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Abstract

First, we prove a theorem on dynamics of actions of monoids by endomorphisms of semigroups.
Second, we introduce algebraic structures suitable for formalizing infinitary Ramsey statements and
prove a theorem that such statements are implied by the existence of appropriate homomorphisms
between the algebraic structures. We make a connection between the two themes above, which
allows us to prove some general Ramsey theorems for sequences. We give a new proof of the
Furstenberg–Katznelson Ramsey theorem; in fact, we obtain a version of this theorem that is
stronger than the original one. We answer in the negative a question of Lupini on possible extensions
of Gowers’ Ramsey theorem.
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1. Introduction

The main point of the paper is studying actions of monoids and establishing
a relationship between monoid actions and Ramsey theory. Further, we make a
connection with partial orders that have earlier proved important in set theoretic
considerations.

In Section 2, we study the dynamics of actions of monoids by continuous
endomorphisms on compact right topological semigroups. We outline now the
notions relevant to this study and its outcome: (1) a partial order Y(M); (2) a
class of monoids; and (3) the theorem on dynamics of monoid actions.

(1) We associate with each monoid M a partial order Y(M) on which M acts
in an order preserving manner. We define first the order X(M) consisting of all
principal right ideals in M , that is, sets of the form aM for a ∈ M , with the
order relation6X(M) being inclusion. This order is considered in the representation
theory of monoids as in [14]. The monoid M acts on X(M) by left translations.
We then let Y(M) consist of all nonempty linearly ordered by 6X(M) subsets of
X(M). We order Y(M) by end-extension, that is, we let x 6Y(M) y if x is included
in y and all elements of y \ x are larger with respect to 6X(M) than all elements
of x . The construction of the partial order Y(M) from the partial order X(M) is
a special case of a set theoretic construction going back to Kurepa [9]. An order
preserving action of the monoid M on Y(M) is induced in the natural way from
its action on X(M).

(2) We introduce a class of monoids we call almost R-trivial, which contains the
well known class of R-trivial monoids (see [14]) and all the monoids of interest
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to us. In a monoid M , by the R-class of a ∈ M we understand, as in [14], the
equivalence class of a with respect to the equivalence relation that makes two
elements equivalent if the principal right ideals generated by the two elements
coincide, that is, b1 and b2 are equivalent if b1 M = b2 M . We call a monoid M
almost R-trivial if for each element b whose R-class has strictly more than one
element we have ab = b for each a ∈ M . (A monoid is R-trivial if the R-class of
each element contains only that element.) In Section 2.3, we provide the relevant
examples of almost R-trivial monoids.

(3) In Theorem 2.4, which is the main theorem of Section 2, we show that
each action of a finite almost R-trivial monoid by continuous endomorphisms on
a compact right topological semigroup contains, in a precise sense, the action
of M on Y(M); in fact, it contains a natural action of M by endomorphisms
on the semigroup 〈Y(M)〉 generated canonically by Y(M), Corollary 2.7. This
result was inspired by Ramsey theoretic considerations, but it may also be of
independent dynamical interest.

In Section 3, we introduce new algebraic structures, we call function arrays,
that are appropriate for formalizing various Ramsey statements concerning
sequences. We isolate the notions of basic sequence and tame coloring. In
Theorem 3.1, the main theorem of this section, we show that finding a basic
sequence on which a given coloring is tame follows from the existence of an
appropriate homomorphism. This theorem reduces proving a Ramsey statement
to establishing an algebraic property. We introduce a natural notion of tensor
product of the algebraic structures studied in this section, which makes it possible
to strengthen the conclusion of Theorem 3.1.

In Section 4, we connect the previous two sections with each other and explore
Ramsey theoretic issues. In Corollary 4.1, we show that the main result of
Section 2 yields a homomorphism required for the main result of Section 3.
This corollary has various Ramsey theoretic consequences. For example, we
introduce a notion of Ramsey monoid and prove that, among finite almost R-
trivial monoids M , being Ramsey is equivalent to linearity of the order X(M).
We use this result to show that an extension of Gowers’ Ramsey theorem [4]
inquired for by Lupini [10] is false. As other consequences, we obtain some earlier
Ramsey results by associating with each of them a finite almost R-trivial monoid.
For example, we show the Furstenberg–Katznelson Ramsey theorem for located
words, which is stronger than the original version of the theorem from [3]. Our
proof is also different from the one in [3].

We state here one Ramsey theoretic result from Section 4, which has
Furstenberg–Katznelson’s and Gowers’ theorems, [3, 4], as special instances; see
Section 4.3. Let M be a monoid. By a located word over M we understand a
function from a finite nonempty subset of N to M . For two such words w1 and
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w2, we write w1 ≺ w2 if the largest element of the domain of w1 is smaller than
the smallest element of the domain of w2. In such a case, we write w1w2 for the
located word that is the function whose graph is the union of the graphs of w1 and
w2. For a located word w and a ∈ M , we write a(w) for the located word that
results from multiplying on the left each value of w by a. Given a finite coloring
of all located words, we are interested in producing a sequence w0 ≺ w1 ≺ · · ·

of located words, for which we control the color of

a0(wn0) · · · ak(wnk ),

for arbitrary a0, . . . , ak ∈ M and n0 < · · · < nk . The control over the color is
exerted using the partial order Y(M) introduced above. With each partial order
(P,6P), one naturally associates a semigroup 〈P〉, with its binary operation
denoted by ∨, that is the semigroup generated freely by the elements of P subject
to the relations

p ∨ q = q ∨ p = q if p 6P q. (1.1)

We consider the semigroup 〈Y(M)〉 produced from the partial order Y(M) in this
manner. We now have the following statement, which is proved as Corollary 4.3.
Let M be almost R-trivial and finite. Fix a finite subset F of the semigroup 〈Y(M)〉
and a maximal element y of the partial order Y(M). For each coloring with
finitely many colors of all located words over M, there exists a sequence

w0 ≺ w1 ≺ w2 ≺ · · ·

of located words such that the color of

a0(wn0) · · · ak(wnk ),

for a0, . . . , ak ∈ M and n0 < · · · < nk , depends only on the element

a0(y) ∨ · · · ∨ ak(y)

of 〈Y(M)〉 provided that a0(y) ∨ · · · ∨ ak(y) ∈ F.
One can view a0(y) ∨ · · · ∨ ak(y) as the ‘type’ of a0(wn0) · · · ak(wnk ) and the

theorem as asserting that the color of a0(wn0) · · · ak(wnk ) depends only on its type.
In general, the element a0(y)∨· · ·∨ak(y) contains much less information than the
located word a0(wn0) · · · ak(wnk ), due partly to the disappearance of wn0, . . . , wnk

and partly to the influence of relations (1.1).
We comment now on our view of the place of the present work within Ramsey

theory. A large portion of Ramsey Theory can be parametrized by a triple
(a, b, c), where a, b, c are natural numbers or∞ and a 6 b 6 c. (We exclude here,
for example, a very important part of Ramsey theory called structural Ramsey
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theory, for which a general approach is advanced in [6].) The simplest Ramsey
theorems are those associated with a 6 b <∞= c. (For example, for each finite
coloring of all a-element subsets of an infinite set C , there exists a b-element
subset of C such that all of its a-element subsets get the same color.) These
simplest theorems are strengthened in two directions.

Direction 1: a 6 b 6 c < ∞. This is the domain of Finite Ramsey Theory.
(For example, for each finite coloring of all a-element subsets of a c-element set
C , there exists a b-element subset of C such that all of its a-element subsets get
the same color.) Appropriate structures for this part of the theory are described in
[13].

Direction 2: a = b = c = ∞. This is the domain of Infinite Dimensional
Ramsey Theory. (For example, for each finite Borel coloring of all infinite element
subsets of an infinite countable set C , there exists an infinite subset of C such that
all of its infinite subsets get the same color.) Appropriate structures for this theory
were developed in [16] and a general Ramsey theorem (GRT) for them was proved
there.

The frameworks in 1 and 2 are quite different in particulars, but, roughly
speaking, the GRTs in both cases have the same form:

GRT: Pigeonhole principle implies Ramsey statement.
Such GRT, reduces proving concrete Ramsey statements to proving appropriate

pigeonhole principles. In 1, pigeonhole principles are either easy to check directly
or, more frequently, they are reformulations of Ramsey statements proved earlier
using GRT with the aid of easier pigeonhole principles. So it is a self-propelling
system. In 2, pigeonhole principles cannot be obtained this way and they require
separate proofs. (The vague reason for this is that the pigeonhole principles here
correspond to the case b = c = ∞ and a = potential∞.)

This paper can be viewed as providing appropriate structures and general
theorems that handle proofs of pigeonhole principles in 2. These structures are
quite different from those in 1 and 2.

The concurrently written interesting paper [11] also touches on the theme of
ultrafilter methods in Ramsey theory. This work and ours are independent from
each other.

2. Monoid actions on semigroups

The theme of this section is purely dynamical. We study actions of finite
monoids on compact right topological semigroups by continuous endomorphisms.
We isolate the class of almost R-trivial monoids that extends the well studied class
of R-trivial monoids. We prove in Theorem 2.4 that each action of an almost R-
trivial finite monoid M on a compact right topological semigroup by continuous
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endomorphisms contains, in a precise sense, a finite action defined only in terms
of M . This finite action is an action of M on a partial order Y(M) introduced
in Section 2.1. An important to us reformulation of Theorem 2.4 is done in
Corollary 2.7.

2.1. Monoid actions on partial orders. A monoid is a semigroup with a
distinguished element that is a left and right identity. By convention, if a monoid
acts on a set, the identity element acts as the identity function.

Let M be a monoid. By an M-partial order we understand a set X equipped
with an action of M and with a partial order 6X such that if x 6X y, then ax 6X

ay, for x, y ∈ X and a ∈ M . Let X and Y be M-partial orders. A function f : X→
Y is an epimorphism if f is onto, f is M-equivariant, and6Y is the image under
f of 6X . We say that an M-partial order X is strong if, for all y ∈ X and a ∈ M ,

{ax ∈ X : x 6X y} = {x ∈ X : x 6X ay}.

For a monoid M , consider M acting on itself by multiplication on the left. Set

X(M) = {aM : a ∈ M} (2.1)

with the order relation being inclusion. Then, X(M) is an M-partial order. We
actually have more.

LEMMA 2.1. Let M be a monoid. Then X(M) is a strong M-partial order.

Proof. We need to see that if cM ⊆ abM , then there is c′ such that c′M ⊆ bM
and ac′M = cM . Since cM ⊆ abM , we have c ∈ abM , so c = abd for some
d ∈ M . Let c′ = bd . It is easy to check that this c′ works.

For each finite partial order X , let

Fr(X) = {x ⊆ X : x 6= ∅ and x is linearly ordered by 6X }. (2.2)

The order relation on Fr(X) is defined by letting for x, y ∈ Fr(X),

x 6Fr(X) y ⇐⇒ x ⊆ y and i <X j for all i ∈ x and j ∈ y \ x .

