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Better AD Simulators with Flexible State Functions
and Accurate Discretizations

olav møyner

Abstract

The ad-core module in the MATLAB Reservoir Simulation Toolbox (MRST)
offers an object-oriented framework for rapid prototyping of new reservoir simu-
lators based on automatic differentiation (AD-OO). The framework simplifies the
task of changing and extending existing simulation models in MRST or imple-
menting brand new ones. The MRST textbook presents a model hierarchy for the
black-oil equations, discretized by a standard fully implicit method, and describes
how to (automatically) select time steps and configure linear and nonlinear solvers.
Herein, we present a further modularization that aims to simplify the implementa-
tion of more complex flow models and other types of discretizations and solution
strategies. To this end, we view the reservoir simulator as a graph of functional rela-
tionships and their dependencies and introduce the new concept of so-called state
functions to define these functional relationships and compute discrete quantities
required for the linearized governing equations. Using the graph perspective, it is
relatively simple to not only visualize and understand the data flow of highly com-
plex reservoir simulators but also replace components of the graph and/or extend
the graph with new branches as needed. The result is a versatile family of reservoir
simulators that can easily be configured to run different types of multiphase, mul-
ticomponent models and at the same time support a number of different spatial and
temporal discretizations. The state function concept also has a built-in compute
cache that helps you to systematically eliminate redundant function evaluations.
The chapter explains the new concept in detail and exemplifies its use by showcas-
ing implicit, explicit, and adaptive-implicit simulators for the same physical pro-
cesses. We also demonstrate the use of consistent and high-resolution schemes to
improve simulation accuracy. Applications to complex flow physics (enhanced oil
recovery, compositional flow, fractured reservoirs) are discussed in other chapters.
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5.1 Introduction

How to best organize simulators based on automatic differentiation to support effi-
cient solution of complex multiphysics problems is still a subject of research (see,
e.g., [8] for work on coupling strategies in Stanford University’s research simulator,
AD-GPRS). Until recently, the MATLAB Reservoir Simulation Toolbox (MRST)
used a rather monolithic approach in which the implementation of reservoir and
facility models was tightly coupled. In MRST 2019a, however, we decided to
increase the granularity of the object-oriented, automatic differentiation (AD-OO)
framework to simplify the task of adding new model equations or discretization
schemes by introducing a new family of class objects, called state functions and
state-function groups, for evaluating fluid properties, discretized fluxes, and other
key properties that vary during the simulation.

This chapter discusses several of these recent additions to the AD-OO simulator
framework in MRST. In particular, we will go into more detail on how the simulator
performs linearizations and brings a state toward convergence. You will see how
MRST recently has been extended to decouple the choice of primary variables
from the governing equations to make coupling easier for multiphysics problems
and to calculate sensitivities and gradients. As part of this development process,
we also introduced a number of improvements to the generic model classes that
enable more fine-grained control over primary variables and the strategies a model
uses to update physical states so that these comply with the pertinent mathematical
models. We suggest that you go through the material in chapter 12 of the MRST
textbook [3] before reading this chapter.

The central concept in this chapter is the state functions that MRST uses to treat
the governing equations of any model as a graph of functions that depend on each
other. Taking a cue from descriptions of thermodynamics, a state function computes
values that completely depend on the current state of the system, irrespective of
the path taken to arrive at those values. The framework for state functions is a
recent addition to MRST that addresses the growing complexity of our simulators
based on automatic differentiation. It is built from the ground up to support spatial
variations in functional relationships (e.g., fluid regions), variable number of phases
and components (e.g., compositional or multiphase flow), and easy redefinition
of discrete equations (e.g., alternative discretizations or solution strategies). You
will learn how to visualize sets of state functions with complex interdependent
relationships as graphs, how to modify and replace existing functions, and how to
create entirely new groups of functional relationships.

Once you are familiar with how functional relationships are described with state
functions, we explain how you can easily change the temporal and spatial dis-
cretizations as needed. This includes explicit and adaptive-implicit solvers, consis-
tent discretizations for complex grids, and high-resolution schemes for transport.
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In doing so, we present the first set of MRST solvers that support both highly
advanced physical effects and specialized discretization schemes offering improved
accuracy. Altogether, the techniques in this chapter represent the next generation of
the AD-OO framework, demonstrating new levels of flexibility and modularity for
MRST as a prototyping platform. Further improvements to AD-OO are presented in
Chapter 6, in which we describe how you can increase simulation efficiency using
high-performing backends for automatic differentiation, faster linear solvers, and
management of simulation cases. We recommend that you start with the chapter you
are currently reading. In addition, Chapter 7 on water-based enhanced oil recovery,
Chapter 8 on compositional simulation, and Chapter 11 on unified modeling of
fractured media make extensive use of the new state-functions framework, demon-
strating how it is used in practice.

5.2 Numerical Models in MRST

The model concept is central to MRST’s AD-OO simulator framework. Whereas
a mathematical model describes a system using mathematical concepts and lan-
guage, a numerical model in AD-OO describes the system in a discrete sense. A
model class, derived from the PhysicalModel base class (see the MRST textbook
[3, section 12.1]) therefore consists of a number of different entities that together
define the discrete version of pertinent physical or empirical laws. In addition, the
model provides the means to modify a given discrete state of the system so that it
fulfills these laws. Herein, we consider a generic system of discrete flow equations,
which is described in the next two subsections.

The rest of the section then continues with an in-depth discussion of the iterative
procedure models use to update states. The discussion complements chapter 12 in
the MRST textbook by providing more details and outlining features that were not
available in the software at the time that book was written. An updated description
of the interfaces that govern nonlinear iterations is useful for readers who wish to
write (or understand) advanced simulators that vary the choice of primary variables
or couple different models together. In addition, some of this material is essential
to motivate the state functions described in Section 5.3.

5.2.1 A Generic Multicomponent Flow Model

We consider a generic set of flow equations for a system of N individual compo-
nents that have been discretized in time by a finite-difference method and in space
by a finite-volume scheme over a general unstructured grid (see Figure 5.1):

Mn+1
i − Mn

i

�tn
+ div(Vi) − Qi = 0, i ∈ {1, . . . ,N}. (5.1)
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Figure 5.1 Illustration of the grid structure in MRST (left) and a finite-volume
discretization on a single cell. The two tables show the mappings c → F(c)
from cells to faces and f → {C1,C2} from faces to neighboring cells, used to
define discrete differentiation operators. In the finite-volume discretization, we
have a mass m and a volumetric source term q associated with each cell and a
volumetric flux v associated with each face. These are collected to vectors M, Q,
and V defined over the whole grid. In a multicomponent setting, we have one such
vector for each component i.

Here, Mi is a vector with one entry mi,� per cell that contains the total mass of
component i in cell �. Likewise, Vi contains one value per face and corresponds
to the total component mass flux integrated over that face, whereas Qi is the total
component mass source term in each cell. We also continue to use the notation
of discrete operators from the MRST textbook [3], so that div is the discrete
divergence operator that takes interior face values as input and produces cell values
as output. We also abuse notation so that the product of two vector quantities of the
same dimensions is shorthand for the Hadamard product; i.e., (xy)� = x� y�, equal
to the .* operator from MATLAB/Octave. We have intentionally left the time level
at which the fluxes and source terms in (5.1) are evaluated unspecified, because
there are several possibly choices, some of which are outlined in Subsection 5.4.3.

Throughout the chapter, we use Greek subscripts for phases and Latin letters for
components. Each component can exist in multiple phases so that the total mass in
each cell and the total component mass fluxes are both defined by a sum over all
phases in which the component is present:

Mi =
∑

α

Mi,α = �
∑

α

ρi,αSα, Vi =
∑

α

Vi,α. (5.2)

Here, � is the pore volume, ρi,α denotes the mass density of component i in phase
α, and Sα is the phase saturation. The convention in MRST is that, unless otherwise
noted, phase quantities are given as volumes under local conditions and component
quantities are given as masses.
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If we consider a multiphase extension of Darcy’s law, the volumetric phase
flux Vα and component mass flux Vi,α are both written via the phase-potential
difference �α and the face transmissibility Tf ,

Vα = −λf
α Tf �α, Vi,α = −λ

f

i,αTf �α. (5.3)

The phase-potential difference is taken to be the discrete gradient of the phase
pressure together with the difference in hydrostatic head over each pair of faces,

�α = grad(pα)− gfavg(ρα)grad(z). (5.4)

Here, z refers to the vector of cell center depths, g the acceleration constant, and
the phase pressure pα is defined from some chosen reference pressure p by way of
the capillary pressure

pα = p − pcα. (5.5)

We need both the phase mobility λα, which is the mobility of the volume of phase α

in each cell, and the component mobility λi,α, which represents the mobility of the
mass of component i present in phase α. One possible definition that covers many
relevant models is that the phase mobility is the ratio between relative permeability
kα and viscosity μα. The component mobility is then equal to the phase mobility
weighted by the phase density ρi,α:

λα = kα

μα

, λi,α = ρi,αλα. (5.6)

To find the values of the mobility on each cell face, we typically employ a standard
upwinding scheme. The convention for upwinding a quantity flowing with a phase
α is based on the sign of the phase-potential gradient across a face connecting a
pair of cells C1(f ),C2(f ), defined such that a positive flux goes from C1 to C2,

λf
α = upw(λα), upw(x)[f ] =

{
xα[C1(f )], if �α[f ] ≤ 0,

xα[C2(f )], otherwise.
(5.7)

For further details on the mathematical properties of the upwinding scheme; see
p. 141 of the MRST textbook [3].

The generalized set of flow equations just outlined is a useful high-level descrip-
tion that covers all of the different models for multiphase flow in MRST. We do
not describe specific cases in further detail, because these are described in other
chapters of this book or in part III of the MRST textbook [3]. Later in this chapter,
we show how immiscible, black-oil, and fully compositional systems all can be
posed on the form of (5.1) by choosing the appropriate definitions of Mi,Vi , and
Qi . The definitions of these terms make up a large part of the practical imple-
mentation when extending a simulator with new flow physics. However, many of
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the relationships we have introduced appear in (almost) the same form in several
models. Implementing these as state functions makes more of the functionality in
MRST generic and independent of the specific physical process a model may be
designed for.

5.2.2 Anatomy of a stepFunction

As we have just seen, flow models usually constitute nonlinear systems of discrete
equations that must be solved using some iterative method to correctly modify the
state of the system. To this end, the default choice in MRST is to use Newton–
Raphson’s method, and the main workhorse is the stepFunction member func-
tion, which evaluates a linearized version of the physical laws, solves the resulting
linear system of equations to determine an increment, and uses this increment to
update the state of the system within the physical constraints the model permits.
In other words, this function is responsible for defining the problem under consid-
eration, solving it, and then defining convergence. As a consequence, it is by far
the most computationally intensive part of a simulator. It is also likely the most
important function for anyone who wants to develop new solvers with AD-OO.

