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Hydrodynamic stability of compressible boundary layers is strongly influenced by
the Mach number (M), Prandtl number (Pr) and thermal wall boundary condition.
These effects manifest on the flow stability via the flow–thermodynamics interactions.
Comprehensive understanding of stability flow physics is of fundamental interest
and important for developing predictive tools and closure models for integrated
transition-to-turbulence computations. The flow–thermodynamics interactions are
examined using linear analysis and direct numerical simulations in the following parameter
regime: 0.5 ≤ M ≤ 8; and 0.5 ≤ Pr ≤ 1.3. For the adiabatic wall boundary condition,
increasing Prandtl number has a destabilizing effect. In this work, we characterize the
behaviour of production, pressure–strain correlation and pressure dilatation as functions of
the Mach and Prandtl numbers. First and second instability modes exhibit similar stability
trends but the underlying flow physics is shown to be diametrically opposite. The Prandtl
number influence on instability is explicated in terms of the base flow profile with respect
to the different perturbation mode shapes.

Key words: compressible boundary layers

1. Introduction

High Reynolds number flows tend to become hydrodynamically unstable wherein a small
perturbation of the velocity field grows rapidly, resulting in a transformation of the
base flow field in finite time (Drazin 2002). In general, instability draws energy from
an organized base flow and deposits into a less-organized perturbation field. When the
velocity perturbations grow to a threshold magnitude relative to the base flow, nonlinear
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effects set in (Reshotko 1976; Morkovin 1994), initiating breakdown of the base flow
toward a turbulent state which is characterized by chaotic velocity fluctuations. As a flow
transitions from a base laminar flow to a chaotic turbulent state, there is a significant
change in the overall mass, momentum and energy transport characteristics (Pope 2001;
Monin & Yaglom 2013). The study of instabilities is therefore of great importance for
flows in nature and engineering.

In incompressible flows, all of the kinetic energy extracted from the mean flow by
the instability-enabled production mechanism goes toward energizing the perturbation
velocity field (Pope 2001; George 2013). Pressure is merely a Lagrange multiplier with
the sole function of preserving a dilatation-free velocity field and hence does no work
(energy transfer) on the velocity field (Pope 2001). As a result, instability and ensuing
turbulence analyses do not entail thermodynamic or internal energy considerations.

In compressible flows, the role of pressure reverts to that of a thermodynamic state
variable (Anderson 1990). Pressure field now evolves according to a wave equation
derived from an internal energy balance and equation of state (Landau & Lifshitz 1987;
Lele 1994). The change in the fundamental nature of pressure action triggers important
flow–thermodynamics interactions. Most importantly, the velocity field develops a
dilatational component allowing for pressure to perform work on the velocity field (or vice
versa) via the pressure-dilatation mechanism. Thus additional degrees of freedom and a
new component of energy (internal) enter into the instability analysis. From the perspective
of energetics, the kinetic energy extracted from the mean flow can be diverted away
from perturbation kinetic energy to perturbation internal energy by the pressure-dilatation
mechanism (Sarkar et al. 1991; Sarkar 1992; Praturi & Girimaji 2019; Mittal & Girimaji
2020).