Observe that Fr(X) is a forest, that is, it is a partial order in which the set of
predecessors of each element is linearly ordered. (We take this sentence as our
definition of the notion of forest.) As pointed out by Todorcevic, the operation Fr
is a finite version of certain constructions from infinite combinatorics of partial
orders [9, 15].
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Let X be an M-partial order. For x ∈ Fr(X) and a ∈ M , let

ax = {ai : i ∈ x}.

Clearly, ax ∈ Fr(X) and M × Fr(X) 3 (a, x)→ ax ∈ Fr(X) is an action of M
on Fr(X).

The following lemma is easy to verify.

LEMMA 2.2. Let M be a monoid, and let X be a finite M-partial order.

(i) Fr(X) with the action defined above is a strong M-partial order.

(ii) The function π : Fr(X) → X given by π(x) = max x is an epimorphism
between the two M-partial orders.

For a finite monoid M , set

Y(M) = Fr(X(M)). (2.3)

By Lemma 2.2, Y(M) is a strong M-partial order.

2.2. Compact right topological semigroups. We recall here some basic
notions concerning right topological semigroups.

Let U be a semigroup. As usual, let

E(U )

be the set of all idempotents of U . There is a natural transitive, antisymmetric
relation 6U on U defined by

u 6U v ⇐⇒ uv = vu = u.

This relation is reflexive on the set E(U ). So 6U is a partial order on E(U ).
A semigroup equipped with a topology is called right topological if, for each

u ∈ U , the function
U 3 x → xu ∈ U

is continuous.
In the proposition below, we collect facts about idempotents in compact

semigroups needed here. They are proved in [16, Lemma 2.1, Lemma 2.3 and
Corollary 2.4, Lemma 2.11].

PROPOSITION 2.3. Let U be a compact right topological semigroup.
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(i) E(U ) is nonempty.

(ii) For each v ∈ E(U ) there exists a minimal with respect to 6U element u ∈
E(U ) with u 6U v.

(iii) For each minimal with respect to6U element u ∈ E(U ) and each right ideal
J ⊆ U, there exists v ∈ J ∩ E(U ) with uv = u.

If U is equipped with a compact topology, that may not interact with
multiplication in any way, then there exists the smallest under inclusion compact
two-sided ideal of U , see [5]. So, for a compact right topological semigroup U ,
let

I (U )

stand for the smallest compact two-sided ideal with respect to the compact
topology on U .

2.3. Almost R-trivial monoids. Two elements a, b of a monoid M are called
R-equivalent if aM = bM . Of course, by an R-class of a ∈ M we understand the
set of all elements of M that are R-equivalent to a. A monoid M is called R-trivial
if each R-class has exactly one element, that is, if for all a, b ∈ M , aM = bM
implies a = b. This notion with an equivalent definition was introduced in [12].
For the role of R-trivial monoids in the representation theory of monoids, see [14,
Chapter 2].

Note that if M is R-trivial, then the partial order X(M) can be identified with
M taken with the partial order a 6M b if and only if a ∈ bM . We call a monoid
M almost R-trivial if, for each b ∈ M whose R-class has more than one element,
we have ab = b for all a ∈ M .

We present now examples of almost R-trivial monoids relevant in Ramsey
theory.

Examples. 1. Let n ∈ N, n > 0. Let

Gn

be {0, . . . , n − 1} with multiplication defined by

i · j = min(i + j, n − 1).

We set 1Gn = 0.
The monoid Gn is R-trivial since, for each i ∈ Gn , we have iGn = {i, . . . ,

n − 1}.
The monoid Gn is associated with Gowers’ Ramsey theorem [4], see also [16].
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2. Fix n ∈ N, n > 0. Let
In

be the set of all nondecreasing functions that map n onto some k 6 n. These
are precisely the nondecreasing functions f : n → n such that f (0) = 0 and
f (i+1) 6 f (i)+1 for all i < n−1. The multiplication operation is composition
and 1 is the identity function from n to n.

The monoid In is R-trivial. To see this, let f, g ∈ In be such that f ∈ gIn and
g ∈ f In , that is, f = g ◦ h1 and g = f ◦ h2, for some h1, h2 ∈ In . It follows
from these equations that f (i) 6 g(i), for all 1 6 i 6 n, and g(i) 6 f (i), for all
1 6 i 6 n. Thus, f = g.

The monoid In is associated with Lupini’s Ramsey theorem [10].
3. Fix two disjoint sets A, B, and let 1 not be an element of A ∪ B. Let

J (A, B)

be {1} ∪ A ∪ B. Define multiplication on J (A, B) by letting, for each c ∈ A ∪ B,

c · a = c, if a ∈ A;
c · b = b, if b ∈ B.

Of course, we define 1 · c = c ·1 = c for all c ∈ J (A, B). We leave it to the reader
to check that so defined multiplication is associative.

The monoid J (A, B) is almost R-trivial. Indeed, a quick check gives, for a ∈ A
and b ∈ B,

a J (A, B) = {a} ∪ B, bJ (A, B) = B, 1J (A, B) = J (A, B).

Thus, the only elements of J (A, B), whose R-classes can possibly have size
bigger than one, are elements of B. But for all c ∈ J (A, B) and b ∈ B, we
have cb = b. It follows that J (A, B) is almost R-trivial (and not R-trivial if the
cardinality of B is strictly bigger than one).

The monoid J (∅, B) for a one element set B is associated with Hindman’s
theorem (see [16]) and for arbitrary finite B with the infinitary Hales–Jewett
theorem, see [16]. For arbitrary finite A and B, J (A, B) is associated with the
Furstenberg–Katznelson theorem [3].

2.4. The theorem on monoid actions. In the results of this section, we adopt
the following conventions:

— U is a compact right topological semigroup;

— M is a finite monoid acting on U by continuous endomorphisms.
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The following theorem is the main result of this section.

THEOREM 2.4. Assume M is almost R-trivial. There exists a function
g : Y(M)→ E(U ) such that

(i) g is M-equivariant;

(ii) g is order reversing with respect to 6Y(M) and 6U ;

(iii) g maps maximal elements of Y(M) to I (U ).

Moreover, if X(M) has at most two elements, then g maps maximal elements of
Y(M) to minimal elements of E(U ).

We will need the following lemma. Its proof borrows some ideas from [10].

LEMMA 2.5. Let F be a strong M-partial order that is a forest. Assume that
f : F → U is M-equivariant. Then there exists g : F → E(U ) such that

(i) g is M-equivariant;

(ii) g is order reversing with respect to 6F and 6U ;

(iii) g−1(I (U )) contains f −1(I (U )).

Proof. Let A ⊆ F be downward closed. Assume we have a function gA : F →
E(U ) such that (i) and (iii) hold and additionally, for all i, j ∈ A,

(?) if i <F j , then gA( j)gA(i) = gA( j).

Note the condition that the values of gA are in E(U ), so they are idempotents. Let
B ⊆ F be such that A ⊆ B and all the immediate predecessors of elements of B
are in A. We claim that there exists gB : F → E(U ) fulfilling (i), (iii), (?) for all
i, j ∈ B, and gB � A = gA � A.

First, define g′B : F → U by letting, for j ∈ F ,

g′B( j) = gA(ik)gA(ik−1) · · · gA(i1),

where i1 <F · · · <F ik lists the set {i ∈ F : i 6F j} is the increasing order.
We check that g′B fulfills (i), (iii), and (?) for i, j ∈ B. Point (i) holds since for

each a ∈ M we have

a(g′B( j)) = a(gA(ik))a(gA(ik−1)) · · · a(gA(i1))

= gA(a(ik))gA(a(ik−1)) · · · gA(a(i1)) = g′B(a( j)), (2.4)
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with the second equality holding since the function gA is M-equivariant and the
third one holding by idempotence of the values of gA and the fact that F is an
M-forest. Point (iii) holds since I (U ) is a right ideal and the function gA fulfills
(iii). To check (?) for i, j ∈ B with i <F j , let

i1 <F · · · <F ik <F · · · <F il

list all the predecessors of j in the increasing order so that ik = i and, of course,
il = j . Then, since j ∈ B, we have i1, . . . , ik ∈ A and, therefore, we get

g′B( j) = gA(il) · · · gA(ik) = gA( j) · · · gA(i).

By the same computation carried out for i = j ∈ A, we see

g′B(i) = gA(i), for i ∈ A. (2.5)

It follows that

g′B( j)g′B(i) = gA( j) · · · gA(i)gA(i) = gA( j) · · · gA(i) = g′B( j).

This equality shows that (?) holds for i, j ∈ B. Finally, note that (2.5) implies that
g′B � A = gA � A. Thus, g′B has all the desired properties.

To construct gB from g′B , consider U F with coordinatewise multiplication and
the product topology. This is a right topological semigroup. Define H ⊆ U F to
consist of all x ∈ U F such that

(α) the function F 3 i → xi ∈ U fulfills (i), (iii), and (?) for i, j ∈ B and

(β) xi = gA(i) for all i ∈ A.

First we observe that H is a subsemigroup of U F . Condition (i) is clearly closed
under multiplication. Condition (iii) is closed under multiplication since I (U ) is
a two-sided ideal. Condition (?) is closed under multiplication in the presence of
(β) since, for x, y ∈ H and i, j ∈ B with i <F j , we have i ∈ A and, therefore,

x j y j xi yi = x j y j gA(i)gA(i) = x j y j yi yi = x j y j .

This verification shows that (α) is closed under multiplication in the presence of
(β). Condition (β) is closed under multiplication since gA(i) is an idempotent.

Next note that H is compact since all conditions defining H are clearly
topologically closed with a possible exception of (?) for i, j ∈ B with i <F j .
Note that in this case i ∈ A. Since x ∈ U F and i ∈ A, we have xi = gA(i),
condition (?) translates to x j gA(i) = x j for i ∈ A and j ∈ B with i <F j . This
condition is closed since U is right topological. Finally note that H is nonempty
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since g′B is its element. By Ellis’ Lemma [16, Lemma 2.1], H contains an
idempotent. Let gB ∈ H be such an idempotent. It has all the required properties.

The above procedure describes the passage from gA to gB if all immediate
predecessors of elements of B are in A.

We now define g∅ : F → E(U ) that fulfills (i), (iii), and (?) for A = ∅, with the
last condition holding vacuously. Note that f has all the properties required of g∅
except its values may not be in E(U ). To remedy this shortcoming, consider again
the compact right topological semigroup U F with coordinatewise multiplication
and the product topology. Define H ⊆ U F to consist of all x ∈ U F such that the
function F 3 i → xi ∈ U fulfills (i) and (iii) (and, vacuously, (?) for i, j ∈ ∅).
Then H is nonempty since f ∈ H . As above, we check that H is a compact
subsemigroup of U F . Let g∅ be an idempotent in H . Clearly, g∅ has the required
properties.

Starting with g∅ and recursively using the procedure of going from gA to gB

described above, we produce gF : F → E(U ) fulfilling (i), (iii) and (?) for all
i, j ∈ F .