Figure 5.2 breaks the default function down into four layers. Depending on
what kind of solver you want to implement, you may interact with one or more
of these layers. The outer layer of the stepFunction itself is well described in the
MRST textbook and is shown in red. The default outer layer is in essence Newton’s
method applied to the system of equations. One function that may be unfamiliar
from the MRST textbook is the recently introduced reduceState function, which
removes AD variables and state-function containers from the state – more on
that later. The stepFunction itself should only be replaced if you are writing
a solver that does not directly use Newton’s method. For instance, the sequential
solution procedure implemented in the SequentialPressureTransportModel
class from the sequential module has a custom implementation that amounts to
two separate nonlinear solves (one solution of the pressure equation and one solve
of the transport equations) inside each outer loop.

getEquations: Residual Equations and Canonical Primary Variables

The getEquations function should be well known to any existing user of AD-
OO. It takes the current and previous states, together with driving forces and
the corresponding timestep, and produces the linearized residual equations of the
model, differentiated with respect to the canonical set of primary variables (unless
the optional 'resOnly' argument is enabled to only compute the residuals). The
canonical primary variables should be uniquely determined from the values in the
state and are the solution variables for a linearized problem.
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Figure 5.2 The anatomy of a stepFunction for a model instance. The overall
default Newton logic (in red) is decomposed into a linearization of the residual
equations (blue) with respect to the model’s canonical primary variables (green),
which are stored in a state (purple). Section 6.2 gives more details about the
automatic differentiation libraries that perform computations behind the curtain
during the linearization, and Section 6.3 discusses efficient methods for solving
the linearized systems.

Historically, each MRST model has had a separate implementation of this func-
tion that sets up the canonical primary variables from the state and assembles the
residual equations. Per MRST 2019a, the PhysicalModel base class has a default
implementation that may be used:

if opt.reverseMode
[state0, primaryVars] = model.getReverseStateAD(state0);
state = model.getStateAD(state, false);

else
[state, primaryVars] = model.getStateAD(state, ~opt.resOnly);

end
[eqs, names, types, state] = model.getModelEquations(state0, state, dt, forces);
problem = model.setupLinearizedProblem(eqs, types, names, primaryVars, state, dt);

We see that the forward-mode or reverse-mode AD states are initialized in
separate routines before calling the new getModelEquations function that
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assembles the residual equations based on the current state. This function is
agnostic to the choice of primary variables. We will go into more details on
the state in the next subsection. A model’s choice of primary variables may
vary with respect to the state; for instance, if additional variables are required
to represent a gas phase that only appears at certain pressures. However, the
total number of equations should normally match the total number of primary
variables to give a square linear system. The equations will then be stored in a
LinearizedProblem class instance, which can be solved with the linear solver
attached to the nonlinear solver.

All model classes written prior to the 2019a release overload getEquations

and have the entire equations setup in a single function, resulting in a fairly
self-contained implementation; see, for example, equationsBlackOil, which
implements the fully implicit discretization of the three-phase black-oil equations.
There are a few drawbacks to this approach: There is inevitably some code duplica-
tion between similar models. It may also be difficult to differentiate the governing
equations with respect to other variables than those in the canonical set, especially
when computing sensitivities with the adjoint method or when implementing
multiphysics problems for which the flow equations must be differentiated with
respect to any additional primary variables required to solve for geomechanics
or for thermal energy. As an alternative, it is possible to instead implement the
getModelEquations interface that computes the residual equations directly
from state without any awareness of the global set of primary variables. For
example, the implementation used by the GenericBlackOil model is fairly
short:

function [eqs,names,types,state] = getModelEquations(model,state0,state,dt,forces)
fd = model.FlowDiscretization;
f = model.FacilityModel;
[eqs, flux, names, types] = ... % to save memory: eqs start as acc

fd.componentConservationEquations(model, state, state0, dt);
src = f.getComponentSources(state);
eqs = model.insertSources(eqs, src);
% Assemble equations and add in sources
for i = 1:numel(eqs)

eqs{i} = model.operators.AccDiv(eqs{i}, flux{i});
end
% Extend system with control equations for wells/facilities
[we, wnm, wtyp, state] = f.getModelEquations(state0, state, dt, forces);
eqs = [eqs, we]; names = [names, wnm]; types = [types, wtyp];

end

The code excerpt is somewhat simplified to only show the branch the code takes
when flow is driven by wells only. The input arguments are the same as for
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getEquations and any AD variables are implicitly passed on with state.
The FlowDiscretization class does most of the heavy lifting to evaluate the
accumulation and flux terms. This class is an example of a state-function group that
we detail in Section 5.3. We also perform another call to getModelEquations –
this time to the version from the FacilityModel – to obtain the closure relations
for wells. In this way, multiple models, each with their own governing equations,
can be nested or combined. Note also that we use the new AccDiv operator to
assemble discrete equations from cell and face values. The operator implements
a common compound expression and is called after source terms are added for
efficiency. As an example of the action of this operator, we can rewrite (5.1)
slightly:

AccDiv

(
Mn+1

i − Mn
i

�tn
− Qi,Vi

)
= Mn+1

i − Mn
i

�tn
+ div(Vi)− Qi . (5.8)

getStateAD and initStateAD

As we saw in the previous subsection, we must choose the primary unknowns the
flow equations are linearized with respect to before calling getModelEquations

to compute these equations in residual form. These unknowns must be represented
as AD variables and be present in the state itself. Recently, we introduced the
class function getPrimaryVariables, which is called from getStateAD and
defines the canonical set of primary variables for a given state:

[vars, names, origin] = model.getPrimaryVariables(state);

The outputs are all cell arrays of equal length: vars contains the values of the
primary variables, names holds their names, and origin is the name of the
class providing the primary variables. To see how this looks like in practice, we set a
breakpoint at the last line of this function (inside the ThreePhaseBlackOilModel
class) when simulating the SPE 1 model from [7] using the blackoil

ExampleSPE1.m script (see the MRST textbook [3, subsection 11.8.1]) and print
each of the primary variables:

for i = 1:numel(names);
fprintf('%8s: %3d entries from %s\n', names{i}, numel(vars{i}), origin{i});

end
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pressure: 300 entries from GenericBlackOilModel
sW: 300 entries from GenericBlackOilModel
x: 300 entries from GenericBlackOilModel

qWs: 2 entries from ExtendedFacilityModel
qOs: 2 entries from ExtendedFacilityModel
qGs: 2 entries from ExtendedFacilityModel
bhp: 2 entries from ExtendedFacilityModel

The model contains three components, 300 cells, two wells, and three phases. The
first three variables belong to the black-oil model and have values given for each
cell in the domain. (Strictly speaking, it is not required that primary variables
are defined in the entire model domain, but this is typical.) The remaining pri-
mary variables correspond to the facility model attached to the reservoir model.
Once the simulator requested the primary variables from reservoir model, it called
getPrimaryVariables for the facility, which returned the three phase rates and
the bottom-hole pressure for each active well.

Referring back to the green box in Figure 5.2, the model can initialize any
of these primary variables with the initVariablesAD function from the AD
backend (see Chapter 6) and return the primary variables to the model through
initStateAD, the function that makes sure the state is suitable for assembly of
the discrete residual equations. The default implementation simply calls setProp
for the primary variables. For some models, the mapping from primary variables to
the state variables is not trivial and a custom function is used. One example is the
black-oil equations, in which the primary variables change depending upon which
phases are present; see the MRST textbook [3, subsection 11.6.4] for more details.

For the SPE 1 model just shown, some logic is required to convert the reservoir
primary variables defined in every cell (p, sW, x) to the full set of variables (p, sW,
sO, sG, rs) that together determine the discrete governing equations for black oil
when dissolution of gas is present. In general, one must be careful to differentiate
between the canonical primary variables, which may be one valid choice of many,
and the variables that determine the governing equations, which are specific to
a given set of equations. We could easily have modified the model to solve for
primary variables (p, sO, x), but these primary variables would still have to be
converted to (p, sW, sO, sG, rs) for the linearization to be successful.

Inputs to initStateAD are exactly the outputs from getPrimary

Variables, but the entries may now be of ADI type. The function then places
the variables in the state. If the primary variables can be set directly by setProp,
the default implementation of initStateAD does this automatically. Following
the flow of the purple box in Figure 5.2, we see that once the state has been
assigned all required variables, the storage for the state-function output is set up as
described in Section 5.3.
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5.2.3 Validation and Preparation

When we implement a stepFunction, we would prefer to not have to explicitly
check that the reservoir state is consistent and that the configuration of the model
and boundary conditions is valid. It is better if inputs to the step function are
automatically normalized by a set of validation routines so that all required fields
are present and values are all of the expected dimensions and within expected
bounds. In this way, there is no need to check for missing or ill-defined data dur-
ing the linearization. Errors or warnings due to issues with user input should be
provided as early as possible to avoid wasting time on simulations that will never
give meaningful results. Model classes have a number of routines that perform
basic validation before the main simulation starts. We quickly recap the validation
routines used by AD-OO; see pp. 425 and 430 in the MRST textbook [3] for more
details on the validation of model and state.

• validateState: Verify that the initial state completely determines the system.
The model can add fields to state in this process. For instance, the compo-
sitional solvers discussed in Chapter 8 will perform a vapor–liquid equilibrium
calculation from the initial compositions if phase mole fractions are not specified.

• validateModel: Prepare the model for simulation. In addition to performing
various checks on static quantities not already verified in the constructor, this call
will instantiate all state-function groups that belong to the model by calling the
setupStateFunctionGroupings function. If you want to evaluate any state
functions via getProp outside of a simulation, the relevant state functions must
be present in the model by calling model=model.validateModel() first.

• validateSchedule: The function performs a validation of the entire schedule,
which relies on validateDrivingForces to validate each set of controls.

There are also a few helper functions related to the transition from one completed
timestep to the start of the solution process for the next. These are useful when
designing models that need to respond to changing controls by performing addi-
tional setup based on the current solution quantities or models that approximate
some parts of the system in a lagged manner from the previous step:

• prepareReportstep: Called before a new report step is started, when the
driving forces may have changed. The function may modify the model itself
to account for new wells that have become active, well targets that change, and
so on.

• prepareTimestep: Performs setup specific to each timestep. This function is
called before any timestep is solved.
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5.3 StateFunctions: Framework for AD Functions

If you are interested in understanding how the AD-OO framework evaluates differ-
ent functions such as phase mobilities or densities, the StateFunction framework
is a natural starting point. A state function in MRST is any function that is uniquely
determined by the contents of the state struct alone: All state functions for a given
model can be calculated from a single normalized state, often by expanding the state
with the results of intermediate computed results from other state functions. In the
following, we will motivate the mechanisms behind a simple call of the type often
seen in MRST codes:

[mob, rho] = model.getProps(state, 'Mobility', 'Density'); % Named state functions

This call obtains the phase densities and mobilities for a given state. We will go into
some detail on how these outputs are computed efficiently. You will also learn how
to modify or replace the functions that are called behind the scenes by getProps.
You can find the code for this section in exampleStateFunctionsBook.m. In
addition, stateFunctionTutorial.m contains a self-contained tutorial showing
many of the same concepts. If your interest is primarily in setting up and simulating
different problems with simulateScheduleAD, this section can be safely skipped.