The initial growth/decay of small perturbations is described by linear stability theory.
Linear stability analysis (LSA) of an incompressible boundary layer shows the emergence
of the Tollmien–Schlichting instability (also termed the first mode) beyond a critical
Reynolds number (Schmid, Henningson & Jankowski 2002). Akin to incompressible
flows, instability in compressible boundary layers has been studied in the literature
using LSA (Lees & Lin 1946; Mack 1984; Reed, Saric & Arnal 1996; Criminale,
Jackson & Joslin 2018). Lees & Lin (1946) extended the Rayleigh stability criterion
(Rayleigh 1880) to compressible flows, and established that an extremum of mean
angular momentum (D(ρ̄DŪ) = 0) is necessary for inviscid instability. Mack (1984)
developed a more complete theory for boundary layers by performing extensive stability
calculations. At subsonic Mach numbers, compressibility is known to have a stabilizing
effect. Unlike subsonic flows, beyond M = 1, oblique first modes are more unstable than
their two-dimensional (2-D) counterparts. In addition to the first mode, at high Mach
numbers a new family of instability modes coexists along with the first mode (Mack 1984).
These additional modes belong to the family of trapped acoustic waves and exist whenever
there is a relative supersonic region in the flow, i.e. the relative Mach number is greater
than 1. The first of these additional modes, termed the second or Mack mode, becomes the
dominant instability (Mack 1984) at M ≥ 4 for an adiabatic flat plate. Gushchin & Fedorov
(1990) show that the second mode instability occurs in a region where two modes of the
discrete spectrum are synchronized, leading to the branching of the discrete spectrum.
These discrete modes were categorized as fast (F) and slow (S) by Fedorov (2011) based
on their asymptotic behaviour near the leading edge. The branching pattern of the discrete
spectrum is dependent on the Mach number at a fixed Reynolds number (Fedorov &
Tumin 2011). As a result, depending on the flow parameters, the second mode can be
associated with the fast or slow mode. Extensive studies have been conducted on the
effect of wall cooling for these modes (Lees & Lin 1946; Mack 1984; Malik 1989; Masad,
948 A16-2
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Nayfeh & Al-Maaitah 1992; Mack 1993). In general, cooling stabilizes the first mode while
destabilizing the second mode. Consequently for cold walls, the second mode becomes
the dominant instability at even lower Mach numbers. Recently, Bitter & Shepherd (2015)
have shown the existence of unstable supersonic modes at very high levels of cooling
causing the flow to become unstable over a much wider range of frequencies. Malik &
Anderson (1991) investigated real gas effects on the stability of hypersonic boundary layers
by considering disassociation of air and conclude that real gas effects stabilize the first
mode while destabilizing the second mode.

At high temperatures excitation of internal modes and disassociation can lead to
large deviation of the effective Prandtl number from its baseline value (Hansen 1958;
Capitelli et al. 2000). The Prandtl number for air at atmospheric pressure and extremely
high temperatures can be 0.9 or higher, whereas at low pressures and high temperature
the Prandtl number can be as low as 0.3 (Hansen 1958; Capitelli et al. 2000). Such
combinations of extremely high temperature and low pressure can be experienced
during hypersonic re-entry in the Jovian atmosphere (Seiff et al. 1998). The effect of
flow parameters such as the Mach number, wall temperature and Reynolds number on
compressible boundary layer stability have been studied extensively in the literature (Mack
1984; Malik 1989; Masad et al. 1992; Fedorov & Tumin 2011). However, studies examining
the effect of Prandtl number have been limited. Ramachandran et al. (2015) investigate the
effect of the Prandtl number on the eigenspectrum of hypersonic boundary layers. They
observe destabilization of both first and second modes with increasing Prandtl number.
Moreover, their findings also suggest that the discrete spectrum branching pattern is
dependent on the Prandtl number. Although the effect of the Prandtl number on instability
trends and eigenspectrum branching has been discussed, the underlying physics leading to
the destabilization has not been clearly explained.

Comprehensive understanding of instability at different Mach and Prandtl numbers is
of much value for many engineering flows for developing predictive tools. Specifically,
there is much interest in a unified reduced-order computational tool capable of accurately
simulating the entire transition-to-turbulence process. This entails developing closure
models for various flow mechanisms and processes contributing toward instability.