Now define, for j ∈ F ,

g( j) = gF( j1) · · · gF( jl), (2.6)

where j1 <F · · · <F jl = j list all elements of the set {i ∈ F : i 6F j}. This g
is as required by the conclusion of the lemma. Keeping in mind that all values of
gF are idempotents, we see that point (i) for g holds by the calculation as in (2.4).
Point (iii) for g is clear since it holds for gF , jl = j in formula (2.6), and I (U ) is
a two-sided, so left, ideal. To see point (ii) for g, we use an argument similar to
one applied earlier in the proof. To do this, fix i 6F j in F , and let

i1 <F · · · <F ik = i and j1 <F · · · <F jl = j

list elements of F that are 6F i and 6F j , respectively. Note that i1 = j1, . . . ,

ik = jk . Using (?) for gF and idempotency of gF(ik) = gF( jk), we see that

g(i)g( j) = gF(i1) · · · gF(ik)gF( j1) · · · gF( jl)
= gF(i1) · · · gF(ik)gF( jk) · · · gF( jl) = g( j),

while using only (?) for gF if i <F j and (?) and idempotency of gF( j) if i = j ,
we get

g( j)g(i) = gF( j1) · · · gF( jl)gF(i1) · · · gF(ik)

= gF( j1) · · · gF( jl) = g( j).

Thus, point (ii) is verified for g. Note that point (ii) implies that values of g
are idempotent, that is, they are elements of E(U ). Therefore, we checked that
g : F → E(U ) and (i)–(iii) hold for g.
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LEMMA 2.6. Assume that ab = b, for all a, b ∈ M with b 6= 1M . Then there
exists minimal u1 ∈ E(U ) such that

(i) u1 ∈ I (U )

(ii) a(u1) = b(u1), for all a, b ∈ M with a 6= 1M 6= b.

Proof. Observe that, for a, b ∈ M \ {1M}, since ba = a, we have

a(U ) = ba(U ) = b(a(U )) ⊆ b(U ).

By symmetry, we see that a(U ) = b(U ). Let T be the common value of the
images of U under the elements of M\{1M}. Clearly T is a compact subsemigroup
of U . Note that

a(u) = u, for u ∈ T, a ∈ M. (2.7)

Let
u0 ∈ T

be a minimal with respect to 6T idempotent.
Let u1 ∈ U be a minimal idempotent in U with u1 6U u0. Since u1 is minimal,

we have
u1 ∈ I (U ). (2.8)

We show that
a(u1) = u0, for all a ∈ M \ {1M}. (2.9)

Indeed, since u1 6U u0 and u0 ∈ T , by (2.7), we get

a(u1) 6
U a(u0) = u0.

Thus, a(u1) 6T u0 and a(u1) ∈ T . Since u0 is minimal in T , we get a(u1) = u0.
Equations (2.8) and (2.9) show that u1 is as required.

Proof of Theorem 2.4. Let

B = {b ∈ M : ab = b for all a ∈ M}.

Note that M ′ = {1M}∪ B is a monoid fulfilling the assumption of Lemma 2.6. Let
u1 ∈ U be an element as in the conclusion of Lemma 2.6.

Define a function h : M → U by h(a) = a(u1). Note that h is M-equivariant
if M is taken with left multiplication action. Observe the following two
implications:

(a) if a1 ∈ M \ B, a2 ∈ M , and a1 M = a2 M , then a1 = a2;

(b) if a ∈ M and b ∈ B, then bM ⊆ aM .
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Point (a) follows from M being almost R-trivial. Point (b) is a consequence of
b = ab ∈ aM . Let ρ : M→ X(M) be the equivariant surjection ρ(a)= aM . Note
that by (a) and (b), ρ is injective on M \ B, all points in B are mapped to a single
point of X(M) that is the smallest point of this partial order, and no point of M \B
is mapped to this smallest point. It now follows from the properties of u1 listed
in Lemma 2.6 that h factors through ρ giving a function h′ : X(M) → U with
h′ ◦ ρ = h. Since ρ and h are M-equivariant, so is h′. Let π : Y(M) → X(M)
be the M-equivariant function given by Lemma 2.2(ii). Then f : Y(M) → U ,
defined by f = h′ ◦ π , is M-equivariant. Furthermore, since u1 ∈ I (U ) gives
h(1M) ∈ I (U ), and hence h′(1M M) ∈ I (U ), we see that the maximal elements of
Y(M) are mapped by f to I (U ). Note that if X(M) has at most two elements, then
we can let g = f . Then h′(1M M) is an idempotent minimal with respect to 6U ,
and g maps all maximal elements of Y(M) to h′(1M M). Without any restrictions
on the size of X(M), Lemma 2.5 can be applied to f giving a function g as
required by points (i)–(iii).

2.5. Semigroups from partial orders and a restatement of the theorem.
For a partial order P , let

〈P〉

be the semigroup, whose binary operation is denoted by ∨, generated freely by
elements of P modulo the relations

p ∨ q = q ∨ p = q, for p, q ∈ P with p 6P q. (2.10)

That is, each element of 〈P〉 can be uniquely written as p0 ∨ · · · ∨ pn for some
n ∈ N and with pi and pi+1 being incomparable with respect to 6P , for all 0 6
i < n. Note that if P is linear, then 〈P〉 = P .

Observe that if M is a monoid and P is an M-partial order, then the action of
M on P naturally induces an action of M on 〈P〉 by endomorphisms, namely, for
a ∈ M and p0 ∨ · · · ∨ pn ∈ 〈P〉 with p0, . . . , pn ∈ P , we let

a(p0 ∨ · · · ∨ pn) = a(p0) ∨ · · · ∨ a(pn). (2.11)

It is easy to see that the right-hand side of the above equality is well defined and
that formula (2.11) defines an endomorphism of 〈P〉 and, in fact, an action of M
on 〈P〉.

A moment of thought convinces one that the function from Theorem 2.4
extends to a homomorphism from 〈Y(M)〉 to U—condition (ii) of Theorem 2.4
and the fact that the function in that theorem takes values in E(U ) are responsible
for this. Therefore, we get the following corollary, which we state with the
conventions of Section 2.4.
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COROLLARY 2.7. Assume M is almost R-trivial. There exists an M-equivariant
homomorphism of semigroups g : 〈Y(M)〉 → U that maps maximal elements of
Y(M) to I (U ). Additionally, if X(M) has at most two elements, then g maps
maximal elements of Y(M) to minimal idempotents in U.

3. Infinitary Ramsey theorems

The goal of this section is Ramsey theoretic. We introduce structures, we call
function arrays, that generalize the partial semigroup setting of [2]. One important
feature of these structures is their closure under naturally defined tensor product.
For function arrays, we introduce the notion of basic sequence. Basic sequences
appear in Ramsey statements whose aim is to control the behavior of a coloring on
them. We introduce a new general notion of such control, which is akin to finding
upper bounds on Ramsey degrees, but whose nature is algebraic. (For a definition
and applications of Ramsey degrees, see, for example, [7].) The main result then
is Theorem 3.1, which gives control over a coloring on a basic sequence from the
existence of an appropriate homomorphism. Thus, proving Ramsey statements
is reduced to finding homomorphisms. Furthermore, as mentioned above, we
introduce a natural notion of tensor product for function arrays that allows us to
propagate the existence of homomorphisms and, therefore, to propagate Ramsey
statements.

3.1. Function arrays and total function arrays. Here we recall the notion of
partial semigroup and, more importantly, we introduce our main Ramsey theoretic
structures: function arrays, total function arrays and homomorphisms between
them.

As in [2] and [16], a partial semigroup is a set S with a function (operation)
from a subset of S × S to S such that for all r, s, t ∈ S if one of the two
products (rs)t , r(st) is defined, then so is the other and (rs)t = r(st). Note that
a semigroup is a partial semigroup whose binary operation is total.

Now, let Λ be a nonempty set. Let S be a partial semigroup and let X be a set.
By a function array over S indexed by Λ and based on X we understand an
assignment to each λ ∈ Λ of a partial function, which we also call λ, from X to S
with the property that for all s0, . . . , sk ∈ S there exists x ∈ X such that, for each
λ ∈ Λ,

s0λ(x), . . . , skλ(x) are all defined. (3.1)

So the domain of each λ ∈ Λ is a subset, possibly proper, of X ; condition (3.1)
means, in particular, that x is in the domain of each λ ∈ Λ. We call a function
array as above total if S is a semigroup and the domain each λ ∈ Λ is equal to X .
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We call a function array point based if X consist of one point, which we usually
denote by •; so X = {•} in this case. Note that, by condition (3.1), the domain of
each λ is equal to {•}. A point based function array can be, therefore, identified
with a function Λ→ S given by

Λ 3 λ→ λ(•) ∈ S.

Moreover, if S is a semigroup, then a point based function array is automatically
total.

We give now some constructions that will be used in Section 4. Let S be a
partial semigroup. As usual, a function h : S → S is an endomorphism if for all
s1, s2 ∈ S with s1s2 defined, h(s1)h(s2) is defined and h(s1s2) = h(s1)h(s2). Let M
be a monoid. An action of M on S is called an endomorphism action of M on S
if, for each a ∈ M , the function s→ a(s) is an endomorphism of S and, for all s1,

. . . , sn ∈ S and each a ∈ M , there is t ∈ S such that s1a(t), . . . , sna(t) are defined.
Obviously, we will identify such an action with the function α : M× S→ S given
by α(a, s) = a(s).

An endomorphism action α of a monoid M on a semigroup S gives rise to two
types of function arrays, both of which are over S and indexed by M but are based
on different sets. The first of these function arrays is based on S and is defined as
follows. Let

S(α) (3.2)

be the function array over S indexed by M and based on S that is obtained by
interpreting each a ∈ M as the function from S to S given by the action, that is,

S 3 s → α(a, s) ∈ S.

The second function array arising from α is point based and needs a
specification of an element of S. So fix s ∈ S. Let

S(α)s (3.3)

be the point based function array over S indexed by M obtained by interpreting
each a ∈ M as the function on {•} given by

a(•) = α(a, s).

Function arrays used in this paper will be of the above form or will be obtained
from such by the tensor product operation defined in Section 3.5.

3.2. Basic sequences and tame colorings. Assume we have function arrays S
and A both indexed by Λ, but with S being over a partial semigroup S and based
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on X , while A being over a semigroup A and point based. To make notation
clearer, we use ∨ for the binary operation on A. We write

Λ(•) = {λ(•) : λ ∈ Λ} ⊆ A.

A sequence (xn) of elements of X is called basic in S if for all n0 < · · · < nl

and λ0, . . . , λl ∈ Λ the product

λ0(xn0)λ1(xn1) · · · λl(xnl ) (3.4)

is defined in S.
We say that a coloring of S is A-tame on (xn), where (xn) is a basic sequence

in S , if the color of the elements of the form (3.4) with the additional condition

λk(•) ∨ · · · ∨ λl(•) ∈ Λ(•), for each k 6 l, (3.5)

depends only on the element

λ0(•) ∨ · · · ∨ λl(•) ∈ A.

So, subject to condition (3.5), the color of the product (3.4) is entirely controlled
by λ0(•) ∨ · · · ∨ λl(•), which, in general, contains much less information than
(3.4).

3.3. Total function arrays from function arrays. There is a canonical way
of associating a total function array to each function array, which generalizes the
operation γ S of compactification of a directed partial semigroup S from [2]. The
definition of γ S, the semigroup structure and compact topology on it should be
recalled here, for example, from [16, p.31]; in particular, we use the symbol ∗ to
denote the semigroup operation on γ S, that is, the product of ultrafilters.