A typical conservation equation (5.1) contains a number of intermediate quanti-
ties that must be computed, such as the capillary pressure and the relative perme-
ability, which may have different valid definitions. Often, we use many of the same
quantities in multiple places: Capillary pressure, for instance, is used both when
calculating phase properties that depend on the phase pressure and when calculating
phase fluxes. When a quantity is required in multiple parts of the equation assembly,
we would ideally prefer only to compute this quantity once for given state and
primary variables. We can outline requirements on general state functions that
depend on the current state of the physical system a model describes:

1. Dependency management: Each state function may depend on many other state
functions, which in turn may have additional dependencies. Keeping track of the
dependency graph of any given function can become nontrivial. Programming
is simplified if the simulator has a mechanism to ensure that all input quantities
to a function have been evaluated before evaluating the function itself.

2. Generic interfaces: Closure relationships and physical properties can often be
modeled using different functional dependencies and different versions of the
same family of mathematical (flow) models may not always have the exact same
physical variables (gas may, for instance, not always be present). A numeri-
cal model requiring some physical property G should preferably therefore not
explicitly define relations on the form G(p,sw).
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3. Lazy evaluation with caching: State functions are only evaluated if needed either
directly or indirectly as a dependency for another function. Already evaluated
values are stored and can be retrieved with minimal additional cost.

4. Support for spatial dependence: MRST uses a vectorized syntax for efficiency
when evaluating constitutive relationships over all cells or faces in a grid, but
a common requirement in Darcy flow applications is that such relationships
vary throughout the domain to account for variations in the properties of the
underlying porous media. The most typical example is rock types that are char-
acterized by different relative permeability or capillary pressure curves, but there
are also other types of relationships where a given function varies spatially. For
example, in ECLIPSE input, such variations appear in the form of pressure–
volume–temperature (PVT), saturation, and equilibration regions.

5. Implementations should be independent of the chosen primary variables to sup-
port calculation of sensitivities.

Starting in MRST 2019a, AD-OO simulators primarily evaluate properties
and functional relationship via a state-function framework. Specific state
functions are implemented as subclasses of StateFunction, whereas a
StateFunctionGrouping instance groups interdependent state functions together
and provides mechanisms for lazy evaluation of these functions with caching.

5.3.1 A Crash Course in State Functions

State functions were introduced in MRST as helper classes inside numerical sim-
ulation models, but they can also be used independent of a model. Before we look
at the functions used to simulate multiphase flow in MRST, we discuss a simple
example that demonstrates the fundamentals of state functions. Assume that we
want to compute the following function using state functions:

G(x,y,a,b) = xy + ab. (5.9)

The state object will in this case be a structure that contains, as a minimum, the
four fields, x, y, a, and b, holding the numbers x, y, a, and b. The generic way to
evaluate (5.9) will then be of the form G(state). Following operator precedence,
we can decompose this function into two products, xy and ab, and the addition of
the two results. Implementing a state function consists of two main parts: Any func-
tional dependencies must be documented as part of the class constructor, whereas
the function is evaluated using the evaluateOnDomain member function. The
constructor of the base class has a simple signature:

function sfn = StateFunction(model, regions)
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The model class is normally a required input argument, because the definition of
a state function depends on the grid and physical model under consideration. The
second input variable is optional and can be used to specify spatial dependence. For
functions such as capillary pressure that produce results in each cell of the domain,
regions would be a vector with one entry per cell that indicates which capillary
pressure curve is to be used in that cell.

We first define a state-function class, named TutorialNumber, that simply
retrieves any of the numbers x,y,a,b, from the corresponding named field in the
state struct. The constructor of this state function specifies dependency on the
state property with name n (which in our case will be 'x','y','a', or 'b'):

function tn = TutorialNumber(n) % Class constructor
tn.stateField = n;
tn = tn.dependsOn(n, 'state');

end
function v = evaluateOnDomain(tn, model, state) % Main evaluator

fprintf('Retrieving %s from state.\n', tn.stateField);
v = state.(tn.stateField);

end

This is an external dependency, because the values are retrieved from outside of
the current group of functions, in this case from the state. The evaluation simply
returns the value from the state. For pedagogical purposes, the function outputs a
log message when evaluated.

Next, we implement the product as another state function taking two inputs:

function tp = TutorialProduct(left, right) % Class constructor
[tp.leftNumber, tp.rightNumber] = deal(left, right);
tp = tp.dependsOn({left, right});

end
function v = evaluateOnDomain(tp, model, state)

[l, r] = tp.getEvaluatedDependencies(state, tp.leftNumber, tp.rightNumber);
fprintf('Multiplying %s and %s.\n', tp.leftNumber, tp.rightNumber);
v = l.*r; % Perform element-wise multiplication

end

The constructor declares internal dependencies on two named functions that are
implied to be from the same group as the product. The evaluation function can
then use the function getEvaluatedDependencies to obtain these values; i.e.,
retrieve them from cache if they have already been computed. We also write
a nearly identical TutorialPlus that adds two numbers together, which is
omitted here.
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We now have the three classes needed to implement (5.9). We instantiate an
empty group that will manage the relationships between the state functions:

group = StateFunctionGrouping('mystorage'); % Store in state.mystorage

Here, the argument specifies that outputs for this group are stored in the mystorage
field of the state. We can now define four functions that each retrieve a specific
number from the state:

group = group.setStateFunction('A', TutorialNumber('a')); % state.a -> A
group = group.setStateFunction('B', TutorialNumber('b')); % state.b -> B
group = group.setStateFunction('X', TutorialNumber('x')); % state.x -> X
group = group.setStateFunction('Y', TutorialNumber('y')); % state.y -> Y

We then add the functions required to compute G and show the final class instance:

group = group.setStateFunction('AB', TutorialProduct('A', 'B')); % A*B
group = group.setStateFunction('XY', TutorialProduct('X', 'Y')); % X*Y
group = group.setStateFunction('G', TutorialAdd('AB', 'XY')); % AB + XY
disp(group)

StateFunctionGrouping (edit|plot) state function grouping instance.

StateFunctionGrouping has no intrinsic state functions.

Extra state functions (Added to class instance):
A: TutorialNumber (edit|plot)

B: TutorialNumber (edit|plot)

X: TutorialNumber (edit|plot)

Y: TutorialNumber (edit|plot)

AB: TutorialProduct (edit|plot)

XY: TutorialProduct (edit|plot)

G: TutorialAdd (edit|plot)

state

A

B

AB G

a

b

All state-function groupings have a custom disp implementation that makes it easy
to open the documentation by clicking the class name, open the implementation in
the editor by clicking “edit,” or make a plot of the functions by clicking “plot.” In
the listing, we have also shown the plot of the state-function group as it appears
when visualized from within MATLAB. Alternatively, we can also convert the
graph to a LATEX file and compile it if TikZ is available, resulting in Figure 5.3.1 We

1 TikZ plots of state functions use the graph-drawing functionality [10] for automatic layouts.
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Figure 5.3 State-function graph for the crash course example. The relationships
between the state variables, shown in red, and the state functions in a group, shown
in blue, are shown by directed connections that indicate a dependency. For this
figure, we have converted the graph to a TikZ file, which can be manually tweaked
to get a publication-ready figure.

will revisit the plotting functionality later on in this chapter. Note that whereas
we have seven different state functions, we only implemented three classes.
The same implementation is in this case used for several different named functions.
Thinking about how to structure state functions can drastically reduce the amount
of code you have to write.

Visualizing StateFunctionGrouping instances uses the MATLAB graph-
plotting functionality, which was introduced in R2015b. The plots presented in
this chapter are generated as TikZ from these graphs and are somewhat different
from the plots seen in the MATLAB plotting interface. The 2015b requirement
does not apply to simulators that employ state functions; it is only a requirement
for the graph plotting.

We are now ready to define our input. The state functions pick values from the
state, so we initialize a struct with arbitrary values for the required fields:

state0 = struct('a', 3, 'b', 5, 'x', 7, 'y', 2); % Initial state

We next add the state-function container for the group to enable caching. (During a
simulation, this would be done automatically by initStateAD.) Per the construc-
tor call to the group, intermediate results will be stored under the field mystorage

as a specialized struct that acts as a handle class:
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state = group.initStateFunctionContainer(state0); % Enable caching
disp(state.mystorage)

HandleStruct with fields:
A: []
B: []
X: []
Y: []
AB: []
XY: []
G: []

Now that all functions and inputs are set up, we can finally evaluate G, which
will trigger the evaluation of all intermediate functions as the dependency graph is
traversed. We insert an empty array in the positional argument normally reserved
for the model, because it is not needed for our example:

G = group.get([], state, 'G'); % First call, triggers execution

Retrieving a from state.
Retrieving b from state.
Multiplying A and B.
Retrieving x from state.
Retrieving y from state.
Multiplying X and Y.
Adding AB and XY.

We see that the dependencies are traversed in a depth-first manner of the trans-
pose of the directed graph in Figure 5.3, starting from G. The container is now
updated with the intermediate results. As we just saw, storage of evaluated state
functions is achieved through the use of a handle class instance, which acts much
like a pointer in C++.2 The evaluated properties will still be cached if you pass
an initialized AD state to a function that calls getProp without returning the
state itself:

disp(state.mystorage)

HandleStruct with fields:
A: 3
B: 5
X: 7
Y: 2
AB: 15
XY: 14
G: 29

2 See subsection 12.3.2, Handle classes, of the MRST textbook [3] for more details and the design
considerations that lead to AD-OO’s sparing use of handle as the base class.
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We can verify this by calling the get function again; no output will be produced,
because the result is already computed:

G = group.get([], state, 'G') % Second call, cached

G = 29

With only a few different functions present, it is fairly simple to see from
the graphs whether anything is missing or out of place. We can also use the
checkDependencies function that checks all dependencies and optionally returns
the boolean ok indicating whether all of the dependencies are fulfilled:

mrstVerbose on; % Print missing dependencies
ok = group.checkDependencies();

All internal dependencies are met for group of class
StateFunctionGrouping.

In sum, we can safely request all functions in this group via getProp. We now add
a function F that multiplies X with a missing function Z and validate again:

group = group.setStateFunction('F', TutorialProduct('X', 'Z'));
ok = group.checkDependencies();

Unmet internal dependency for F in StateFunctionGrouping:
Did not find Z in own group.

It is worth nothing that if no output argument is given, the function will throw an
error at the first unmet dependency it finds. You can also pass in a cell array of other
groups to check any external dependencies:

ok = group.checkDependencies({groupA, groupB, groupC});

The validateModel function discussed in Subsection 5.2.3 checks all external
and internal dependencies at the start of a simulation.