In this work, we seek to understand the flow physics underlying the effect of the Prandtl
number on boundary layer instability with adiabatic walls. These effects manifest on the
flow stability via the flow–thermodynamics interactions. Thus we investigate perturbation
internal energy, kinetic energy and pressure–velocity interactions. We establish kinetic
and internal energy levels of the first and second modes at different Mach and Prandtl
numbers. The various flow–thermodynamics interactions and turbulence mechanisms
contributing to first and second instability modes are also examined. We explicate the
observed instability behaviour by characterizing production, pressure–strain correlation
and pressure dilatation at different Mach and Prandtl numbers. The profiles of the base flow
and the stresses are analysed to explain the different trends shown by the first and second
modes. The results obtained by LSA are corroborated by direct numerical simulations
performed using the gas kinetic method (Xu 2001). Thus the work also leads to the
validation of the kinetic-theory-based numerical scheme and computational code.

2. Governing equations and linear analysis

The compressible Navier–Stokes equations for an ideal fluid are as follows:
∂ρ∗

∂t∗
+ ∂

∂x∗
j
(ρ∗u∗

j ) = 0, (2.1a)
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∂(ρ∗u∗
i )

∂t∗
+
∂(ρ∗u∗

i u∗
j )

∂x∗
j

= −∂p∗

∂x∗
i

+
∂∗

ij

∂x∗
j
, (2.1b)

∂

∂t∗

(
p∗

γ − 1

)
+ ∂

∂x∗
j

(
p∗u∗

j

γ − 1

)
= ∂

∂x∗
j

(
κ∗ ∂T∗

∂x∗
j

)
− p∗ ∂u∗

k
∂x∗

k
+ ∗

ij
∂u∗

i
∂x∗

j
, (2.1c)

p∗ = ρ∗RT∗, (2.1d)

where the superscript ∗ is used to denote the dimensional variables. The density of the
fluid is denoted by ρ∗, velocity by u∗

i , temperature by T∗ and pressure by p∗. Also, γ is
the specific heat ratio, κ∗ is the coefficient of thermal conductivity, R is the universal gas
constant and ∗

ij is the viscous stress tensor given by

∗
ij = μ∗

(
∂u∗

i
∂x∗

j
+
∂u∗

j

∂x∗
i

)
− 2

3
μ∗ ∂u∗

k
∂x∗

k
ij. (2.2)

The coefficient of viscosity μ∗ is dependent on the local temperature as dictated by
Sutherland’s law (Sutherland 1893).

The evolution of total kinetic energy (ρ∗u∗
i u∗

i /2) as obtained from the momentum
equations (2.1b) is given by

∂(ρ∗u∗
i u∗

i /2)
∂t∗

+
∂(u∗

j ρ
∗u∗

i u∗
i /2)

∂x∗
j

= p∗ ∂u∗
i

∂xi︸ ︷︷ ︸
Π

−∗
ij
∂u∗

i
∂xj︸ ︷︷ ︸
ε

+ ∂

∂xj
[∗

iju
∗
i − p∗u∗

i ij]︸ ︷︷ ︸
T

. (2.3)

Here, Π represents pressure dilatation, ε is viscous dissipation of kinetic energy and T
is the kinetic energy transport term. From (2.1c) it is evident that the pressure-dilatation
and dissipation terms couple the kinetic and internal/pressure modes. Pressure dilatation
enables a reversible exchange between the internal and kinetic energies. On the other hand,
the dissipation of kinetic energy to the internal mode is irreversible.

2.1. Linear stability analysis
The dimensional variables are normalized as follows:

ui = u∗
i

U∞
, ρ = ρ∗

ρ∞
, T = T∗

T∞
, p = p∗

ρ∞U2∞
,

xi = x∗
i

Lr
, t = t∗U∞

Lr
, μ = μ∗

μ∞
, κ = κ∗

κ∞
,

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

where U∞ is the free-stream velocity, ρ∞ is the free-stream density, T∞ is the free-stream
temperature and μ∞ and κ∞ are the free-stream viscosity and thermal conductivity,
respectively. The spatial coordinate x∗

i is normalized by the Blasius length scale Lr =√
μ∞x∗/ρ∞U∞.
The flow variables are then decomposed into a basic state and perturbations

A = Ā + A′. (2.5)