Let S be a function array over a partial semigroup S, indexed by Λ and based
on X . Note that (3.1) implies that S is directed as defined in [16, p.30]. It follows
that γ S is defined. Let γ X be the set of all ultrafilters U on X such that for each
s ∈ S and λ ∈ Λ

{x ∈ X : sλ(x) is defined} ∈ U .
It is clear from condition (3.1) that γ X is nonempty. It is also easy to verify that
γ X is compact with the usual Čech–Stone topology on ultrafilters. Each λ extends
to a function, again called λ, from γ X to γ S by the usual formula, for U ∈ γ X ,

A ∈ λ(U) iff λ−1(A) ∈ U .
It is easy to see that the image of each λ is, indeed, included in γ S and each
function λ : γ X → γ S is continuous. Since γ S is a semigroup, we get a total
function array over γ S, indexed by Λ and based on γ X . We denote this total
function array by γS . The topologies on γ S and γ X will play a role later on.
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3.4. The Ramsey theorem. The following natural notion of homomorphism
will be crucial in stating Theorem 3.1. Assume we have total function arrays A
and B both indexed by Λ, with A being over A and based on X and B being over
B and based on Y . A homomorphism from A to B is a pair of functions ( f, g)
such that f : X → Y , g : A→ B, g is a homomorphism of semigroups, and, for
each x ∈ X and λ ∈ Λ, we have

λ( f (x)) = g(λ(x)).

The following theorem is the main result of Section 3. The bottom line of it
is that a homomorphism from a point based function array A gives rise to basic
sequences on which colorings are A-tame.

THEOREM 3.1. Let A and S be function arrays both indexed by a finite set Λ,
with A being point based and over a semigroup and S being over a partial
semigroup S. Let ( f, g) : A→ γS be a homomorphism. Then for each D ∈ f (•)
and each finite coloring of S, there exists a basic sequence (xn) of elements of D
on which the coloring is A-tame.

Proof. Consistently with our conventions, ∨ denotes the semigroup operation in
the semigroup over which A is defined. Let S be based on a set X .

Set U = f (•). Observe that if λ(•) = λ′(•), then λ(U) = λ′(U) since

λ( f (•)) = g(λ(•)) = g(λ′(•)) = λ′( f (•)).

This observation allows us to define for σ ∈ Λ(•),

σ(U) = λ(U)

for some, or, equivalently, each, λ ∈ Λ with λ(•) = σ . Observe further that for
σ ∈ Λ(•) we have

g(σ ) = σ(U). (3.6)

Indeed, fix λ ∈ Λ with σ = λ(•). Then we have

σ(U) = λ( f (•)) = g(λ(•)) = g(σ ).

For P ⊆ X and σ ∈ Λ(•), set

σ(P) =
⋂
{λ(P) : λ(•) = σ }.

Note that if P ∈ U and λ ∈ Λ, then λ(P) ∈ λ(U) since P ⊆ λ−1(λ(P)). So, for λ
with λ(•) = σ , we have λ(P) ∈ σ(U), and, therefore, by finiteness of Λ, we get
σ(P) ∈ σ(U).
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Consider a finite coloring of S. Let P ∈ U be such that the coloring is constant
on σ(P) for each σ ∈ Λ(•), using the obvious observation that σ(P) ⊆ σ(P ′) if
P ⊆ P ′.

Now, we produce xn ∈ X and Pn ⊆ X so that

(i) xn ∈ D, Pn ⊆ P;

(ii) λ1(xm1)λ2(u) ∈
(
λ1(•) ∨ λ2(•)

)
(Pm1), for all m1 < n, all u ∈ Pn , and all

λ1, λ2 ∈ Λ with λ1(•) ∨ λ2(•) ∈ Λ(•);

(iii) the set of u fulfilling the following condition belongs to U : λ1(xm)λ2(u) ∈(
λ1(•) ∨ λ2(•)

)
(Pm), for all m 6 n and all λ1, λ2 ∈ Λ with λ1(•) ∨ λ2(•) ∈

Λ(•);

(iv) λ(xm) ∈ λ(•)(Pm), for all m 6 n and all λ ∈ Λ.

Note that in points (ii) and (iii) above the condition λ1(•)∨ λ2(•) ∈ Λ(•) ensures
that

(
λ1(•) ∨ λ2(•)

)
(Pm1) and

(
λ1(•) ∨ λ2(•)

)
(Pm) are defined.

Assume we have xm, Pm for m < n as above. We produce xn and Pn so that
points (i)–(iv) above hold. Define Pn by letting

Pn = P ∩
⋂
m<n

Cm,

where Cm consists of those u ∈ X for which, for all λ1, λ2 ∈ Λ,

if λ1(•) ∨ λ2(•) ∈ Λ(•), then λ1(xm)λ2(u) ∈
(
λ1(•) ∨ λ2(•)

)
(Pm).

For n = 0, by convention, we set
⋂

m<n Cm = S. Observe that (ii) holds for n. Our
inductive assumption (iii) implies that Cm ∈ U . Thus, the definition of Pn gives
that P0 = P ∈ U and, for n > 0, Pn ∈ U .

Using (3.6) in the last equality, we have that, for all λ1, λ2 ∈ Λ with λ1(•) ∨

λ2(•) ∈ Λ(•),

λ1(U) ∗ λ2(U) = λ1( f (•)) ∗ λ2( f (•)) = g(λ1(•)) ∗ g(λ2(•))

= g(λ1(•) ∨ λ2(•)) =
(
λ1(•) ∨ λ2(•)

)
(U). (3.7)

Separately, we note that Pn ∈ U and therefore, for λ1, λ2 ∈ Λwith λ1(•)∨λ2(•) ∈

Λ(•), (
λ1(•) ∨ λ2(•)

)
(Pn) ∈

(
λ1(•) ∨ λ2(•)

)
(U) and

λ1(•)(Pn) ∈ λ1(•)(U) = λ1(U).
(3.8)

It follows from (3.7) and (3.8) that we can pick xn for which (iii) and (iv) hold.
Since D ∈ U , we can also arrange that xn ∈ D. So (i) is also taken care of.
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Now, it suffices to show that the sequence (xn) constructed above is as needed.
The entries of (xn) come from D by (i). By induction on l, we show that for all
m0 < m1 < · · · < ml and all λ0, λ1, . . . , λl ∈ Λ, we have

λ0(xm0)λ1(xm1)λ2(xm2) · · · λl(xml ) ∈
(
λ0(•) ∨ λ1(•) · · · ∨ λl(•)

)
(Pm0), (3.9)

provided that λk(•) ∨ · · · ∨ λl(•) ∈ Λ(•) for all k 6 l. This claim will establish
the theorem since Pm0 ⊆ P by (i).

The case l = 0 of (3.9) is (iv). We check the inductive step for (3.9) using point
(ii). Let l > 0. Fix m0 < m1 < · · · < ml and λ0, λ1, . . . , λl ∈ Λ. By our inductive
assumption, we have

λ1(xm1)λ2(xm2) · · · λl(xml ) ∈
(
λ1(•) ∨ · · · ∨ λl(•)

)
(Pm1). (3.10)

Let λ ∈ Λ be such that

λ(•) = λ1(•) ∨ · · · ∨ λl(•). (3.11)

Since (
λ1(•) ∨ · · · ∨ λl(•)

)
(Pm1) ⊆ λ(Pm1),

by (3.10), there exists y ∈ Pm1 such that

λ(y) = λ1(xm1)λ2(xm2) · · · λl(xml ). (3.12)

Since m0 < m1 and since y ∈ Pm1 , from (ii) with n = m1, we get

λ0(xm0)λ(y) ∈
(
λ0(•) ∨ λ(•)

)
(Pm0). (3.13)

Note that (ii) can be applied here as λ0(•) ∨ λ(•) ∈ Λ(•) as

λ0(•) ∨ λ(•) = λ0(•) ∨ λ1(•) ∨ · · · ∨ λl(•).

Now (3.9) follows from (3.13) together with (3.11) and (3.12).

In the proof above, at stage n, xn is chosen arbitrarily from sets belonging to
f (•). It follows that if f (•) is assumed to be nonprincipal, then the sequence (xn)

can be chosen to be injective.

3.5. Tensor product of function arrays. We introduce and apply a natural
notion of tensor product for function arrays.

Let Λ0, Λ1 be finite sets. Let

Λ0 ? Λ1 = Λ0 ∪Λ1 ∪ (Λ0 ×Λ1),
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where the union is taken to be disjoint. Fix a partial semigroup S. Let Si , i = 0, 1,
be function arrays over S indexed by Λi and based on X i , respectively. Define

S0 ⊗ S1

to be the function array over S indexed byΛ0 ?Λ1 and based on X0× X1 defined
as follows. With λ0 ∈ Λ0, λ1 ∈ Λ1, and (λ0, λ1) ∈ Λ0 ×Λ1, we associate partial
functions from X0 × X1 to S by letting

λ0(x0, x1) = λ0(x0), λ1(x0, x1) = λ1(x1), (λ0, λ1)(x0, x1) = λ0(x0)λ1(x1),

where the product on the right-hand side of the last equality is computed in S and
the left-hand side is declared to be defined whenever this product exists. To check
that the object S0 ⊗ S1 defined above is indeed a function array one needs to see
condition (3.1). To see this fix s0, . . . , sm ∈ S. Pick x0 ∈ X0 with siλ(x0) defined
for all i 6 m and λ ∈ Λ0. Now pick x1 ∈ X1 with siλ

′(x1) and (siλ(x0))λ
′(x1) are

defined for all i 6 m, λ ∈ Λ0 and λ′ ∈ Λ1. Then clearly si Eλ(x0, x1) are defined
for all i 6 m and Eλ ∈ Λ0 ? Λ1, as required.

It is clear that the operation of tensor product is associative; if each Si , i < n,
is a function array over S indexed by Λi , then

⊗
i<n Si is a function array over S

indexed by Λ0 ? · · · ? Λn−1, which consists of all sequences (λ0, . . . , λm), where
λi ∈ Λ ji for some j0 < · · · < jm < n. Note that if each Si is point based, then so
is the tensor product.

PROPOSITION 3.2. Let S be a partial semigroup. Let Si , i = 0, 1, be function
arrays over S based on Λi , respectively. Then there is a homomorphism

γS0 ⊗ γS1 → γ (S0 ⊗ S1).

Proof. Let S0 be based on X0 and S1 on X1. Then γS0⊗ γS1 is based on γ X0 ×

γ X1, while γ (S0⊗S1) on γ (X0× X1). Consider the natural map γ X0× γ X1→

γ (X0 × X1) given by
(U ,V)→ U × V,

where, for C ⊆ X0 × X1,

C ∈ U × V ⇐⇒ {x0 ∈ X0 : {x1 ∈ X1 : (x0, x1) ∈ C} ∈ V} ∈ U .