5.3.2 Evaluation of Properties

In the preceding sections, we have not specified the logic behind getProp and
how it triggers an evaluation of one or more state functions. Figure 5.4 outlines
the process MRST goes through to produce outputs for the given state and a
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Figure 5.4 Flowchart demonstrating the internal logic used when calling
model.getProp to get the value of some state variable or state function in the
AD framework. The blue color corresponds to the model itself, whereas nodes
colored in red are handled by any StateFunctionGroupings attached to the
model.

named property. We can make a few observations from the flowchart: Named
properties known by model.getVariableField take precedence over any
named state functions present. The intent is to differentiate between the properties
present in state, which together completely define the current conditions of the
system we are simulating, and properties that can be derived from the current
conditions via functions. By convention, state-function groups are instantiated
at the start of the simulation by the validateModel function, which calls
the setupStateFunctionGroupings function. We do not create them in the
model constructor, because the properties of the model can be changed after the
class is instantiated and the choice of specific functions depends on the final
configuration.

We also see that the evaluation of a property is cached so that it will be evaluated
only if not already present in state. If dependencies are not yet evaluated,
the simulator will evaluate them in sequence as we saw earlier. Each of the
dependencies may have their own dependencies that are recursively computed.
For this reason, the first call to getProp within a linearization is often the slowest,
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because it will implicitly calculate many values. In the initialization of the AD
state in initStateAD, described in Subsection 5.2.2, the initStateFunction

Containers function will give each StateFunctionGrouping attached to the
model the opportunity to initialize storage for all known state functions. This
call is responsible for setting up the containers we saw attached to the state in
Subsection 5.3.2. The storage and any Jacobians are removed from state using
the reduceState function before the variables in state are updated and passed
on to the next nonlinear iteration.

Let us compute the density for a compositional model by initializing a state with
caching for a model with 40 000 cells. Here, we have performed the evaluation
without the initialization of primary variables3:

fprintf('First call: '); tic(); rho = model.getProp(state, 'Density'); toc();
fprintf('Second call: '); tic(); rho = model.getProp(state, 'Density'); toc();

First call: Elapsed time is 0.035023 seconds.
Second call: Elapsed time is 0.000847 seconds.

Two calls will only evaluate the state functions necessary to compute density once
so that the second call just retrieves the stored result. Let us examine the relevant
fields of the state-container storage after initStateAD has been called but before
we call getProp:

disp(state.PVTProps)

:
Density: []

PhasePressures: []
PhaseCompressibilityFactors: []

:

These empty values, corresponding to density and two other properties required to
evaluate density, are filled in after calling getProp once:

:
Density: {1x3 cell}

PhasePressures: {1x3 cell}
PhaseCompressibilityFactors: {1x3 cell}

:

3 For more details, see Subsection 5.2.2 and then call getProp twice. The setup code for this snippet is found in
examplePlottingStateFunctionsBook.m.

https://doi.org/10.1017/9781009019781.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.010


Better AD Simulators with Flexible State Functions and Accurate Discretizations 171

As in the state-function crash course, we see that the outputs from the (inter-
mediate) function evaluations have been stored in the state object. For this rea-
son, once a state has been initialized with state-function caching of variables –
e.g., by calling getStateAD – you should be careful not to modify any values
of the state. Otherwise, the output of getProp may not be what you expect due
to caching.

There are actually two main interfaces for retrieving state-function outputs. You
have already been introduced to the general getProp/getProps interface, which
automatically figures out whether the input arguments belong to the state itself or to
one of the state-function groups. The second interface is specific to each grouping
and is required if properties in multiple groups have the same name:

model.getProp(state, 'Mobility') % Standard interface: Automatic mapping
fp = model.FlowPropertyFunctions; % StateFunctionGrouping class instance
fp.get(model, state, 'Mobility') % Internal interface: Get from grouping

The model can contain several different state-function groups. For a group to
be accessible to getProp, it must be returned from the model member func-
tion getStateFunctionGroupings. This function outputs a cell array of all
currently initialized groups. For example, if we write a custom model class
inheriting from PhysicalModel that has a new group contained in the field
MyCustomGroup, we must modify the member function so that it also reports this
new group:

function groupings = getStateFunctionGroupings(model)
groupings@PhysicalModel(model); % Get parent groups
groupings{end+1} = model.MyCustomGroup; % Output new group

end

5.3.3 Examples of State Functions

You have seen how the state functions work on a simplified example and where
they fit as a part of a model. Next, we consider a few examples of specific
functions used by MRST for black-oil simulation to demonstrate the usage in
practice. The first example is the PoreVolume state function, which provides
the discrete pore volume to the simulator. The base implementation inherits
from the StateFunction base class and has a simple constructor that vali-
dates the cell-wise pore volumes stored in the model. This class is stored under
ad-core/statefunctions/flowprops. In the constructor, we verify that the
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model has pore volumes stored and that these are nonnegative and given for all cells
in the domain. During simulation, the simulator will call the evaluateOnDomain
member function with an AD-initialized state and the current model. In this case,
we merely retrieve the pore volume from the model:

function gp = PoreVolume(model, varargin)
gp@StateFunction(model, varargin{:}); % Call base constructor
assert(isfield(model.operators, 'pv'), ...

'Pore volume (pv) must be present as field in operators struct');
assert(numel(model.operators.pv) == model.G.cells.num,...

'Pore volumes must be defined in each cell.');
assert(all(model.operators.pv > 0), 'Pore volumes must be non-negative.');

end

function pv = evaluateOnDomain(prop, model, state)
pv = model.operators.pv; % Static pore-volume

end

Pore volume is often thought of as static, and if it changes it is usually through
a weak dependence on the pressure as the rock surrounding the pores expands or
contracts to match the stresses from changes in the fluid pressure. This alternative
definition writes � as a function of average porosity φ in each cell, bulk volume V
in each cell, and a pressure-dependent multiplier function m, so that �(p) =
m(p)φV. The BlackOilPoreVolume specialization inherits from PoreVolume

and documents in the constructor that the class requires the pressure from the
state to perform an evaluation. We also verify that the fluid struct contains the
requisite function handle for the multiplier. The function evaluation now consists
of two parts: We first retrieve the pore volume from the model by calling the
base implementation and then evaluate and apply the multiplier to the volumes in
each cell:

function gp = BlackOilPoreVolume(model, varargin)
gp@PoreVolume(model, varargin{:});
gp = gp.dependsOn({'pressure'}, 'state');

end
function pv = evaluateOnDomain(prop, model, state)

% Get effective pore-volume, accounting for rock-compressibility
pv = evaluateOnDomain@PoreVolume(prop, model, state);
f = model.fluid;
p = model.getProp(state, 'pressure');
pvMult = prop.evaluateFluid(model, 'pvMultR', p);
pv = pv.*pvMult;

end

Here, pvMultR is passed onto evaluateFunctionOnDomainWithArguments,
a special function that evaluates one or more function_handle instances on the
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entire domain with the given arguments via evaluateFluid. If fluid.pvMultR
is a single function, it is interpreted as valid for all cells in the domain. Otherwise,
the function is evaluated for each subdomain. The code executed by the class is
then equivalent to the following:

f = model.fluid;
if iscell(f.pvMult) % Regions present

v = model.AutoDiffBackend.convertToAD(zeros(model.G.cells.num, 1), p);
for i = 1:numel(f.pvMult) % Iterate over regions

active = fn.regions == i; % Find the cells where function is valid
v(active) = f.pvMultR{i}(p(active)) % Evaluate for these cells

end
else % No regions present

v = f.pvMult(p);
end

The assumption of small variation can be violated; for instance, if the bulk mass
of the porous medium is fractured during simulation or if the rock reacts with the
fluid through mineralization or acidification. By exposing the pore volume as a
state function, we have made it easy to replace the implementation for practitioners
who wish to study different phenomena. Such an implementation has access to all
current primary variables in state and all static properties in the model, making it
possible to introduce any functional dependency in a simulator without modifying
any of the other code. Breaking a complex simulator into many smaller constitutive
parts that each represents a function with a single output makes it easier to test and
verify correct behavior for the simulator as a whole. In the next section, we describe
exactly how the interplay between different functions is managed by the simulator
and how to interject new relationships as needed.

5.3.4 The StateFunctionGrouping Class

The typical simulator will contain a fairly large number of different functions
that evaluate functional relationships based on the reservoir state. Many of these
functions will depend on each other and may be closely related. The
StateFunctionGrouping class groups many different StateFunction

instances together and manages the evaluation of entries in the group. In the
previous section, we saw how two different pore volume implementations can
coexist, but we were vague on how the simulator would choose the correct one
for a given scenario. The answer lies in the corresponding state-function group for
PVT properties.
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We already saw an example of how to use the groups in Subsection 5.3.1. The
group is instantiated during model validation and chooses the specific implementa-
tions for functions for the specific scenario. We start by calling the base constructor
and retrieving the PVT regions:

function props = PVTPropertyFunctions(model)
props@StateFunctionGrouping();
pvt = props.getRegionPVT(model);

Each state function is then constructed with the region indicators:

bf = BlackOilShrinkageFactors(model, pvt);
props = props.setStateFunction('ShrinkageFactors', bf);

Certain properties have multiple implementations. One example is the pore volume
we have already discussed:

if isfield(model.fluid, 'pvMultR') % Check for multiplier
pv = BlackOilPoreVolume(model, pvt);

else
pv = PoreVolume(model, pvt);

end
props = props.setStateFunction('PoreVolume', pv);

It is instructive to consider another state function from the PVT grouping. Let us
consider a black-oil model, in which the gas component is allowed to dissolve into
the oleic phase. The multiphase densities are then given as a function of the surface
densities, the shrinkage factors bα, and the solution gas–oil ratio Rs ,

ρw = bwρws, ρo = bo(ρos + Rsρgs), ρg = bgρgs . (5.10)

This equation is included as an example of a function with multiple dependencies.
You can consult subsection 8.2.3 and section 11.4 of the MRST textbook [3] for
additional details on the black-oil model and the physical interpretation of these
terms. To keep the discussion straightforward, we consider a simplified version of
the general MRST class BlackOilDensity, in which we assume that gas can
always dissolve into the oleic phase and that the oil component does not vaporize
into the gaseous phase. We consider the constructor, where we have two types of
dependencies documented:

function gp = BlackOilDensity(model, varargin)
gp@StateFunction(model, varargin{:});
gp = gp.dependsOn({'rs'}, 'state');
gp = gp.dependsOn({'ShrinkageFactors'});

end
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The first dependency is an external dependency on rs from state. The sec-
ond is an internal dependency, in which we require values of the named state
function ShrinkageFactors from the same group: We are not specifying the
name of this group itself, but we are implicitly saying that if the simulator
wants to evaluate BlackOilDensity, it would also have to provide some way
of getting ShrinkageFactors in the same group. Internal dependencies are
always evaluated with the same state object and can be thought of as closely
related. The interface for evaluating the properties reflects this division between
internal and external dependencies: For each internal dependency, we can use
getEvaluatedDependencies to query whether this property already has been
evaluated (and cached) so that we do not have to use a potentially expensive call to
getProp. This function bypasses the more expensive parts of getProp that check
and evaluate dependencies. Summing up, the evaluation of black-oil densities is
implemented as follows:

function rho = evaluateOnDomain(prop, model, state)
rs = model.getProp(state, 'rs'); % External dependency
b = prop.getEvaluatedDependencies(state, 'ShrinkageFactors'); % Internal
rhoS = model.getSurfaceDensities(); nph = model.getNumberOfPhases();
rho = cell(1, nph); % Allocate storage
for i = 1:nph

rho{i} = rhoS(prop.regions, i).*b{i}; % rhoS_alpha * b_alpha
end
oix = model.getPhaseIndex('O'); gix = model.getPhaseIndex('G');
rho{oix} = rho{oix} + rs.*b{oix}.*rhoS(prop.regions, gix); % Disgas

end

The member function evaluateOnDomain is the main way of getting values
from state functions. It can generally be implemented just as you would
implement any other function, with a few caveats:

• Matrix output is generally not supported when a function should support
automatic differentiation in MRST. Unless your function will never produce
AD outputs, consider using a cell array of column vectors instead, where each
entry corresponds to one column of the matrix.