Here, A represents the flow variables (ui, ρ, p, T). We assume a 2-D locally parallel basic
state wherein the wall-normal and spanwise base velocities are zero. Moreover, the basic
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Lx1

Lx3

Lx2

x1

δ99

Ū1

x3

x2

Figure 1. Schematic of the basic state for LSA and the problem set-up for direct numerical simulation (DNS).
Here, Lx1, Lx2 and Lx3 represent the domain sizes in the streamwise, wall-normal and spanwise directions,
respectively, and δ99 denotes the 99 % boundary layer thickness.

state properties only vary along the wall-normal direction x2. A schematic of the base
flow is shown in figure 1. The fluid properties, viscosity and thermal conductivity are also
decomposed into a base state and perturbations. The base viscosity (μ̄) is obtained from
Sutherland’s law of viscosity (Sutherland 1893) while the base thermal conductivity (κ̄) is
varied to ensure a constant Prandtl number across the boundary layer. The viscosity and
thermal conductivity perturbations are expressed in terms of temperature fluctuations as

μ′ = dμ̄
dT̄

T ′; κ ′ = dκ̄
dT̄

T ′, (2.6a,b)

where the derivatives dμ̄/dT̄ and dκ̄/dT̄ are also computed from Sutherland’s law.
The basic state is obtained by solving the 2-D compressible laminar flat plate boundary

layer equations using the Levy–Lees similarity transformation (Rogers 1992). The physical
coordinates (x∗

1, x∗
2) are transformed to the (ξ–η) space using the following relations:

ξ =
∫ x∗

1

0
ρ∞μ∞U∞ dx∗

1,

η = U∞√
2ξ

∫ x∗
2

0
ρ̄ dx∗

2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.7)

The basic state equations in the transformed space reduce to a system of ordinary
differential equations (ODEs) given by (Rogers 1992)

(Cf ′′)′ + ff ′′ = 0, (2.8a)(
C
Pr

g′
)′

+ fg′ + (γ − 1)M2Cf ′′2 = 0. (2.8b)

Here, the similarity variable f ′ = Ū1 is the non-dimensional streamwise velocity, g = T̄
is the non-dimensional temperature, C = ρ̄μ̄ is the Chapman–Rubesin factor, M is the
free-stream Mach number and Pr is the Prandtl number. For an adiabatic flat plate, the set
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of ODEs (2.8) is subjected to the following boundary conditions:

f (0) = 0; f ′(0) = 0; g′(0) = 0;
f ′(η → ∞) = 1; g(η → ∞) = 1.

}
(2.9)

The resulting boundary value problem is solved using the Nachtsheim–Swigert iteration
technique (Nachtsheim & Swigert 1965).

The basic state equations are subtracted from the full Navier–Stokes equations (2.1)
and the higher-order terms are neglected to obtain the linearized perturbation equations.
The full form of the linearized perturbation equations is detailed in Appendix A.1. The
non-dimensional parameters in the perturbation equations are defined below

Re = ρ∞U∞Lr

μ∞
M = U∞√

γRT∞
Pr = μ∞Cp

κ∞
, (2.10a–c)

where, CP = γR/(γ − 1) is the specific heat at constant pressure and the specific heat
ratio γ = 1.4.

The perturbations are then expressed in the normal mode form as

A′ = Â(x2) eι(αx1+βx3−ωt), (2.11)

where α and β are the wavenumbers in the streamwise and spanwise directions,
respectively, ω is the temporal frequency and Â is the amplitude of perturbation varying in
the wall-normal direction. For temporal stability analysis, α and β are assumed to be real
and specified a priori, while ω is the complex eigenvalue obtained from analysis. The sign
of the imaginary part of ω (ωi) determines the stability: perturbations grow if ωi > 0 and
decay if ωi < 0.