Then
( f, idγ S) : γS0 ⊗ γS1 → γ (S0 ⊗ S1),

where f (U ,V) = U × V , is the desired homomorphism.
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PROPOSITION 3.3. Fix semigroups A and B. For i = 0, 1, let Ai and Bi be total
function arrays over A and B, respectively, indexed by Λi . Let ( fi , g) : Ai → Bi

be homomorphisms. Then

( f0 × f1, g) : A0 ⊗A1 → B0 ⊗ B1

is a homomorphism.

Proof. Let Ai be based on a set X i for i = 0, 1. For (x0, x1) ∈ X0 × X1 and
Eλ ∈ Λ0 ∗Λ1 = Λ0 ∪Λ1 ∪ (Λ0 ×Λ1), we need to check

g(Eλ(x0, x1)) = Eλ
(
( f0 × f1)(x0, x1)

)
.

We do it only for Eλ ∈ Λ0 ×Λ1, the case Eλ ∈ Λ0 ∪Λ1 being essentially identical.
So for Eλ ∈ Λ0 ×Λ1, we have

g(Eλ(x0, x1)) = g(λ0(x0)λ1(x1)) = g(λ0(x0))g(λ1(x1))

= λ0( f0(x0))λ1( f1(x1)) = Eλ
(
( f0 × f1)(x0, x1)

)
,

where the second equality holds since g is a homomorphism of semigroups and
the third equality holds since each ( fi , g) is a homomorphism from Ai to Bi .

3.6. Propagation of homomorphisms. The first application of tensor product
has to do with relaxing condition (3.5). This is done in condition (3.14).

Let A be a point based function array over a semigroup A and indexed by Λ.
As before, we denote by ∨ the binary operation on A. Let F be a subset of A, let
S be a function array over a partial semigroup S indexed by Λ, and let (xn) be a
basic sequence in S . A coloring of S is said to be F-A-tame on (xn) if the color
of elements of the form (3.4) with the additional condition

λk(•) ∨ · · · ∨ λl(•) ∈ F, for each k 6 l, (3.14)

depends only on the element λ0(•)∨· · ·∨λl(•) of A. The notion of F-A-tameness
becomes A-tameness if F = Λ(•). In applications, it will be desirable to take F
strictly larger than Λ(•) thus making F-A-tameness strictly stronger.

The following corollary is a strengthening of Theorem 3.1, but it follows from
that theorem via the tensor product construction.

COROLLARY 3.4. Let A and S be function arrays both indexed by a finite set
Λ, with A being point based and over a semigroup A and S being over a partial
semigroup S. Let ( f, g) : A→ γS be a homomorphism. Then for each D ∈ f (•),
each finite coloring of S, and each finite set F ⊆ A, there exists a basic sequence
(xn) of elements of D on which the coloring is F-A-tame.
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Proof. For a natural number r > 0, by Λ<r we denote the set of all sequences
Eλ = (λ0, . . . , λm) of elements ofΛ with m < r . We associate with each such Eλ an
element Eλ(•) of A by letting

Eλ(•) = λ0(•) ∨ · · · ∨ λm(•).

Since F is finite, there exists r such that

F ∩
{
Eλ(•) : Eλ ∈

⋃
r ′>1

Λ<r ′

}
⊆ {Eλ(•) : Eλ ∈ Λ<r }.

Thus, fixing this r , it suffices to show the corollary for F = {Eλ(•) : Eλ ∈ Λ<r }. We
consider the function arrays A⊗r and (γS)⊗r indexed by Λ∗r . Note that A⊗r is
based on a set consisting of only the r -tuple (•, . . . , •) and that

Λ∗r (•, . . . , •) = {Eλ(•) : Eλ ∈ Λ<r }.

Further, by Proposition 3.3, there exists a homomorphism from A⊗r to (γS)⊗r ,
which is equal to ( f r , g), where f r stands for the r -fold product f ×· · ·× f . Note
also that D × X r−1

∈ f r (•). Since, by Proposition 3.2, there is a homomorphism
from (γS)⊗r to γ (S⊗r ), we are done by Theorem 3.1 by composing the two
homomorphisms.

We have one more corollary of Theorem 3.1 and the tensor product construction.
It concerns double sequences. Let S be a function array over S indexed by Λ and
based on X . A double sequence (xn, yn) of elements of X will be called basic if
the single sequence

x0, y0, x1, y1, x2, y2, . . .

is basic. Having a basic sequence (xn, yn), we will be interested in controlling the
color on elements of the form

λ0(xm0)λ
′

0(yn0)λ1(xm1)λ
′

1(yn1)λ2(xm2)λ
′

2(yn2) · · · λl(xml )λ
′

l(ynl )

and
λ0(xm0)λ

′

0(yn0)λ1(xm1)λ
′

1(yn1)λ2(xm2)λ
′

2(yn2) · · · λl(xml )

(3.15)

for m0 6 n0 < m1 6 n1 < · · · < ml 6 nl and λ0, λ
′

0, . . . , λl, λ
′

l ∈ Λ.
Let A be a point based total function array over a semigroup A indexed by Λ.

For λ, λ′ ∈Λ, we say that λ and λ′ are conjugate if λ(•) = λ′(•). For a set F ⊆ A,
we say that a coloring of S is conjugate F-A-tame on (xn, yn) if the color of the
elements of the form (3.15) such that for each k 6 l

λk and λ′k are conjugate and λk(•) ∨ · · · ∨ λl(•) ∈ F

depends only on
λ0(•) ∨ · · · ∨ λl(•) ∈ A.
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COROLLARY 3.5. Let A and S be function arrays both indexed by a finite set
Λ, with A being point based and over a semigroup A and S being based on X
and over a partial semigroup S. Let ( f, g) : A → γS be a homomorphism. Let
v ∈ γ X be such that for each λ ∈ Λ

λ( f (•))λ(v) = λ( f (•)). (3.16)

Then, for each finite subset F of A, D ∈ f (•) and E ∈ v and each finite coloring
of S, there exists a basic sequence (xn, yn), with xn ∈ D and yn ∈ E, on which the
coloring is conjugate F-A-tame.

Proof. Let A be based on {•}. Let

Λ′ = Λ ∪ {(λ0, λ1) ∈ Λ×Λ : λ0(•) = λ1(•)}.

Fix a point •′. Let A′ be the point based function array over A and indexed by Λ′

that is based on the point (•, •′) and such that for λ, (λ0, λ1) ∈ Λ
′

λ(•, •′) = λ(•) and (λ0, λ1)(•, •
′) = λ0(•).

The index set of γ (S ⊗ S) and γS ⊗ γS is Λ ∗ Λ = Λ0 ∪ Λ1 ∪ (Λ0 × Λ1),
where Λ0 = Λ1 = Λ and the union is disjoint. We view Λ′ as included in Λ ∗Λ
with the copy of Λ in Λ′ identified with Λ0 in Λ ∗Λ. This inclusion allows us to
consider γ (S ⊗ S) and γS ⊗ γS with the index set restricted to Λ′, which we
do below. Clearly, any homomorphism γS ⊗ γS → γ (S ⊗ S), when the two
function arrays are indexed by Λ ∗ Λ, is also a homomorphism when they are
indexed by Λ′.

Now, to obtain the conclusion of the corollary, by Corollary 3.4, it suffices to
produce a homomorphism A′ → γ (S ⊗ S) such that D × E is in the image of
(•, •′). Let f ′ : {•′} → γ X be given by f ′(•′) = v. Since, by Proposition 3.2,
there is a homomorphism

(ρ, π) : γS ⊗ γS → γ (S ⊗ S)

and (D, E) ∈ ρ ◦ ( f × f ′)(•, •′), it suffices to show that

( f × f ′, g) : A′→ γS ⊗ γS

is a homomorphism. This amounts to showing that if λ, λ0, λ1 ∈ Λ and λ0(•) =

λ1(•), then we have the following two equalities

λ(( f × f ′)(•, •′)) = g(λ(•, •′)),
(λ0, λ1)(( f × f ′)(•, •′)) = g((λ0, λ1)(•, •

′)).
(3.17)
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We verify only the second equality, the first one being easier. To start, we note
that

λ0( f (•)) = g(λ0(•)) = g(λ1(•)) = λ1( f (•)).

Using this equality and (3.16), we check the second equality in (3.17) by a direct
computation as follows

(λ0, λ1)(( f × f ′)(•, •′)) = (λ0, λ1)( f (•), f ′(•′)) = (λ0, λ1)( f (•), v)
= λ0( f (•))λ1(v) = λ1( f (•))λ1(v)

= λ1( f (•)) = λ0( f (•)) = g(λ0(•))

= g((λ0, λ1)(•, •
′)).

4. Monoid actions and infinitary Ramsey theorems

In this section, M will be a finite monoid.
We connect here the dynamical result of Section 2 with the algebraic/Ramsey

theoretic result of Section 3. This connection is made possible by Corollary 4.1,
which translates Theorem 2.4 (via Corollary 2.7) into a statement about the
existence of a homomorphism needed for applications of Theorem 3.1. Ramsey
theoretic consequences of Corollary 4.1 are investigated later in the section, in
particular, a general Ramsey theoretic result, Corollary 4.3, is derived from it. We
also introduce the notion of Ramsey monoid and give a characterization of those
among almost R-trivial monoids. We use this characterization to determine which
among the monoids In from Section 2.3 are Ramsey. This result implies an answer
to Lupini’s question [10] on possible extensions of Gowers’ theorem. We derive
some concrete Ramsey results from our general considerations. For example, we
obtain the Furstenberg–Katznelson Ramsey theorem for located words.

4.1. Connecting Theorems 2.4 and 3.1. In order to apply Theorem 3.1,
through Corollaries 3.4 and 3.5, one needs to produce appropriate
homomorphisms between function arrays. We show how Theorem 2.4, through
Corollary 2.7, gives rise to exactly such homomorphisms. This is done in
Corollary 4.1. All the Ramsey theorems are results of combining Corollaries 3.4
and 3.5 with Corollary 4.1.

Let S be a partial semigroup. For A ⊆ S, we say that S is A-directed if for all
x1, . . . , xn ∈ S there exists x ∈ A such that x1x, . . . , xn x are all defined. So S is
directed as defined in [16] if it is S-directed. We say that I ⊆ S is a two-sided
ideal in S if it is nonempty and, for x, y ∈ S for which xy is defined, xy ∈ I if
x ∈ I or y ∈ I .
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Recall the definitions of the function arrays from (3.2) and (3.3) in Section 3.1.
Recall also from (2.11) the endomorphism action of M on the semigroup 〈Y(M)〉
generated by Y(M) as in Section 2.5. Denoting this natural action by β and taking
y0 ∈ Y(M), we form the point based total function array 〈Y(M)〉(β)y0 . For the
sake of simplicity, we denote it by

〈Y(M)〉y0 .

The following corollary will be seen to be a consequence of Corollary 2.7.

COROLLARY 4.1. Assume M is almost R-trivial. Let y ∈ Y(M) be a maximal
element, and let α be an endomorphism action of M on a partial semigroup S.
Let I ⊆ S be a two-sided ideal such that S is I -directed.

(i) There exists a homomorphism ( f, g) : 〈Y(M)〉y → γ (S(α)) with

I ∈ f (•).

