Proof. It suffices to check that the map f satisfies the assumptions of Proposition 6.2.
First, since f is a birational and proper map between the complex manifolds U and Y, f induces an

isomorphism between their fundamental groups (see, e.g., [10, page 494]).
Secondly, since Y is smooth and f is semi-small, by [21, Example 6.0.9], we have:

1. 𝑅 𝑓∗(Q𝑌 [𝑑]) and 𝑅 𝑓∗(F𝑌 [𝑑]) are perverse sheaves on U.
2. 𝑅 𝑓∗(Z𝑌 [𝑑]) ∈

𝑝𝐷≤0
𝑐 (𝑈,Z) is semi-perverse.

Hence the assertion follows from Proposition 6.2. �

Corollary 6.5. Let U be a complex manifold with a compactification X satisfying the conditions in
Theorem 1.1, and let 𝑍 ⊂ 𝑈 be a connected closed analytic subvariety, which is also locally closed in
X. Assume that Z is a local complete intersection, and the inclusion 𝑍 ↩→ 𝑈 induces an isomorphism
on fundamental groups. Then Z is a duality space of dimension dimC 𝑍 .
Proof. First, since Z is locally closed in X, 𝑅( 𝑗 ◦ 𝑖)∗ Z𝑍 � 𝑅 𝑗∗ 𝑗∗ 𝑖∗ Z�̄� is constructible on X, where �̄�
is the closure of Z in X, and 𝑖 : 𝑍 → 𝑈, 𝑖 : �̄� → 𝑋 and 𝑗 : 𝑈 → 𝑋 are the inclusion maps (see, e.g.,
[18, Theorem 2.5]).

Let 𝑑 = dimC 𝑍 . Since Z is a local complete intersection, Z𝑍 [𝑑], Q𝑍 [𝑑] and F𝑍 [𝑑] are perverse
sheaves on Z. Since i is a closed embedding, 𝑖∗ Z𝑍 [𝑑], 𝑖∗Q𝑍 [𝑑] and 𝑖∗ F𝑍 [𝑑] are perverse sheaves
on U. Since 𝑖 : 𝑍 → 𝑈 is also assumed to induce an isomorphism on fundamental groups, the assertion
follows from Proposition 6.2. �

Corollary 6.6. Let 𝑌 ⊂ P𝑛 be a hypersurface such that the singular locus 𝑌sing has codimension at least
3. Let 𝐷1, . . . , 𝐷𝑚 ⊂ P𝑛 be smooth hypersurfaces in general position and transversal to Y such that
𝑌 ∩ 𝐷1 ∩ · · · ∩ 𝐷𝑚 = ∅. Then 𝑌 \ (𝐷1 ∪ · · · ∪ 𝐷𝑚) is a duality space.
Proof. Set 𝑈 = P𝑛 \ (𝐷1 ∪ · · · ∪𝐷𝑚). It is clear that U with compactification P𝑛 satisfies the conditions
in Theorem 1.1. Note that 𝑌 \ (𝐷1 ∪ · · · ∪ 𝐷𝑚) is a hypersurface in U. By the above corollary, we
only need to show that the inclusion map 𝑌 \ (𝐷1 ∪ · · · ∪ 𝐷𝑚) → 𝑈 induces an isomorphism on the
fundamental groups. By the Lefschetz hyperplane section theorem, after intersecting with a generic
projective linear space 𝐿 ⊂ P𝑛 with dim 𝐿 = 3, we can assume that Y is a smooth hypersurface Y in P3

intersecting 𝐷1 ∪ · · · ∪ 𝐷𝑚 transversally. Using the Lefschetz hyperplane section theorem, we get that

𝑌 \ (𝐷1 ∪ · · · ∪ 𝐷𝑚) → P
3 \ (𝐷1 ∪ · · · ∪ 𝐷𝑚)

induces an isomorphism on the fundamental groups. �

We regard a complex manifold U as in Theorem 1.1 as the affine/Stein counterpart of a complex
projective aspherical manifold. The Mellin transformations of certain projective aspherical manifolds
are discussed in [16], where, under certain assumptions, we show that the Mellin transformation of a
nontrivial constructible complex is nonzero (see [16, Proposition 3.3 and Proposition 5.6]).

We conjecture that this fact remains true in the more general setting of Theorem 1.1.
Conjecture 6.7. Assume that 𝑈 ⊂ 𝑋 are complex manifolds satisfying the conditions in Theorem 1.1.
Let F ∈ 𝐷𝑏

𝑐 (𝑋, 𝐴) be a constructible complex such that F |𝑈 ≠ 0. Then 𝔐∗(F |𝑈 ) ≠ 0.
Remark 6.8. If 𝑈 ⊂ 𝑋 are algebraic varieties, and if U admits a quasi-finite map to some semi-
abelian variety, then the conjecture holds; for more details, see [16, Remark 5.15]. Such examples
include complements of essential linear hyperplane arrangements, complements of toric arrangements
and complements of elliptic arrangements.

A particular consequence of Conjecture 6.7 is that the perverse t-structure on 𝐷𝑏
𝑐 (𝑈, 𝐴) can be

completely detected by the Mellin transformation.
Proposition 6.9. Assume that the above conjecture holds for complex manifolds 𝑈 ⊂ 𝑋 satisfying the
conditions in Theorem 1.1. Then for an A-constructible complex F on X, F |𝑈 is perverse if and only if
𝔐∗(F |𝑈 ) is concentrated in degree zero.
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Proof. The ‘only if’ part is exactly Theorem 1.1. To show the converse, suppose that F |𝑈 is not a
perverse sheaf. Then there exists 𝑘 ≠ 0 such that 𝑝H𝑘 (F |𝑈 ) ≠ 0. It follows from Theorem 1.1 that
𝐻𝑘 (𝔐∗(F |𝑈 )) � 𝐻0(𝔐∗(

𝑝H𝑘 (F |𝑈 ))), which is nonzero by Conjecture 6.7. This is a contradiction to
the assumption that 𝔐∗(F |𝑈 ) is concentrated in degree zero. �
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