Substituting the modal form of perturbations (2.11) into the linearized perturbation
equation (A1)–(A4) yields the following eigenvalue problem:

ω𝞥 = A−1B(α, β,Re,M,Pr)𝞥. (2.12)

Here, 𝞥 = [û1, û2, û3, T̂, p̂] are the eigenmode shapes corresponding to the eigenvalue ω.
The elements of the fifth-order coefficient matrices A and B are listed in Appendix A.2.
The eigenvalue problem is solved by discretizing equation (2.12) using Chebyshev
polynomials (Malik 1990) on collocation points. The Chebyshev polynomials are defined
on the following Gauss–Lobatto points (ξi) in the interval [−1, 1]:

ξi = cos
πi
N

i = 0, 1 . . .N, (2.13)

where N is the number of collocation points. The physical domain (x2 ∈ [0, Lx2]) is
mapped to the computational domain using an algebraic stretching function (Malik 1990)

x2 = a
1 + ξ

b − ξ
; where b = 1 + 2a

Lx2
; & a = ylLx2

Lx2 − 2yl
. (2.14)

Here, Lx2 is the edge of physical domain and half of the grid points lie between the wall
and the parameter yl. The parameter yl is selected to be half of the 99 % boundary layer
thickness (δ99) in all the stability calculations. No slip and zero thermal perturbation
boundary conditions are used for velocity and temperature, while a Neumann boundary
condition for pressure is obtained by solving the wall-normal momentum equation.
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M Re T0(K) α β ω (MDSP Malik 1990) ω (Current)

0.5 2000 278 0.1 0 0.0290817 + 0.0022441ι 0.0290829 + 0.0022441ι
2.5 3000 333 0.06 0.1 0.0367340 + 0.0005840ι 0.0367379 + 0.0005875ι

Table 1. Comparison of eigenvalues of the most unstable mode.

The global eigenvalue problem is solved using the QZ algorithm (Moler & Stewart 1973)
at 199 collocation points.

We validate the results of LSA by comparison against the multi-domain spectral method
(MDSP) of Malik (1990). The eigenvalues ω of the most unstable mode for two different
cases are listed in table 1. The eigenvalues obtained from the code used in the current work
are in excellent agreement with the MDSP results from Malik (1990).

2.2. Flow processes in the linear limit
In this subsection, we discuss the role of key turbulent processes in the linear limit. Starting
from the perturbation momentum equation (A2) the instantaneous perturbation kinetic
energy (k = ρ̄u′

iu
′
i/2) equation can be derived as

∂k
∂t

+ Ūi
∂k
∂xi

= −ρ̄u′
iu

′
k
∂Ūi

∂xk
+ p′ ∂u′

i
∂xi

− 1
Re

′
ik
∂u′

i
∂xk

+ ∂

∂xk

[
1

Re
′

iku′
i − p′u′

iδik

]
. (2.15)

The instantaneous kinetic energy equation (2.15) is averaged in the homogeneous x1 and
x3 directions to derive the average kinetic energy equation

∂〈k〉
∂t

+ Ūi
∂〈k〉
∂xi

= −〈ρ̄u′
iu

′
k〉
∂Ūi

∂xk︸ ︷︷ ︸
Pk

+
〈
p′ ∂u′

i
∂xi

〉
︸ ︷︷ ︸

Πk

− 1
Re

〈
′

ik
∂u′

i
∂xk

〉
︸ ︷︷ ︸

εk

+ ∂

∂xk

[
1

Re
〈′

iku′
i〉 − 〈p′u′

i〉δik

]
︸ ︷︷ ︸

Tk

,

(2.16)

where the notation 〈 〉 denotes the averaging operator in the homogeneous directions and
is defined as follows:

〈k〉 = 1
Lx1Lx3

∫ Lx3

0

∫ Lx1

0
k dx1 dx3. (2.17)