• If the output is made up of either a single column vector or multiple column
vectors arranged as a row-cell array, the values should match the dimensions
of prop.regions if present.

• If a cell array is given as output, the convention is to let the row index
correspond to the index of a component and the column index indicate the
phase. It is assumed that calling value on the output is safe, which requires
that all vectors in the same row of a cell array are of the same length.

• Empty entries in cell arrays will be interpreted as zero values.
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Shrinkage factors are listed as internal dependencies because they belong to the
PVTPropertyFunctions grouping that contains all properties related to model-
ing PVT behavior of fluids. When a reservoir model is validated before simulation,
the default PVTPropertyFunctions class will be instantiated, and specialized
versions of the different state functions will be chosen based on features present
in the model. For black-oil models, this includes the disgas and vapoil flags,
the function handles present in state.fluid, and an Eclipse deck, if present, in
model.inputdata. To illustrate, we examine the flow functions for the SPE 1
model from blackoilTutorialSPE1:

model = model.setupStateFunctionGroupings(); % Setup
disp(model.PVTPropertyFunctions)

PVTPropertyFunctions (edit|plot) state function grouping instance.

Intrinsic state functions (Class properties for PVTPropertyFunctions,
always present):

Density: BlackOilDensity (edit|plot)

PhasePressures: PhasePressures (edit|plot)

PoreVolume: BlackOilPoreVolume (edit|plot)

PressureReductionFactors: BlackOilPressureReductionFactors (edit|plot)

ShrinkageFactors: BlackOilShrinkageFactors (edit|plot)

Viscosity: BlackOilViscosity (edit|plot)

Extra state functions (Added to class instance):
RsMax: RsMax (edit|plot)

The output, produced by the StateFunctionGrouping base class’s overloaded
implementation of disp, shows a number of intrinsic PVT properties that will
always be present in a black-oil model, such as density and pore volumes discussed
earlier in this chapter, as well as phase pressures, shrinkage factors, and viscosities.
The pressure reduction factors are weights that can be used to transform a set of
conservation equations into a pressure equation (cf. the discussion of constrained
pressure residuals in subsection 12.3.4 of the MRST textbook [3]). When writing a
general function that acts on some model with a PVT property-functions instance,
we can safely assume that the outputs of these state functions are available through
model.getProp. In addition, RsMax has been added as an extra property to facil-
itate support for variable bubble-point pressure. We cannot generally assume that
this function is available, because it implicitly relies on the specific way dissolution
is modeled in black-oil-type equations. We also see that each property, intrinsic
or not, has both a group name (e.g., Density) and an implementation name for
the configured class (BlackOilDensity). We can look up the documentation or
edit the specific implementation directly from the command window or plot the
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relationship between the functions. We can easily add, get a handle to, replace,
remove, and evaluate functions for a given state-function grouping g through the
public interfaces:

g = g.setStateFunction('Name', impl); % Set 'Name' implementation
p = props.getStateFunction('Name'); % Get class instance defining 'Name'
g = g.removeStateFunction('Name'); % Only allowed for extra properties
v = props.get(model, state, 'Density'); % Evaluate for given state

By adding or changing which StateFunction class is used to evaluate a given
physical property, it is possible to effectively rewrite or reconfigure many parts of
the simulator without changing other parts of the existing code. Once a model has
been validated to set up the state-function groups, we can compute values for the
named property for a given state through the standard interface:

v = model.getProp(state, 'Density'); % Standard interface

Generally, you do not need to know in which group a specific state function is
placed. However, if two different properties from different groups have the same
name, you should use the internal interface from Subsection 5.3.2.

5.4 Discretization with State Functions

In a flow simulator, the PVTPropertyFunctions grouping is usually accom-
panied by other groups like the FlowPropertyFunctions, which contains
flow properties such as capillary pressure, relative permeabilities, mobilities, etc.
Other groupings include FlowDiscretization, which holds functions used to
discretize and define the mass-conservation equations for a typical finite-volume
scheme, and FacilityFlowDiscretization, which contains functions needed
to compute fluxes from wells for a given set of controls. Neither of these groups of
functions is entirely independent of each other, and we can thus also have a number
of cross-group dependencies. In summary, state functions are used to evaluate
properties but are also used to discretize model equations. In this section, we will
go through some of the benefits of using state functions to build a simulator.

Much of the functionality in this section is only supported in the Generic

family of AD models. Model classes that explicitly name the number of
phases – e.g., ThreePhaseBlackOilModel – are currently limited to fully
implicit schemes with the standard spatial discretizations.
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5.4.1 The Simulator as a Graph

There may be many state functions involved in a simulator; at the time of writing,
the solvers in the compositional module define nearly 40 individual functions
when wells are present. We have seen that there are numerous benefits associated
with this structure, but it may become unwieldy to manage such a large number of
classes if you are not already intimately familiar with the structure of the simulator.
One way to visualize this structure is to consider the dependency graph as we
briefly saw in Subsection 5.3.1: If you think of each state function as a node
and treat the dependencies of each functions as edges in a graph, each property
evaluation is represented as the traversal of a directed graph. Let us return to the
mass densities from (5.13). If a model has a density implementation, we can easily
plot the function and all of its dependencies by calling4:

plotStateFunctionGroupings(model, 'Stop', 'Density')

The optional 'Stop' argument indicates that we only wish to plot the part of the
graph visited by a backwards traversal starting from the density. This gives us a plot
of all functions and state variables needed to evaluate the density. The dependency
graph in Figure 5.5 shows that the density in a black-oil model depends directly on
b-factors and Rs , as expected from (5.13). It also depends indirectly on saturation
through capillary pressure, which enters the phase pressures used to evaluate the
b-factors. The black-oil model represents a simplified PVT behavior compared to
a compositional model. Figure 5.6 shows the result of the same plotting command
applied to a compositional model. Compositional models compute density directly,
and the b-factors (ShrinkageFactors) are thus nowhere to be seen. Density of
the liquid phase, for example, depends on pressure, temperature, phase compress-
ibility factor Z�, and phase mole fractions xi ,

pV = n�RT Z� → ρ� = p

RT Z�

Nc∑
i=1

Mixi .

You can use standard techniques to manipulate the graphs, and it is possible to
quickly get an overview of complex simulators simply by plotting one or more of
the function groups in the simulator. Plotting the full graph is done by either passing
the model to plot all groups or the desired groups as a cell array:

plotStateFunctionGroupings(model)
plotStateFunctionGroupings(model.getStateFunctionGroupings())

4 State functions are set up at the start of a simulation, with reasonable defaults given. If you have just
constructed your model (e.g., using initEclipseProblemAD), you must issue a call to
model = model.validateModel() to set up the state functions and invoke the defaults.
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Figure 5.5 Dependency graph for phase mass density in a standard black-oil
model with gas dissolved in oil.

Figure 5.6 Dependency graph for phase mass density in a three-phase composi-
tional model; PVT behavior is clearly more complex than for the black-oil model
in Figure 5.5.

Graphs with a large number of connections are often difficult to navigate but may
serve as a good starting point for exploring the interdependencies of different func-
tions used in a given simulator.

The optional argument 'label' determines the type of labels used for the nodes
in the graph. The default is 'name', which labels nodes by the name of the cor-
responding state function has been given in the group. If we instead use the value
'label', each state function outputs the contents of its label property instead,
which may be interpreted by TEX. As an example, Figure 5.7 reports the entire
graph of the GenericBlackOilModel for SPE 1, including state variables,
flow properties, flux discretization for the reservoir equations, and facility flux
discretization for the wells. The default symbols used in the plot correspond to the
notation from the set of generic governing equations in Subsection 5.2.1, but you
can, of course, change the labels if you want to use generate figures with another
notation.

Returning to (5.1), we see that all three discrete quantities we need to evaluate
the mass-conservation equation for a component appear as leaf nodes in Figure 5.7:
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Figure 5.7 The entire state-function graph for a black-oil model. The state
variables are the starting point for computing the reservoir flow properties, PVT
properties, reservoir fluxes, and well source terms. The terms appearing in (5.1)
are marked in red.

The component mass in each cell Mi is in the flow property functions, the compo-
nent mass mflux Vi across each cell interface in the flux discretization, and the
component mass source term Qi is the terminus of the facility flux discretization.

5.4.2 The Component Implementation

State functions relating to compositions have so far always given values for all
components simultaneously. This is manageable for many simple fluid descriptions
but can cause code duplication for multicomponent systems, because the same
component may be present in many different settings. For example, the immiscible
water component is present in both black-oil and compositional systems. Generic
models therefore make use of a helper class, GenericComponent, that is instanti-
ated by validateModel for each component present. The generic black-oil model,
for example, executes the following when either dissolved gas or vaporized oil is
present:

for ph = 1:nph
switch names(ph)

case 'W', c = ImmiscibleComponent('water', ph);
case 'O', c = OilComponent('oil', ph, disgas, vapoil);
case 'G', c = GasComponent('gas', ph, disgas, vapoil);

end
model.Components{ph} = c;

end
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The water phase is treated as a generic immiscible fluid, whereas the gas and oil
components use specialized classes. We will go through these in more detail in the
following subsections. The component base class implements the component phase
mass from (5.2) and the component mass mobility from (5.6). In the following,
we focus on the definition of the phase-component mass density ρi,α through the
function getComponentDensity, because it implicitly defines the component
mobility and mass fractions. The possibility exists for overriding each of these func-
tions individually, should you, for example, desire a more complex expression for
(5.6). For additional examples of specialized components for different applications,
see Chapters 7 and 8.