(ii) Assume that M is the monoid J (∅, B) for a finite set B as defined in
Section 2.3. If E ⊆ S is a right ideal such that S is E-directed, then
there exists a homomorphism ( f, g) : 〈Y(M)〉y→ γ (S(α)) and an ultrafilter
V ∈ γ (S) such that

I ∈ f (•)

and, additionally,

E ∈ V and f (•) ∗ V = f (•).

To prove Corollary 4.1, we will need the following lemma, whose proof is
standard.

LEMMA 4.2. Let S be a partial semigroup.

(i) Let I be a two-sided ideal in S such that S is I -directed. Then {U ∈ γ S : I ∈
U} is a compact two-sided ideal in γ S.

(ii) Let E be a right ideal in S such that S is I -directed. Then {U ∈ γ S : E ∈ U}
is a compact right ideal in γ S.

Proof. We give an argument only for (i); the argument for (ii) being similar.
For x ∈ S, let S/x = {y ∈ S : xy is defined}.
Let H = {U ∈ γ S : I ∈ U}. Then, by definition, H is clopen. It is nonempty

since, by I -directedness of S, the family {I }∪{S/x : x ∈ S} of subsets of S has the
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finite intersection property, so it is contained in an ultrafilter, which is necessarily
an element of H .

We check that I ∈ U ∗ V if I ∈ U or I ∈ V . Assume first that I ∈ U . For
x ∈ I , S/x ⊆ {y : xy ∈ I }, therefore, since S/x ∈ V , for each x ∈ I , we have
{y : xy ∈ I } ∈ V . So I ⊆ {x : {y : xy ∈ I } ∈ V}. Since I ∈ U , we get

{x : {y : xy ∈ I } ∈ V} ∈ U

which means I ∈ U ∗V . Assume now I ∈ V . For each x ∈ S, we have I ∩(S/x) ⊆
{y : xy ∈ I }. Therefore, since I, S/x ∈ V , we have {y : xy ∈ I } ∈ V for each
x ∈ S. So

{x : {y : xy ∈ I } ∈ V} = S ∈ U ,
which means I ∈ U ∗ V .

Proof of Corollary 4.1. (i) We denote by γ I the compact two-sided ideal {U ∈
γ S : I ∈ U} from Lemma 4.2.

Observe that the action α naturally induces an action of M by continuous
endomorphisms on γ S. We call this resulting action γα. By Corollary 2.7, there
exists a homomorphism g : 〈Y(M)〉 → γ S such that all maximal elements of
Y(M) are mapped to I (S). In particular, g(y) ∈ I (γ S). Since, by Lemma 4.2, γ I
is a compact two-sided ideal, we have I (γ S) ⊆ γ I . Thus, g(y) ∈ γ I , that is,

I ∈ g(y).

Note now that if we let f (•) = g(y), then ( f, g) : 〈Y(M)〉y → (γ S)(γ α) is a
homomorphism. A quick check of definitions gives (γ S)(γ α) = γ (S(α)). Thus,
( f, g) is as required.

(ii) We proceed constructing g and f as in point (i) above. So we have I ∈ f (•).
We note that X(M) consists of two points: the R-class of 1M and the R-class
consisting of all elements of B. Thus, by the last sentence of Corollary 2.7, f (•)
is a minimal idempotent in γ (S). Now consider J = {U ∈ γ S : E ∈ U}, which by
Lemma 4.2 is a compact right ideal in γ (S). By Proposition 2.3(iii), there exists
an idempotent V ∈ J with f (•)∗V = f (•). Since V ∈ J , we have E ∈ V , which
completes the proof.

4.2. Ramsey theorems from monoids. Given a sequence (Xn) of sets, let

〈(Xn)〉

consist of all finite sequences x1 · · · xk for k ∈ N, for which there exist m1 < · · · <

mk such that xi ∈ Xmi . We make this set into a partial semigroup by declaring the
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product (x1 · · · xk)(y1 · · · yl) of two such sequences defined if there exist m1 <

· · · < mk < n1 < · · · < nl such that xi ∈ Xmi and yi ∈ Xni and then letting the
product be equal to the concatenation x1 · · · xk y1 · · · yl of the two sequences. Two
special cases of this construction are usually considered.

(1) We fix a set X , and let Xn = X for each n. In this case, 〈(Xn)〉 is a
semigroup, not just a partial semigroup, of all words in X with concatenation
as the semigroup operation.

(2) We fix a set X , and let Xn = {n} × X for each n. In this case, 〈(Xn)〉 is
isomorphic to the partial semigroup of located words in X , that is, all partial
functions from N to X with finite domains, where two such functions f and g
have their product defined if all elements of the domain of f are smaller than all
elements of the domain of g, and the product is set to be the function whose graph
is the union of the graphs of f and g. The identification

〈(Xn)〉 3 (m1, x1) · · · (mk, xk)→ f

where the domain of f is {m1, . . . ,mk} and f (m i) = xi , establishes a canonical
isomorphism between 〈(Xn)〉 and the partial semigroup of located words.

Since making the assumptions as in (1) or (2) causes no simplification in our
arguments, we work with the general definition of 〈(Xn)〉 as above. We only
note that a Ramsey statement (like the ones given later in this paper) formulated
for located words as in (2) is stronger than the analogous statement formulated
for words as in (1). One derives the latter from the former by applying the
map associating with a located word f defined on a set {m1, . . . ,mk} the word
f (m1) · · · f (mk).

A pointed M-set is a set X equipped with an action of M and a distinguished
point x such that Mx = X . Let (Xn) be a sequence of pointed M-sets. The monoid
M acts on 〈(Xn)〉 in the natural manner:

a(x1 · · · xk) = a(x1) · · · a(xk), for a ∈ M and x1 · · · xk ∈ 〈(Xn)〉.

Note that since xi ∈ Xmi implies that a(xi) ∈ Xmi , the action above of each
element of M is defined on each element of 〈(Xn)〉. It is clear that this is an
endomorphism action.

A sequence (wi) of elements of 〈(Xn)〉 is called basic in 〈(Xn)〉 if for all i1 <

· · · < ik , the product wi1 · · ·wik is defined. We note that if each Xn is a pointed
M-set for a monoid M and the sequence (wi) is basic, then for i1 < · · · < ik

and a1, . . . , ak ∈ M the product a1(wi1) · · · ak(wik ) is defined. For this reason no
confusion will arise from using the word basic to describe certain sequences in
〈(Xn)〉 and certain sequences in base sets of function arrays over 〈(Xn)〉 as in
Section 3.2.
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We will register the following general result that follows from Corollary 3.4
and Corollary 4.1(i). This result allows us to control the color of words as in (4.1)
by their ‘type’ as in (4.2).

COROLLARY 4.3. Assume M is almost R-trivial. Let F be a finite subset of the
semigroup 〈Y(M)〉, whose operation is denoted by∨. Let y ∈ Y(M) be a maximal
element of the forest Y(M). Given pointed M-sets Xn , n ∈ N, for each finite
coloring of 〈(Xn)〉, there exists a basic sequence (wi) in 〈(Xn)〉 such that

(i) for each i , wi contains the distinguished point of some Xn and

(ii) for each i0 < · · · < ik and a0, . . . , ak ∈ M, the color of

a0(wi0) · · · ak(wik ) (4.1)

depends only on
a0(y) ∨ · · · ∨ ak(y) (4.2)

provided a0(y) ∨ · · · ∨ ak(y) ∈ F.

Proof. We regard S = 〈(Xn)〉 as a partial semigroup with concatenation as a
partial semigroup operation and with the natural action α of M . This leads to
the function array S(α). Let I be the subset of 〈(Xn)〉 consisting of all words that
contain a distinguished element of some Xn . It is clear that I is a two-sided ideal
and that 〈(Xn)〉 is I -directed. By Corollary 4.1(i), there exists a homomorphism
( f, g) : 〈Y(M)〉y → γ S(α) with I ∈ f (•).

It is evident from the definition of 〈Y(M)〉 that we can find a finite set F ′ ⊆
〈Y(M)〉 such that if z0, . . . , zl ∈ Y(M) and z0∨· · ·∨zl ∈ F , then zk∨· · ·∨zl ∈ F ′

for each 0 6 k 6 l. Now, from the existence of the homomorphism ( f, g), by
Corollary 3.4, we get the existence of a basic sequence (wi) in I such that, for
i0 < · · · < il and a0, . . . , al ∈ M , the color of a0(wi0) · · · al(wil ) depends only on
a0(•) ∨ · · · ∨ al(•) as long as ak(•) ∨ · · · ∨ al(•) ∈ F ′, for each 0 6 k 6 l. Since
this last condition is implied by a0(•)∨ · · ·∨al(•) ∈ F and since for each a ∈ M ,
a(•) = a(y), we are done.

We also have the following result analogous to Corollary 4.3 for the
monoid J (∅, B), as defined in Section 2.3, that follows from Corollary 3.4
and Corollary 4.1(ii).

COROLLARY 4.4. Consider the monoid J (∅, B) for a finite set B. Let Xn , n ∈ N
be pointed J (∅, B)-sets, and let E be a right ideal such that 〈(Xn)〉 is E-directed.
For each finite coloring of 〈(Xn)〉, there exist a basic double sequence (vi , v

′

i) in
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〈(Xn)〉, with x occurring in each vi and with v′i ∈ E for each i , such that the
coloring is fixed on sequences of the form

b0(vi0)b
′

0(v
′

j0)b1(vi1)b
′

1(v
′

j1) · · · bn(vin ) (4.3)

for b0, b′0, b1, b′1, . . . , bn ∈ B and i0 6 j0 < i1 6 j1 < · · · < in .

Proof. We start with analyzing X(M), Y(M), and 〈Y(M)〉. The partial order
X(M) consists of two elements: the R-class of 1M , which we again denote by 1M ,
and the common R-class of all b ∈ B, which we denote by b. Clearly b 6X(M) 1M .
Thus, Y(M) has a unique maximal element {b, 1M}, which we denote by y. Note
that for each b ∈ B

b(y) = {b}.

Two conclusions important to us follow from this equality. First, computing in
〈Y(M)〉, for b0, . . . , bn ∈ B, we get

b0(y) ∨ · · · ∨ bn(y) = {b}, (4.4)

that is, the product b0(y)∨ · · · ∨ bn(y) does not depend on b0, . . . , bn . Second, in
the point based function array 〈Y(M)〉y over M , for b0, b1 ∈ B, we have

b0(•) = b0(y) = b1(y) = b1(•), (4.5)

that is, all elements of B are conjugate to each other (with the notion of conjugate
as in Corollary 3.5).

Let I be the subset of 〈(Xn)〉 consisting of all words that contain a distinguished
element of some Xn . The set I is a two-sided ideal and that 〈(Xn)〉 is I -directed.
By Corollary 4.1(ii), there exist a homomorphism

( f, g) : 〈Y(M)〉y → γ (〈(Xn(B))〉(α))

and an ultrafilter V ∈ γ (〈(Xn(B))〉) such that

I ∈ f (•), E ∈ V and f (•) ∗ V = f (•).