The key turbulent processes are defined in (2.16). Here, Pk denotes the production of
kinetic energy, Πk is pressure dilatation, εk is dissipation of kinetic energy and Tk is the
transport term. The role of the aforementioned processes is well known in the context of
turbulence. A brief overview in the current context is presented here. The perturbation
velocity field extracts energy from the basic state via production. Pressure dilatation
quantifies the amount of pressure work on the velocity field. In incompressible flows, the
net work done by pressure on the velocity field is zero at each point in the flow field
due to the solenoidal nature of velocity field. On the other hand, flow–thermodynamics
interactions become important for compressible flows as Πk becomes significant. The
energy transfer enabled by pressure dilatation is reversible. The dissipation process
irreversibly transfers energy from the perturbation velocity field to the mean flow internal
energy in both compressible and incompressible flows. The transport terms merely
redistribute energy in space. It must be noted that the transport terms are zero in the
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streamwise and spanwise directions due to spatial homogeneity. In the linear limit of small
perturbation the basic state remains unaltered. Therefore the basic state can be considered
an infinite source/sink of energy.

We now derive the perturbation internal energy equation. In the linear limit, pressure
variance can be approximated as the internal energy (Sarkar et al. 1991; Mittal & Girimaji
2019). The instantaneous perturbation internal energy is defined as

e = p′p′

2γ P̄
. (2.18)

The governing equation for the averaged internal energy (〈e〉) in pressure fluctuations is

∂〈e〉
∂t

+ Ūi
∂〈e〉
∂xi

= −
〈
p′ ∂u′

k
∂xk

〉
︸ ︷︷ ︸

Πk

− 1
γRe Pr M2P̄

〈
p′ ∂q′

k
∂xk

〉
︸ ︷︷ ︸

Ts

+ γ − 1
γReP̄

[
〈p′τ ′

ij〉
∂Ūi

∂xj
+ ̄ij

〈
p′ ∂u′

i
∂xj

〉]
︸ ︷︷ ︸

εs

. (2.19)

Here, Ts and εs denote the thermal flux and viscous contribution to internal energy,
respectively. It is evident from (2.19) that pressure dilatation couples the internal and
kinetic modes of the perturbation field. The thermal flux and viscous flux terms represent
the interaction of fluctuating internal field with the mean internal field via heat conduction
and viscous action, respectively.

Finally, the evolution equation for the stress components Rij = −ρ̄u′
iu

′
j is derived. The

evolution of averaged stresses 〈Rij〉 is given by the following equation:

∂〈Rij〉
∂t

+ Ūk
∂〈Rij〉
∂xk

= −〈ρ̄u′
ju

′
k〉
∂Ūi

∂xk
− 〈ρ̄u′

iu
′
k〉

dŪj

dxk︸ ︷︷ ︸
Pij

+
〈

p′
(
∂u′

i
∂xj

+
∂u′

j

∂xi

)〉
︸ ︷︷ ︸

Πij

− 1
Re

(〈
′

ik

∂u′
j

∂xk

〉
+
〈
τ ′

jk
∂u′

i
∂xk

〉)
︸ ︷︷ ︸

εij

+ ∂

∂xk

[〈
1

Re
′

iku′
j + 1

Re
τ ′

jku′
i − p′u′

iδjk − p′u′
jδik

〉]
︸ ︷︷ ︸

Tij

,

(2.20)

where Pij are the components of production tensor for stresses,Πij denotes the components
of pressure–strain correlation, εij is the dissipation tensor and Tij denotes the diffusion
term. The traces of Pij and Πij are equal to twice the production and pressure dilatation,
respectively. The pressure–strain correlation redistributes energy among different stress
components.

In a recent work by Weder, Gloor & Kleiser (2015), a balance equation for the total
disturbance energy is derived and the temporal growth rate is decomposed into production
and dissipation components. Such a decomposition (Weder et al. 2015) is aimed at
isolating the contribution of processes facilitating an exchange between the base and
perturbation field. Consequently, flow–thermodynamics interactions in the perturbation
field cannot be analysed within this framework. In this work, the budget equations
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(2.16)–(2.20) are examined to highlight both base–perturbation interactions and the energy
exchanges within the perturbation field.