Immiscible Components

Immiscible models assume that a component belongs to a single phase only and that
the phase is only composed of that component. Phases and components are often
used interchangeably when describing models in which all phases are immiscible.
As with a state function, we document the dependencies the component have in
the constructor. For the immiscible component, we pass the index of the phase the
component belongs to as a required parameter:

function c = ImmiscibleComponent(name, phase)
c@GenericComponent(name);
c.phaseIndex = phase;
c=c.functionDependsOn('getComponentDensity','Density','PVTPropertyFunctions');

end

If we let L(i) label the phase component i belongs to, we can define the mass
density for the component succinctly:

ρi,α =
{

ρα, if α = L(i),

0, otherwise.
(5.11)

To define the component mass density, we let the base class produce an empty cell
array and then set the component density equal to the phase density in phase L(i):

function c = getComponentDensity(component, model, state)
rho = model.getProp(state, 'Density');
c{component.phaseIndex} = rho{component.phaseIndex};

end

In addition, there are a number of functions that describe how a component is
divided between the different phase streams at surface phase conditions (i.e., as
qWs, qOs and qGs) and how compositions are added to the flow from an injec-
tor well. We associate each unit of mass produced of the immiscible component
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with one unit of the corresponding surface phase stream, regardless of the pressure
and temperature conditions:

function c = getPhaseCompositionSurface(component, model, state, pressure, T)
c = cell(model.getNumberOfPhases(), 1);
c{component.phaseIndex} = 1;

end

Finally, we can define the mass fraction for the injection well stream from the
compi field of the wells:

function c = getPhaseComponentFractionInjection(component, model, state, force)
% Get the fraction of the component in each phase (when
% injecting from outside the domain)
c = cell(model.getNumberOfPhases(), 1);
if isfield(force, 'compi')

comp_{i} = vertcat(force.compi); % Wells
else

comp_{i} = vertcat(force.sat); % BC
end
index = component.phaseIndex;
ci = comp_{i}(:, index);
if any(ci ~= 0), c{index} = ci; end

end

Black-Oil Components

One perspective on the black-oil model is that it is a stepping stone from the immis-
cible model toward more compositional behavior. The number of phases still equals
the number of components and each component is paired with a corresponding
phase of the same name. The water component is considered immiscible, and we
do not need to modify our implementation:

ρw,α =
{

ρα, if α = w,

0, otherwise.
(5.12)

There is a symmetry to the two components when Rs and Rv are both present:

ρo,α =

⎧⎪⎨⎪⎩
ρS

obo, if α = o,

ρS
obgRv, if α = g,

0, otherwise,

ρg,α =

⎧⎪⎪⎨⎪⎪⎩
ρS

gboRs, if α = o,

ρS
gbg, if α = g,

0, otherwise.

(5.13)

Mathematically, the black-oil model is an extension of the immiscible flow
model, and the oil and gas components thus inherit from the immiscible imple-
mentation. We only examine the oil component; the gas component is essentially
analogous:
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function c = OilComponent(name, gasIndex, disgas, vapoil)
c@ImmiscibleComponent(name, gasIndex);
[c.disgas, c.vapoil] = deal(disgas, vapoil);
c = c.functionDependsOn('getComponentDensity', ...

'ShrinkageFactors', 'PVTPropertyFunctions');
if vapoil

c = c.functionDependsOn('getComponentDensity', 'rv', 'state');
end

end

Next, we define the component density for the oil component in vaporized oil as
the product of Rv together with the oil shrinkage factor and the oil surface density.
We must also take care to modify the density in the oil phase to account for the
swelling due to dissolved gas per (5.13). The actual value of Rs is not explicitly
used, but it implicitly impacts the results via the evaluation of the shrinkage factors
themselves, as we saw in Figure 5.5:

function c = getComponentDensity(component, model, state)
c = getComponentDensity@ImmiscibleComponent(component, model, state);
if component.disgas || component.vapoil % Check for black-oil behavior

b = model.getProps(state, 'ShrinkageFactors');
phasenames = model.getPhaseNames();
oix = (phasenames == 'O');
reg = model.PVTPropertyFunctions.getRegionPVT(model);
rhoOS = model.getSurfaceDensities(reg, oix);
if component.disgas % Component density is not phase density

bO = b{oix}; c{oix} = rhoOS.*bO;
end
if component.vapoil % There is mass of oil in gaseous phase

gix = phasenames == 'G';
rv = model.getProp(state, 'rv');
c{gix} = rv.*rhoOS.*b{gix};

end
end

end

Two-Phase Compositional Components

For the compositional module discussed in more detail in Chapter 8, we assume
we have up to two phases present that are formed through vapor–liquid equilibrium.
Then the following holds:

ρi,α =

⎧⎪⎨⎪⎩
Xi,�ρ�, if α = �,

Xi,vρv, if α = v,

0, otherwise.

(5.14)

The definition of the component density is then straightforward from the mass
fractions and mass density obtained from flashing the compositions:
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function c = getComponentDensity(component, model, state, varargin)
c = component.getPhaseComposition(model, state, varargin{:});
rho = model.getProps(state, 'Density');
for ph = 1:numel(c)

if ~isempty(c{ph})
c{ph} = rho{ph}.*c{ph};

end
end

end

5.4.3 Temporal Discretizations

Combining automatic differentiation with the state-function framework enables
you to decouple functions from their derivatives. One advantage of this approach
is that it becomes easy to implement different temporal discretizations. The default
discretization in MRST is always implicit, but it is not difficult to change which
variables and functions are evaluated implicitly (i.e., based on the yet unknown
state at the end of the timestep).

Let us consider the discrete component flux from (5.3), where the flux is made
up of a potential term �α, the absolute transmissibility Tf , and the component
mass mobility λi,α. We assume that the transmissibility is a static quantity. We also
observe that the rapid speed of propagation for pressure means that the potential
difference should be evaluated implicitly:

Vi,α = −λ
f,k

i,α Tf �n+1
α . (5.15)

The component mobility is here evaluated at time level k, so that k = n gives
explicit discretization of mobility and k = n + 1 results in a fully implicit scheme.
We refer the reader to subsection 9.3.4 of the MRST textbook [3] for a discussion
on explicit versus implicit schemes in general and to Section 10.2 for examples of
sequential-implicit and sequential-explicit solvers for incompressible flow.

If we have the states at both the current and the previous time level as state
and state0, respectively, the explicit flux (k = n) on the form (5.15) can be
implemented as two state-function evaluations, here given for a single phase:

mob = model.getProp(state0, 'FaceMobility'); % Previous time
kpot = model.getProp(state, 'PermeabilityPotentialGradient'); % Current time
v = -mob{1}.*kpot{1}; % Explicit/implicit

Implementing standard explicit and implicit schemes in this way is straightforward.
However, the two state functions are made up of many individual state functions for
viscosity, relative permeability, density, and so on. If we want to exert fine-grained
control over the implicitness of each individual function or have a function with
implicitness that varies spatially, we need a more systematic approach. For this
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reason, discrete fluxes are implemented in the FlowDiscretization class. This
class contains an instance of a FlowStateBuilder class, which serves a dual
purpose:

1. Before a timestep is simulated by the simulator, the flow-state builder may
modify the suggested timestep to ensure stability of the underlying discretiza-
tion scheme. You may already know the timestep selector classes from the
MRST textbook [3, subsection 12.3.3], which select timesteps based on a vari-
ety of heuristics to target a certain accuracy or number of nonlinear iterations.
The timestep limit imposed by the flow-state builder should ensure stability of
the resulting scheme. For an explicit treatment of the mobility, the Courant–
Friedrichs–Lewy (CFL) condition limits stability.

2. During a linearization, the flow-state builder will build a hybridized state that
contains a mixture of implicit (AD, current time level) and explicit (double, from
previous time level) variables. The hybridized state is used to evaluate the state
functions that are required to compute the fluxes:

v = model.getProp(flowstate, 'PhaseFlux')

The hybridized state contains a combination of the values at the current timestep
and the values at the previous timestep for all state variables, making the scheme
either explicit, implicit, or somewhere in between. The calling signature acts
directly on the state, automatically carrying forward any AD variables:

fd = model.FlowDiscretization;
flowstate = fd.buildFlowState(model, state, state0, dt); % Hybridize state

The functionality just discussed is implemented through two member functions of
the FlowDiscretization class: buildFlowState creates the hybridized state
struct and getMaximumTimestep calls the corresponding functions from the flow-
state builder itself.

Fully Implicit

The default implementation of the fully implicit flow-state builder is trivial. The
theoretical maximum timestep for an unconditionally convergent scheme is infinity,
whereas the flow state itself is just the state at the current timestep:

function dt = getMaximumTimestep(fsb, fd, model, state, state0, dt, forces)
dt = inf; % No time-step restriction

end
function flowState = build(builder, fd, model, state, state0, dt)

flowState = state; % Fully implicit
end
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The utility function setTimeDiscretization modifies the flux discretization of
an existing model and you can use it to switch between the flow-state builders.
Fully implicit is the default choice, but it is still possible to explicitly select it:

model_fim = setTimeDiscretization(model, 'fully-implicit'); % FIM

Explicit

Explicit schemes are attractive for their reduced numerical diffusion and relatively
low computational cost for hyperbolic equations. They are, however, only condi-
tionally stable in that the timestep is limited by the CFL condition. The general
condition for a conservative discrete flux is found in equation (9.14) of the MRST
textbook [3], but we can rewrite it slightly to use the maximum derivative of the
fractional flow f together with a fixed total velocity vt :

η = �t

�x
max

S
|f ′(S)|vt ≤ 1. (5.16)

Explicit schemes update the values of a cell based on the values of its neighbors
at the previous time level. This means that the timestep should be limited so that
the fastest wave entering a cell should not exit that cell during the timestep or
the stability will be impacted. The maximum derivative of the flux function must
be determined over the interval spanned by the range of saturations inside the
domain of dependence for each cell to obtain a sharp upper bound for the Courant
number η and produce a scheme that is formally stable. (In practice, one often
uses a somewhat stricter condition by maximizing over all saturation values found
in the initial and boundary data, because this set can be determined once and for
all.) Systems of equations do not generally fulfill a maximum principle, and sharp
and rigorous upper bounds on η can become expensive to compute. Therefore, we
instead compute numerical estimates and target a reduced upper bound on η to
have some margin of safety. The numerical estimate is based on the form given
in [9]. (Notice also that the upper stable limit on η generally depends on the
discretization.)

If there are no capillary forces, we can write an estimate of the phase Courant
number ηs for cell c in a three-phase system as

ηs[c] = �t

�[c]
�[c]

∑
γ

Vt [γ ]. (5.17)

Here, the sum is taken over a set of faces (e.g., all faces γ that result in flow out
from the cell) and �[c] is the largest eigenvalue of the Jacobian
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∂f

∂S
=
[

∂fw

∂Sw

∂fw

∂So

∂fo

∂Sw

∂fo

∂So

]

for the fractional-flow function in cell c, where the fractional flow is defined in
the usual manner fα = λα/

∑
β λβ . If we consider a scalar problem in 1D with

unit porosity, � becomes the largest derivative, the pore volume becomes 1/�x,
and we recover (5.16). We also define the estimated component Courant number ηz

from an approximate volumetric flux for each component, given as the ratio of the
component mass flow and the cell component mass:

ηz[c] = �t

�[c]
max

i∈{1,...,N}

[
1

Mi[c]

∑
γ

Vi[γ ]

]
. (5.18)

The smallest of the two limits is chosen to set the maximum timestep; i.e.,
η= min(ηs,ηz). Both of these values are only estimates, because the eigenval-
ues and component masses are calculated at a specific set of saturations and
compositions. In addition, the fluxes may change during the timestep. For these
reasons, it is natural to target a lower Courant number than unity in practice
when choosing timesteps. The target can be adjusted on a per case basis; different
authors [2, 12] have noted that a target of 1.5 or 2 can be safe under certain
conditions.