Let F consist of one point {b} ∈ 〈Y(M)〉. So F is a finite subset of 〈Y(M)〉.
Given a finite coloring of 〈Y(M)〉, Corollary 3.5 and the existence of the
homomorphism ( f, g) above imply that there exists a basic sequence (vi , v

′

i) in
〈(Xn(B))〉with v′i ∈ E that is conjugate F-〈Y(M)〉-tame. In view of the definition
of F , (4.4), and (4.5) the coloring is fixed on sequences of the form (4.3).

Let (Xn) be a sequence of pointed M-sets for a finite monoid M . We say that
(Xn) has the Ramsey property if for each finite coloring of 〈(Xn)〉 there exists a
basic sequence (wi) in 〈(Xn)〉 such that
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— each wi contains the distinguished element of Xn as an entry;

— all words of the form
a0(wi0) · · · al(wil ),

where l ∈ N, ai ∈ M with at least one ai = 1M , are assigned the same color.

A monoid M is called Ramsey if each sequence of pointed M-sets has the
Ramsey property.

We deduce from Corollary 4.3 the following result characterizing Ramsey
monoids.

COROLLARY 4.5. (i) If M is almost R-trivial and the partial order X(M) is
linear, then M is Ramsey.

(ii) If X(M) is not linear, then the sequence of pointed M-sets Xn = X(M), with
the canonical action of M and with the R-class of 1M as the distinguished
point, does not have the Ramsey property.

Thus, if M is almost R-trivial, then M is Ramsey if and only if the partial order
X(M) is linear.

Proof. (i) Fix a sequence of pointed M-sets (Xn). We need to show that it has
the Ramsey property. One checks easily that linearity of X(M) implies that there
exists an order preserving M-equivariant embedding of X(M) to Y(M) mapping
the top element of X(M) to a maximal element of Y(M)—map the R-class of a
to the set of all predecessors of the class of a in X(M). We identify X(M) with
its image in Y(M). Note that, by linearity of X(M), X(M) = 〈X(M)〉, so X(M)
is a subsemigroup of 〈Y(M)〉. Let y0 be the top element of X(M), which is the
R-class of [1M ]. Since [a] ∨ [1M ] = [1M ] ∨ [a] = [1M ], for the R-class [a] of
each a ∈ M , it follows immediately from Corollary 4.3 that (Xn) has the Ramsey
property. Since (Xn) was arbitrary, we get the conclusion of (i).

(ii) Let Xn , n ∈ N, be the pointed M-sets described in the statement of (ii). Let
a, b ∈ M be two elements whose R-classes [a] and [b] are incomparable in X(M).
Then a 6∈ bM and b 6∈ aM , which implies that

[a] 6∈ bX(M) and [b] 6∈ aX(M). (4.6)

We color w ∈ 〈(Xn)〉 with color 0 if [a] occurs in w and its first occurrence
precedes all the occurrences of [b], if there are any. Otherwise, we color w with
color 1. Let (wi) be a basic sequence in 〈(Xn)〉 with the R-class [1M ] of 1M

occurring in eachwi . Then, in a(w0)w1, [a] occurs in a(w0) and, by (4.6), [b] does
not occur in a(w0). It follows that a(w0)w1 is assigned color 0. For similar reasons,
b(w0)w1 is assigned color 1. Thus, the Ramsey property fails for (Xn).

https://doi.org/10.1017/fms.2018.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.28


S. Solecki 32

Using the characterization from Corollary 4.5, a more concrete characterization
of Ramsey monoids among almost R-trivial monoids was recently given in [8]. It
turns out that almost R-trivial monoids are rarely Ramsey. Note, however, that,
by Corollary 4.3, one obtains Ramsey theorems even from non-Ramsey monoids;
see the Furstenberg–Katznelson theorem in Section 4.3.

4.3. Some concrete applications. We will present detailed arguments for
showing that

(1) the Furstenberg–Katznelson theorem for located words and

(2) the Hales–Jewett theorem for located left-variable words

follow from combining Corollaries 3.4 and 3.5 with Corollary 4.1, in case of (1)
through Corollary 4.3. We also indicate how (3) Gowers’ theorem and (4) Lupini’s
theorem are special cases of Corollary 4.3. We provide more details in the cases
(1) and (2) since (1) appears to be new and the derivation of (2) appears to be the
most subtle one involving an application of Corollary 3.5. We emphasize however
that all these derivations essentially amount to translations and specifications of
our general results.

1. Furstenberg–Katznelson’s theorem for located words. We state here the
Furstenberg–Katznelson theorem for located words. The original version from
[3] is stated in terms of words and, as explained in the beginning of Section 4.2,
is implied by our statement. We refer the reader to [3] for the original version.
What follows in this point is, in essence, a translation of a particular case of
Corollary 4.3 to the language used to state the Furstenberg–Katznelson theorem.

We fix an element x , called a variable. For a set C with x 6∈ C , let

Xn(C) = {n} × (C ∪ {x}). (4.7)

Fix now two finite disjoint sets A, B with x 6∈ A ∪ B. If w ∈ 〈(Xn(A ∪ B))〉, x
occurs in w, and c ∈ A ∪ B ∪ {x}, then

w[c] (4.8)

is an element of 〈Xn(A ∪ B)〉 obtained from w by replacing each occurrence of x
by c.

A reduced string in A is a sequence a0 · · · ak , possibly empty, such that ai 6=

ai+1 for all i < k. With a sequence c0 · · · ck with entries in A ∪ B, we associate
a reduced string c0 · · · ck in A as follows. We delete all entries coming from B
thereby forming a sequence c′0 · · · c

′

k′ for some k ′ 6 k. In this sequence, we replace
each run of each element of A by a single occurrence of that element forming a
sequence c′′0 · · · c

′′

k′′ with k ′′ 6 k ′. This sequence is c0 · · · ck .
Here is the statement of the Furstenberg–Katznelson theorem for located words.
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Let F be a finite set of reduced strings in A. Color 〈Xn(A∪ B)〉 with finitely many
colors. There exists a basic sequence (wi) in 〈Xn(B)〉 such that x occurs in each
wi and, for each n0 < · · · < nk and c0, . . . , ck ∈ A ∪ B, the color of

wn0[c0] · · ·wnk [ck]

depends only on c0 · · · ck provided c0 · · · ck ∈ F.
This theorem is obtained by considering the monoid J (A, B) from Section 2.3.

For brevity’s sake, set
M = J (A, B).

Forgetting about the Ramsey statement for a moment, we make some
computations in Y(M).

Observe that all elements of B are in the same R-class, which we denote by
b, the R-class of each element of A consists only of this element only, and the
R-class of 1M consists only of 1M . So, with some abuse of notation, we can write

X(M) = {b, 1M} ∪ A.

We have that, for each a ∈ A,

b 6X(M) a 6X(M) 1M

and elements of A are incomparable with each other with respect to 6X(M). The
action of M on X(M) is induced by the action of M on itself by left multiplication.

Pick a0 ∈ A. Note that the sets

{b}, {b, a}, for a ∈ A, and {b, a0, 1M}

are in Y(M), and we write b, a, 10 for these elements, respectively. We notice that

b 6Y(M) a, for all a ∈ A, and b, a0 6Y(M) 10, (4.9)

and 6Y(M) does not relate any other two of the above elements. Furthermore, 10

is a maximal element of Y(M). The action of M on these elements is induced by
the left multiplication action of M on itself, so

a(10) = a and b(10) = b, for a ∈ A, b ∈ B.

Using relations (4.9), we observe that, for c0, . . . , ck ∈ {b} ∪ A, the product

c0 ∨ · · · ∨ ck

in the semigroup of 〈Y(M)〉 is equal to b if ci = b, for each i 6 k, or is obtained
from c0 ∨ · · · ∨ ck by removing all occurrences of b and shortening a run of
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each a ∈ A to one occurrence of a, if ci ∈ A, for some i 6 k. Thus, the map
assigning to a sequence c0 · · · ck of elements of A ∪ B the element c0 ∨ · · · ∨ ck

of Y(M) factors through the map c0 · · · ck → c0 · · · ck giving an injective map
c0 · · · ck → c0 ∨ · · · ∨ ck .

We note that M acts on Xn(A ∪ B) as follows. We identify Xn(A ∪ B) with M
by identifying (n, x) with 1M and (n, c) with c for c ∈ A∪ B. Since M acts on M
by left multiplication, this identification gives an action of M on Xn(A ∪ B). We
make (n, x) the distinguished element, thereby turning Xn(A ∪ B) into a pointed
M-set.

We apply Corollary 4.3 to this sequence of pointed M-sets. In the statement of
the theorem, we take y = 10 and, for the finite subset 〈Y(M)〉, we take

{c0 ∨ · · · ∨ ck : c0 · · · ck ∈ F}.

Now, an application of Corollary 4.3 gives a basic sequence (w′i) in 〈(Xn(A∪B))〉.
Let wi ∈ 〈Xn(B)〉 be got from w′i by replacing each value taken in A by x . By the
discussion above, the sequence (wi) is as required.

2. The Hales–Jewett theorem for left-variable words. The Hales–Jewett
theorem for located words is just the Furstenberg–Katznelson theorem for located
words with A = ∅. We state now and prove the Hales–Jewett theorem for located
left-variable words as in [16, Theorem 2.37]. We use the notation as in (4.7) and
(4.8). We call w ∈ 〈(Xn(C))〉 left-variable if the first entry in the sequence w is
of the form (n, x) for some n ∈ N.
Let B be a finite set. For each finite coloring of 〈(Xn(B))〉, there exists a basic
sequence (wi) in 〈(Xn(B))〉 such that x does not occur in w0, each wi with i > 1
is left-variable, and the color of the sequences

w0wn0[b0] · · ·wnk [bk], (4.10)

with 0 < n0 < · · · < nk and b0, . . . , bk ∈ B, is fixed.
We will use the monoid M = J (∅, B) and apply Corollary 4.4. Note that M =

B ∪ {1M} is in a bijective correspondence with Xn(B) mapping each b ∈ B to
(n, b) and 1M to (n, x). We transfer the left multiplication action of M to Xn(B)
and make (n, x) the distinguished element of Xn(B). Thus, Xn(B) is a pointed
M-set. We consider the semigroup 〈(Xn(B))〉 with the induced endomorphism
action of M . Let E ⊆ 〈(Xn(B))〉 consist of all left-variable elements. Note that
E is a right ideal in 〈(Xn(B))〉 and 〈(Xn(B))〉 is E-directed. Now Corollary 4.4
produces a basic double sequence (vi , v

′

i) in 〈(Xn)〉, with x occurring in each vi

and with v′i ∈ E for each i . Fix b ∈ B, and let

w0 = v0[b] and wi = v
′

i−1vi for i > 1.
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Clearly x does not occur in w0 and each wi is left-variable for i > 1. The coloring
is fixed on sequences of the form (4.10) since it is fixed on ones of the form (4.3).

3. Gowers’ theorem. The monoid Gk is defined in Section 2.3. Gowers’
Ramsey theorem from [4] (see [16, Theorem 2.22]) is obtained by applying
Corollary 4.3 to Xn = Gk with the left multiplication action and with
the distinguished element 1Gk . We note that X(Gk) is linear, and we apply
Corollary 4.3 as in the proof of Corollary 4.5(i).