If we now return to the implementation of the explicit flow-state builder, we see
that there are a number of options to set the reduced CFL target:

saturationCFL = 0.9; % Target saturation CFL. Should be <= 1 for stability.
compositionCFL = 0.9; % Target composition CFL. Should be <= 1 for stability.
explicitFlux = {'FaceMobility', 'FaceComponentMobility',...

'GravityPotentialDifference'}; % Explicit in FlowDiscretization
explicitFlow = {}; % Explicit quantities in FlowPropertyFunctions
explicitPVT = {}; % Explicit quantities in PVTPropertyFunctions
explicitProps = {}; % setProp/getProp exposed properties that should be explicit
initialStep = 1*day; % Time step used if no fluxes are present
useInflowForEstimate = false;

In addition, the class allows us to specify explicit terms, which are either named
functions from the different state-function groups in the reservoir model or proper-
ties in state, specified in explicitProps. These are most easily understood if we
reformulate (5.1) as a difference of masses by removing source terms and weighting
by the ratio of pore volume to timesteps and assume that the flux V is given by a
general function F ,
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Mn+1 − Mn + �t

�
div

(
F(un

1,u
n+1
2 ,Gn

1,G
n+1
2 )

)
= 0. (5.19)

The function F is parameterized by a set of state variables u1 and u2 that are evalu-
ated explicitly and implicitly, respectively. Here, u1 would be the explicitProps
and u2 contains the remainder of the state variables. We also assume that state func-
tions G1,G2 are direct inputs in the same manner. Here, G1 is set by explicitFlow
for flow properties and explicitPVT for PVT properties, initialStep spec-
ifies the maximum timestep at the start of the simulation when flux estimates
are not present, and useInflowForEstimate provides a toggle for chang-
ing the definition of the faces in the sum in (5.17) from outflow to inflow
faces.

The implementation of the hybrid state itself consists of two major parts: First,
one replaces implicit state properties with the named explicit properties and then
inserts the values of explicit property functions into the state cache so they are
not recomputed. We use the implicit state as a starting point and use setProp to
overwrite any specified variables:

flowState = state; % Everything is implicit by default
for i = 1:numel(builder.explicitProps)

p = builder.explicitProps{i};
flowState = model.setProp(flowState, p, model.getProp(state0, p));

end
for i = 1:numel(props)

prop = props{i}; % Props for current container
if ~isempty(state0.(name).(prop)) % Name is the current container

state0.(name).(prop) = []; % Remove cached entries
end
f0 = model.getProps(state0, prop);
flowState.(name).(prop) = f0;

end

At this point, we have a state in which all values are evaluated either explicitly
or implicitly. Evaluating the state functions that depend on several values may thus
result in partially explicit evaluations; e.g., the default flux will evaluate the gradient
of pressure implicitly and treat the mobility explicitly. You can select the explicit
flow-state builder with a single line for any generic model class:

model_exp = setTimeDiscretization(model, 'explicit'); % IMPES

Adaptive Implicit

The explicit strategy has less numerical diffusion than the standard implicit method
and can make the discrete equations nearly linear but will usually result in severe
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timestep restrictions in practice. A somewhat less restrictive approach is to take
the timestep as given and instead select the implicitness on a cell-by-cell basis
according to the CFL limit. We can define a rule that defines the mobility in each
cell from the estimate:

λk
i,α[c] =

⎧⎨⎩λn+1
i,α [c], if η[c] > ηmax ,

λn
i,α[c], otherwise.

(5.20)

This is the basic principle of adaptive-implicit methods (AIM) [1, 11], in which
each property can be implicit or explicit in different parts of the domain. The
adaptive-implicit flow-state builder inherits directly from the explicit version. The
major difference is that it produces no limits on the timestep but instead uses the
estimated CFL number to set an implicit flag for each cell in the domain. Build-
ing the flow state is then similar to the explicit version, with the assignment from
the previous state for explicit properties replaced with a combination of explicit and
implicit values:

f_hyb = implicit.*f + ~implicit.*f0;
flowState.(name).(prop) = f_hyb;

We remark that this implementation is somewhat inefficient, because the property
may be computed twice. Because we have a cell-wise indicator for the implicit flag,
AIM currently relies on introducing implicitness via state functions in the PVT and
flow groups that give cell-wise output only, because the flag is set on a per cell
basis. Values on the face in the flux discretization are assumed to be computed
from the cell-wise values. Note that the coupling between wells and perforated
reservoir cells is evaluated implicitly regardless of CFL condition, because these
cells are assumed to be subject to rapid changes in flow conditions. AIM is selected
by specifying the values 'adaptive-implicit' or 'aim':

model_aim = setTimeDiscretization(model, 'adaptive-implicit'); % AIM

5.4.4 Example: Fully Implicit, Explicit, and Adaptive Implicit

The choice of temporal discretization determines both the computational efficiency
and how accurate a numerical scheme will resolve sharp displacement fronts. To
illustrate this, we consider a simple advection problem, φSt+aSx = 0, correspond-
ing to two-phase flow with equal phase viscosities and linear relative permeabilities.
The CFL condition for this equation is (a�t/φ�x) ≤ 1. Subsection 9.3.4 in
the MRST textbook [3] presents a discussion of truncation errors and numerical
smearing of the explicit and implicit schemes for the case of φ = 1. The discussion
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Figure 5.8 Four different solvers: fully implicit, explicit stable, explicit unstable,
and adaptive-implicit saturation fronts, together with the varying porosity field
for an advection equation. The implicit timesteps have CFL less than unity in the
white region where φ = 0.5 but exceed 1 in the grey regions.

will be made easier by considering a one-dimensional problem but, as we will see
later, the approach is the same for more complex problems. This example is found
in MRST as immiscibileTimeIntegrationExample.

We set up the advection equation by choosing equal phase viscosities and linear
relative permeability curves for a two-phase immiscible fluid model. We let the
porosity vary one order of magnitude throughout a domain of length L = 1 000 m

φ(x) =

⎧⎪⎨⎪⎩
0.05, if x/L ∈ [0.20,0.30] ∪ [0.70,0.80],

0.10, if x/L ∈ [0.45,0.55],

0.50, otherwise.

(5.21)

The average fluid velocity a per volume is constant throughout the domain so that a
reduced porosity leads to much higher velocity in the pores, in turn severely limiting
the length of stable timesteps for an explicit solver. The varying porosity is plotted
in Figure 5.8 together with the solutions.

Default timesteps for fully implicit and adaptive-implicit methods are chosen
to give a Courant number of 0.75 in the high-porosity cells. The explicit scheme
selects timesteps automatically based on an estimate of the actual Courant number,
which is 5 and 10 times higher in the low-porosity cells and will therefore use more
timesteps locally as the front passes through these cells. We can adjust the CFL
target used to select timesteps for the explicit flow-state builder up from the default
of 0.9, at the risk of introducing unphysical oscillations in the solution.

To demonstrate instabilities that occur when exceeding the CFL limit, we
increase the limit to five and disable convergence checks by setting a flag to
indicate that the model is linear (i.e., that it is sufficient to only iterate once in the
Newton solver):

model_explicit_largedt = setTimeDiscretization(model, 'explicit', ...
'verbose', true, 'saturationCFL', 5); % Potentially unstable!

model_explicit_largedt.stepFunctionIsLinear = true; % No convergence check
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It is also possible to adjust whether specific properties will be evaluated explicitly
or implicitly through the properties of the flow-state builder itself:

fsb = model_explicit.FlowDiscretization.getFlowStateBuilder();
disp(fsb)

explicitFlux: {’FaceMobility’ ’FaceComponentMobility’
’GravityPotentialDifference’}

explicitFlow: {}
explicitPVT: {}
explicitProps: {}

Once we have chosen temporal discretization for each property, we can simulate
as usual. We can pass a 'verbose' argument larger than one when setting the
time discretization to get additional output during the simulation from the flow-
state builder. For example, looking at the output from the explicit solver, we get a
message at the beginning of each timestep:

Solving timestep 018/158: 30 Days -> 33 Days, 8 Hours
Time-step limited by saturation CFL: 3.33 Days reduced to

9.66 Hours (87.92% reduction)

The global timestep will be limited by the cell experiencing the largest Courant
number. Here, this means that a single timestep of 3.33 days was split into several
substeps that end at the next report step.

We next simulate the same case with the AIM solver. When we monitor the
progress, we now observe that the message has changed from a notification of
reduction in timestep to a notice of how many cells are implicit:

Solving timestep 050/158: 136 Days, 16 Hours -> 140 Days
Adaptive implicit: 44 of 150 cells are implicit (29.33%).
0 limited by composition, 44 limited by saturation, 0 belong to wells.

Figure 5.8 shows the solutions. The fully implicit method (FIM) and AIM both
use the prescribed 158 timesteps, whereas the explicit solver uses 1 357 and 307
steps with stable and unstable Courant number, respectively. Of these two, only
the stable setup avoids oscillations near the low porosity regions. FIM is the least
accurate, which is typical for linear waves, because these are highly susceptible
to numerical diffusion. For more details of the impact of numerical diffusion in
practical simulation, see Chapter 7. You may note that the explicit solver intro-
duces somewhat more smearing than AIM. Some may find this to be counter intu-
itive, but it follows directly from the truncation error analysis presented in the
MRST textbook [3, subsection 9.3.4]: Numerical smearing decreases with decreas-
ing timesteps for implicit methods but increases for explicit methods. A similar
effect is seen in Subsection 3.4.2.
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We finally note that this approach to the explicit solver is somewhat ineffi-
cient, because the residual is computed and the full Jacobian is assembled in
the entire domain. An alternative approach is to use the PressureModel and
TransportModel from the sequential module to solve a separate pressure
equation and adjust the temporal discretization in the transport solver. Although
we omit it here for brevity, this is demonstrated in the example. A companion
example, blackoilTimeIntegrationExample, demonstrates how to simulate
with different temporal discretizations for the SPE 1 and SPE 9 benchmark models.
We encourage you to experiment with the different options to see the impact on
accuracy and efficiency.

5.4.5 Spatial Discretizations

It is also possible to change the spatial discretizations used by the simulator. The
terms of the governing equations are themselves broken down into a number of
different state functions that can be replaced in the same manner as we did when
switching the pore volume definition from static to dynamic in Subsection 5.3.3.
A detailed description of different discretization techniques is outside the scope of
this chapter, but we will consider two examples that demonstrate how to use alter-
nate schemes in the framework: a multipoint flux-approximation scheme that is
consistent for grids lacking K-orthogonality and a weighted essentially nonoscilla-
tory (WENO) scheme for more accurate resolution of the component transport.

Multipoint Flux Approximation Scheme

By default, the AD simulators in MRST discretize the Darcy flux using the two-
point flux approximation (TPFA), which is not consistent for general grids and per-
meability fields. Chapter 6 of the MRST textbook [3] describes these consistency
issues and why the inconsistent scheme is still used for most practical reservoir
simulation. Our focus here is how to integrate an already implemented scheme in
simulators that use state functions.

As an example, we use the MPFA-O multipoint flux approximation scheme
from the mpfa module, as described in [3, section 6.4] under the name “local-flux
mimetic method.” This can be integrated into the AD-OO framework by altering
the definition of the phase-potential difference �α. The reason for the modification
of this function in particular is twofold:

1. We would like to simulate multiphase flow, for which the phase-potential dif-
ference in (5.4) is used to upwind transported quantities in (5.7). Modifying the
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potential ensures that all functions that make use of the direction of the dis-
crete potential difference consistently see the correct direction.

2. Face-based transmissibilities are deeply entrenched in reservoir simulation and
may be modified in many ways that may not fit neatly in the mathematical
description of the problem. Examples include fault multipliers and pressure-
dependent transmissibilities. A rigorous mathematical treatment of such effects
must be done on a case-by-case basis (see, e.g., the fault treatment in [6]). We
would like to incorporate these effects even when not using a TPFA scheme by
retaining the concept of transmissibilites for each face. In this way, multipliers or
pressure-dependent transmissibility can seamlessly be combined with the MPFA
scheme and give reasonable results.

Note that our approach to change the spatial discretization uses the same machinery
for state functions as we used to implement pore volumes and densities earlier.
The modified form of (5.4) is written in terms of a matrix M� that represents the
discrete gradient required for the MPFA scheme and a matrix Mg for the treatment
of hydrostatic head difference:

�α = M�(pα) − gMgfavg(ρα)grad(z). (5.22)

The matrix M� is identical in action to the discrete gradient operator grad for
K-orthogonal grids but introduces additional nonzero entries in the pressure Jaco-
bian that connect cells to their nodal neighbors. The values and sparsity pattern
of the matrix take on different values for skewed grids or anisotropic permeability
fields. By the same logic, Mg is an identity matrix for K-orthogonal grids.

Once we have the desired potential difference, the fluxes in (5.3) can be com-
puted in a straightforward manner. Equation (5.22) is introduced to the simulator
via a helper utility, setMPFADiscretization. This function is quite compact and
relies mostly on the multipoint transmissibility calculator from the mpfamodule for
the heavy lifting, leaving only a few scaling operations to match the conventions
in AD-OO for signs and gradients. For brevity, we only offer the necessary lines
without detailed explanation:

require mpfa
[~, M] = computeMultiPointTrans(model.G, model.rock); % From MPFA code
Tv = M.rTrans; % Transmissibilities: cells -> inner faces
Tg = M.rgTrans(model.operators.internalConn, :); % Gravity contributions

% Change sign and rescale operators to fit with AD-OO definition of gradient.
scale = -1./(2*model.operators.T);
MPFAGrad = Tv.*scale;
Mg = -Tg.*scale/2;
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Integrating existing functionality into state functions can be an efficient way to
extend a simple prototype implementation to more complex flow scenarios. After
the MPFA transmissibilities are computed, we set up the state functions:

model = model.setupStateFunctionGroupings();

The scheme is then implemented by retrieving two state functions from the model
and modifying them: First, the pressure gradient is given a custom gradient operator
consistent with the MPFA scheme:

% Discrete gradient
fd = model.FlowDiscretization;
dp = fd.getStateFunction('PressureGradient');
dp.Grad = @(x) MPFAGrad*x;
fd = fd.setStateFunction('PressureGradient', dp);

Then, the gravity potential difference is modified with Mg as a weighting matrix:

% Gravity potential difference
dg = fd.getStateFunction('GravityPotentialDifference'); dg.weight = Mg;
model.FlowDiscretization = fd.setStateFunction('GravityPotentialDifference', dg);

Example: MPFA vs TPFA

The script MPFAvsTPFAwithADExample from ad-core demonstrates the use of
MPFA on example 6.1.2 from the MRST textbook [3]. The example describes a
homogeneous reservoir with a symmetric well pattern consisting of a single injec-
tor and two producers. To demonstrate typical grid-orientation effects on skewed
grids, the grid is intentionally angled toward one of the two producers, as seen in
Figure 5.9. Once we have set up a standard two-phase flow model and loaded the
mpfa module, we can replace the TPFA discretization:

mrstModule add mpfa % Load module
model_mpfa = setMPFADiscretization(model); % Replace discretization

We first apply TPFA with both explicit and implicit time integration. We know
that the water cut between the two producers should be symmetric for a consistent
solver, but we observe a significant discrepancy in Figure 5.10. Using a consistent
scheme results in a greatly improved balance between the wells as seen in the
right plot of the same figure. Switching to an explicit scheme sharpens the pro-
duction curves somewhat in both cases. There are multiple error sources at work,
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TPFA, incompressible MPFA, incompressible

TPFA, compositional MPFA, compositional

Figure 5.9 Two variants of the same symmetric scenario realized with an inconsis-
tent method (left column) and a the consistent method (right column). The upper
row is an incompressible and immiscible scenario, whereas the lower row shows
a compositional scenario in which CO2 displaces decane. Colors give isocontours
for the implicit solution, and black lines represent the same isocontours for the
explicit scheme.
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Figure 5.10 Water cut for the symmetry test for two different spatial discretiza-
tions: the inconsistent TPFA method (left) and the consistent MPFA method
(right). The two producers should have equal water cut, but the skewed grid
affects the results. Switching to a more accurate temporal discretization reduces
the numerical diffusion but does not impact the asymmetry.

and selecting the solution with the least error requires a careful examination. In
Figure 5.9 it is clear that the explicit discretization reduces the numerical diffusion
near the water front, whereas the consistent discretization governs where the water
front itself moves by producing a better velocity field.

A second variation of this scenario (set useComp=true) is a compositional
model setup in which we inject supercritical CO2 to displace a resident heavy
component. With a mobility ratio different from unity, the values of the pressure
matter directly for the results and not just indirectly through the velocity field.
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The higher mobility of the injected gas results in stronger grid-orientation effects,
as is clearly exhibited in the lower row of Figure 5.9. Note that we did not have
to change any of the MPFA-related routines to simulate a very different type of
flow physics.

High-Resolution Scheme for Upwinding

Fully implicit methods are popular in reservoir simulation due to their uncon-
ditional stability. Unfortunately, when paired with a single-point upwind (SPU)
scheme on the form (5.7), the accuracy of the scheme can be poor for flux functions
that are not self-sharpening. The previous section showed that varying the degree
of implicitness for saturations and compositions can reduce the numerical diffusion
of the SPU scheme. A complementary option to varying implicitness is changing
the discretization itself; e.g., by replacing SPU by the high-resolution discontinu-
ous Galerkin methods described in Chapter 3. We consider an alternative WENO
discretization [5] in which states used to compute the flux across each cell interface
are reconstructed point-wise from a number of polynomial interpolations from the
cell-averaged values in the neighboring cells. In short, this scheme computes a
second-order approximation from several truncated Taylor expansions around the
upstream cell for each interface f ,

λf
α = λα[�] +

∑
j

wj,�σ
�
j,α

(
xf − x�

C1(f )

)
,

{
� = C1(f ), if �α[f ] ≤ 0,

� = C2(f ), otherwise.

(5.23)

Here, each approximate gradient σ �
j,α is determined from the values of the phase

mobility at the centers of a triplet of cells (in the 2D case) that includes � and the
sum runs over all such triplets that contain the upstream cell. A nonzero weight
wj,� is assigned to each interpolated value, with

∑
j wj,� = 1. These are nonlinear

functions that depend on the cell-averaged values, and small weights are assigned
to cell triplets (i,j,�) giving large gradients to avoid spurious oscillations near
discontinuities in the solution (see Lie et al. [4] for more details). The scheme is
second-order accurate away from discontinuities and applicable to fairly general
grids. The original paper only discussed the fully implicit version of the scheme
but, as we have seen, switching to explicit or AIM is just a matter of changing the
flow-state builder.

Example: Combining WENO and AIM

The example wenoExampleAD.m demonstrates the WENO scheme on a simple
quarter five-spot example in which a tracer fluid is injected. Due to the linear
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flux function, the front is highly sensitive to numerical diffusion. Just as when
we switched from TPFA to MPFA, the switch from SPU to WENO is done by
a helper routine:

model_weno = setWENODiscretization(model);

The routine essentially consists of two parts. The first is setting up the WENO dis-
cretization as an UpwindDiscretization subclass (see the class documentation
for more details on available options):

weno = WENOUpwindDiscretization(model);

In addition, the class has a member function faceUpstream that determines face
values from the cell values. Several state-function classes that produce outputs
on each face can contain an upwind discretization class. If none is passed, the
default function from the model’s operators struct is used instead. Once the
WENO scheme has been set up, our helper routine can update the definitions of λα

and λi,α:

p = model.FlowDiscretization; % Get default
p = p.setStateFunction('FaceMobility', FaceMobility(model, weno));
p = p.setStateFunction('FaceComponentMobility', FaceComponentMobility(model, weno));
model.FlowDiscretization = p; % Replace

The advantage of the modular approach provided by state functions is clear: We
can easily modify any kind of upwinded function with a WENO scheme, just
as we could easily switch to AIM for any type of model. We can now simu-
late a quarter five-spot injection scenario on a 50 × 50 grid with four different
schemes: FIM with SPU, FIM with WENO, AIM with SPU, and AIM with WENO.
Figure 5.11 uses the same style of plot as the previous example and shows that
the fully implicit SPU scheme is very diffusive. The white outline in the plot
of Courant numbers highlights cells near the wells that are evaluated implicitly
in the AIM scheme. Even when many of the cells are treated explicitly, there is
significant smearing of the front. If we instead switch to WENO, the fully implicit
solver is comparable in accuracy to the explicit SPU. Switching to AIM for the
WENO solver results in significant additional improvement. Obtaining accurate
results for scenarios that are sensitive to smearing of fronts may therefore require a
combination of a fine grid, high-resolution schemes, tailored time integration strate-
gies, and carefully chosen time steps, all of which are possible with the new AD-OO
framework in MRST.
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SPU WENO Courant number

Figure 5.11 A quarter five-spot example with a linear displacement. The linear
wave is sensitive to numerical diffusion and we observe significant smearing for
the implicit SPU scheme (left) even when using AIM (black lines). Smearing
diminishes significantly when switching to implicit WENO (middle) and is
further reduced by applying AIM (black lines). Courant numbers (right) exceed
the stability limit of explicit schemes in the near-well regions, where many
streamlines depart the well. AIM therefore uses an implicit discretization in the
regions inside the white lines.

5.5 Concluding Remarks

The state-function framework, together with the modular initialization of AD
variables, represents a significant step forward in the capability of the AD-OO
prototyping environment. Altogether, the combination of new features makes it
easy to modify, extend, and understand simulators for highly complex processes
in porous media. The design of the simulator as a graph of loosely coupled,
replaceable functions is a step forward from the flexibility afforded by automatic
differentiation, and many of the other chapters in this book build upon these
features to support a range of physical effects, including chemical enhanced oil
recovery (Chapter 7), compositional flow (Chapter 8), flow in fractured reservoirs
(Chapters 10 and 11), and geothermal flow (Chapter 12).
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