4. Lupini’s theorem. Lupini’s Ramsey theorem from [10] is an infinitary
version of a Ramsey theorem found by Bartošova and Kwiatkowska in [1]. To
prove it we consider the monoid Ik defined in Section 2.3. We take for Xn = {0,
. . . , k − 1} with the natural action of Ik and the distinguished element k − 1. The
result is obtained by applying Lemma 2.5 and Theorem 3.1. We expand on this
theme in Section 4.4.

4.4. The monoids In. We analyze here the monoids In , n ∈ N, n > 0, defined
in Section 2.3. As usual, we identify a natural number n with the set {0, . . . , n−1}.
The monoid In is the monoid of all functions f : n → n such that f (0) = 0 and
f (i − 1) 6 f (i) 6 f (i − 1) + 1, for all 0 < i < n, taken with composition.

We consider these monoids, on the one hand, to illustrate our notion of Ramsey
monoids and, on the other hand, to answer a question of Lupini from [10]. We
will prove the following theorem.

THEOREM 4.6. The monoids In , for n > 4, are not Ramsey. The monoids I1, I2,
and I3 are Ramsey.

We now state a theorem and question of Lupini [10] in our terminology. For
k ∈ N, let wk be a finite word in the alphabet n = {0, 1, . . . , n − 1} that contains
an occurrence n−1. Let In(wk) be equal to the set { f (wk) : f ∈ In}, where f (wk)

is the word obtained from wk by applying f letter by letter. We take In(wk) with
the natural action of In and with wk as the distinguished element. Note that if wk

is the word of length one whose unique letter is n − 1, then In(wk) = n with the
natural action of In on n.

THEOREM (Lupini [10]). Let n > 0, and let wk = (n − 1). Then the sequence of
pointed In-sets (In(wk))k has the Ramsey property.

In [10], Lupini asked the following natural question: does (In(wk))k have the
Ramsey property for every choice of words wk , k ∈ N?

The following corollary to Theorem 4.6 answers this question in the negative.
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COROLLARY 4.7. Let n > 4. For k ∈ N, let wk = (01 · · · (n − 1)). Then the
sequence of pointed In-sets (In(wk))k does not have the Ramsey property.

Proof. By Theorem 4.6, In is not Ramsey for n > 4. It follows, by Corollary 4.5
and by R-triviality of In , that the sequence Xk = In , k ∈ N, does not have
the Ramsey property, where In is considered as a pointed In-set with the left
multiplication action and with 1 as the distinguished element. Note that In is
isomorphic as a pointed In-set with In(01 · · · (n−1)) as witnessed by the function

In 3 f → f (01 · · · (n − 1)) ∈ In(01 · · · (n − 1)).

Thus, sincewk = 01 · · · (n−1), the sequence (In(wk))k does not have the Ramsey
property.

We will give a recursive presentation of the monoid In that may be of some
independent interest and usefulness for future applications. It will certainly make
it easier for us to manipulate symbolically elements of In below. In the recursion,
we will start with a trivial monoid and adjoin a tetris operation as in [4] at each
step of the recursion.

First, we present a general extension operation that can be applied to certain
monoids equipped with an endomorphism and a distinguished element. Let M be
a monoid, let f : M → M be an endomorphism, and let t ∈ M be such that for
all s ∈ M we have

st = t f (s). (4.11)

Define
µ(M, t, f )

to be the triple
(N , τ, φ),

where N is a monoid, τ is an element of N , and φ is an endomorphism of N that
are obtained by the following procedure. Let N be the disjoint union of M and
the set {τ s : s ∈ M}, where τ is a new element and the expression τ s stands for
the ordered pair (τ, s). For s ∈ M , we write τ 0s for s and τ 1s for τ s. Define a
function φ : N → M ⊆ N by letting, for s ∈ M and e = 0, 1,

φ(τ es) = t e f (s),

where t e f (s) is a product computed in M . Define multiplication on N by letting,
for s1, s2 ∈ M , and e1, e2 = 0, 1,

(τ e1 s1) · (τ
e2 s2) =

{
τ e1(s1s2), if e2 = 0,
τ(φ(τ e1 s1)s2), if e2 = 1,
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where, on the right-hand side, s1s2 and φ(τ e1 s1)s2 are products computed in M .
We write τ for τ1M . Note that s1 · s2 = s1s2 for s1, s2 ∈ M , τ · s = τ s for s ∈ M
and τ · τ = τ t . We will omit writing · for multiplication in N .

The following lemma is proved by a straightforward computation.

LEMMA 4.8. N is a monoid, φ is an endomorphism of N, and, for all σ ∈ N, we
have relation (4.11), that is,

στ = τφ(σ ).

Later, we will need the following technical lemma.

LEMMA 4.9. For σ ∈ N and s ∈ M, there exists s ′ ∈ M such that τ sσ = τ ss ′.

Proof. If σ ∈ M , then we can let s ′ = σ . Otherwise, σ = τ s0 for some s0 ∈ M .
Note that

τ sσ = τ sτ s0 = ττ f (s)s0 = τ t f (s)s0 = τ sts0,

and we can let s ′ = ts0.

By recursion, we define a sequence of monoids with distinguished elements and
endomorphisms. Let M1 be the unique one element monoid, let t1 be its unique
element, and let f1 be its unique endomorphism. Assume we are given a monoid
Mk for some k > 1 with an endomorphism fk of Mk and an element tk with (4.11).
Define

(Mk+1, tk+1, fk+1) = µ(Mk, tk, fk).

PROPOSITION 4.10. For each k ∈ N, k > 0, Mk is isomorphic to Ik .

Proof. One views Ik−1 as a submonoid of Ik , for k > 1, identifying Ik−1 with its
image under the isomorphic embedding Ik−1 3 s → s ′ ∈ Ik , where

s ′(i) =

{
0, if i = 0,
s(i − 1)+ 1, if 0 < i < k.

One checks that tk ∈ Ik given by

tk(i) =

{
0, if i = 0,
i − 1, if 0 < i < k,

and fk : Ik → Ik given by

fk(s)(i) =

{
0, if i = 0,
s(i − 1)+ 1, if 0 < i < k,

fulfill the recursive definition of (Mk, tk, fk).
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Since, as proved in Section 2.3, In is R-trivial, the partial order X(In) can be
identified with In . We will make this identification and write 6In for 6X(In). We
have the following recursive formula for 6In . Obviously, 6I1 is the unique partial
order on the one element monoid.

PROPOSITION 4.11. Let t e1
n+1s1, t e2

n+1s2 ∈ In+1 with s1, s2 ∈ In and e1, e2 = 0, 1.
Then t e1

n+1s1 6In+1 t e2
n+1s2 if and only if

e2 6 e1 and s1 6In f e1−e2
n (s2).

Proof. By Proposition 4.10, we regard (In+1, tn+1, fn+1) as obtained from the
triple (In, tn, fn) via operation µ. In particular, we regard In as a submonoid of
In+1. We also have fn+1(s) = fn(s), for s ∈ In .

(⇐) If e0 = e1, the implication is obvious. The remaining case is e2 = 0 and
e1 = 1. In this case, we have s1 6In fn(s2), that is, s1 = fn(s2)s ′ for some s ′ ∈ In .
But then

tn+1s1 = tn+1 fn(s2)s ′ = s2(tn+1s ′),

and tn+1s1 6In+1 s2 as required.
(⇒) Note that it is impossible to have s1 6In+1 tn+1s2 for s1, s2 ∈ In . Indeed,

this inequality would give s1 = tn+1s2σ for some σ ∈ In+1, which would imply,
by Lemma 4.9, that s1 = tn+1s2s ′ for some s ′ ∈ In . This is a contradiction since
s2s ′ ∈ In . Thus, t e1

n+1s1 6In+1 t e2
n+1s2 implies e2 6 e1.

If e1 = e2 = 0, then we have s1 6In+1 s2, which means s1 = s2σ for some
σ ∈ In+1. If σ ∈ In , then s1 6In s2, as required. Otherwise, σ = τ s ′ for some
s ′ ∈ In , which gives

s1 = s2τ s ′ = τ( fn(s2)s ′),

which is impossible since fn(s2)s ′ ∈ In .
If e1 = e2 = 1, then we have tn+1s1 6In+1 tn+1s2, which means tn+1s1 = tn+1s2σ

for some σ ∈ In+1. By Lemma 4.9, this equality implies tn+1s1 = tn+1(s2s ′) for
some s ′ ∈ In . Since s2s ′ ∈ In , this equality gives s1 = s2s ′, so s1 6In s2.

The last case to consider is e1 = 1 and e2 = 0, that is, tn+1s1 6In+1 s2. Then
tn+1s1 = s2σ for some σ ∈ In+1. Note that σ 6∈ In , so σ = tn+1s ′ for some s ′ ∈ In .
But then we have

tn+1s1 = s2tn+1s ′ = tn+1 fn(s2)s ′,

which implies s1 = fn(s2)s ′, that is, s1 6In fn(s2).

Proof of Theorem 4.6. It is easy to see from Proposition 4.11 that the orders 6I1 ,
6I2 , 6I3 are linear. So, by Corollary 4.5, I1, I2, and I3 are Ramsey.

By Corollary 4.5, it remains to check that the partial order (In,6In ) is not linear
for n > 4. By Proposition 4.10, we regard (In+1, tn+1, fn+1) as obtained from
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the triple (In, tn, fn) via operation µ. It follows from Proposition 4.11 that 6In+1

restricted to In is equal to 6In . Thus, it suffices to show that (I4,6I4) is not linear.
Note that the image of f3 is equal to I2 and I2 has two elements. So there exists
s0 ∈ I3 such that f3(s0) 6= 1I2 . Thus, since 1I2 = 1I3 , we get f3(s0) <I3 1I3 . It then
follows from Proposition 4.11 that t4 and s0 are not comparable with respect to
6I4 . Indeed,

t4 = t1
4 1I3 and s0 = t0

4 s0.

Since 0 < 1, we have s0 66I4 t4; since 1I3 66I3 f 1−0
3 (s0), we have t4 66I4 s0.

The monoid I4 is the first one among the monoids In , n > 0, that is not Ramsey.
Using Propositions 4.10 and 4.11, one can compute 6I4 as follows. Since I3 is
linearly ordered, one can list the four elements of I3 as a3 6I3 a2 6I3 a1 6I3 1.
Then I4 is equal to the disjoint union I3 ∪ t4 I3 and the order 64 is the transitive
closure of the relations

a3 6I4 a2 6I4 a1 6I4 1;
t4a3 6I4 t4a2 6I4 t4a1 6I4 t4;

t4 6I4 a1;

t4a1 6I4 a3.

One can check by inspection that M1 = I4 \ {t4} and M2 = I4 \ {a2, a3} are
submonoids of I4. They are R-trivial as submonoids of an R-trivial monoid [14].
One easily checks directly that 6M1 and 6M2 are linear, therefore, M1 and M2 are
Ramsey by Corollary 4.5. Thus, I4 is not itself Ramsey, but it is the union of two
Ramsey monoids.

Acknowledgements

I would like to thank the referee for a very thorough report. Research supported
by NSF grant DMS-1266189 and DMS-1700426.

References
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