2.3. Dependence of base flow on Prandtl number
The basic state plays a key role in the instability dynamics. It directly influences several
key processes such as production, dissipation and thermal flux, and it varies substantially
with Prandtl number. Figures 2(a) and 2(b) plot the base velocity and temperature profiles
for an adiabatic flat plate boundary layer at M = 4 at three different Prandtl numbers.
The base velocity and temperature gradient are also plotted in figures 2(c) and 2(d). The
adiabatic wall temperature (T̄aw) is dependent on M and Pr according to the following
relation (Rogers 1992; Dorrance 2017):

T̄aw = 1 + γ − 1
2

M2
√

Pr. (2.21)

It is evident from figure 2 that the temperature at the wall increases with Prandtl number.
Consequently, the peak temperature gradient inside the boundary layer is stronger at
higher Prandtl numbers. Increasing the Prandtl number leads to stronger viscous transport
compared with thermal diffusion. As a result, the boundary layer thickness (δ99) increases
while the thermal boundary layer thickness decreases with increasing Prandtl number. The
velocity gradient is stronger near the wall at lower Prandtl numbers. The velocity gradient
weakens toward the boundary layer edge. Beyond x2 ≈ 6 (0.55δ99) the velocity gradient is
stronger at Pr = 1.3 compared with the lower Prandtl number cases.

3. Methodology for DNSs

Although the linear analysis employs Navier–Stokes equations, DNSs of a temporally
evolving boundary layer are performed using a finite volume solver based on the gas
kinetic method (Xu 2001) (GKM). The GKM solver is capable of accommodating
non-equilibrium thermodynamic effects. The GKM–DNS results will be compared against
linear theory for validation of the numerical method.

A brief overview of the GKM is provided here, and for more details the reader is referred
to Xu (2001). The GKM solves the Boltzmann equation

∂f
∂t

+ c · ∇f + a · ∇cf =
(
∂f
∂t

)
collisions

, (3.1)

describing the evolution of single particle probability density function, f (x, c, t), defined
as a function of physical space, velocity space and time (Xu 2001). Here, a is the particle
acceleration. Solving the more fundamental Boltzmann equation allows applicability over
a wider range of flow conditions for addressing non-equilibrium and non-continuum
effects encountered in high speed flows. The collision terms in the Boltzmann equation
are modelled using the Bhatnagar–Gross–Krook (BGK) model resulting in the following
Boltzmann–BGK equation:

∂f
∂t

+ c · ∇f + a · ∇cf = g − f
τ

, (3.2)

where g is the equilibrium (i.e. Maxwellian) particle distribution function and τ is the
characteristic relaxation time.
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Figure 2. Profiles of base (a) velocity (Ū1), (b) temperature (T̄), (c) velocity gradient (dŪ1/dx2) and
(d) temperature gradient (dT̄/dx2) at M = 4 for three different Prandtl numbers.

The macroscopic variables, U = [ρ, ρui,E]T , are obtained from the distribution
function, f , using

U =
∫ ∞

−∞
ψ f dΞ. (3.3)

Here, ρ is fluid density, ui is macroscopic velocity, E is the sum of kinetic and
thermal energy densities, ψ = [1, ci,

1
2 (c

2
i + ξ2)]T , ξ is an internal variable with K =

(5 − 3γ )/(γ − 1) degrees of freedom and dΞ = dcidξ is a volume element in phase
space. Being a finite volume based solver, the GKM is governed by

∂

∂t

∫
Ω

Udx +
∮

A
F ·dA = 0, (3.4)

where Ω is the control volume, A is the surface of control volume and F is the flux
of macroscopic variables. Equation (3.4) is integrated in time and discretized in space.
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The solution update U at time step n + 1 and at the cell centre (i, j, k) is obtained as

Un+1
i,j,k = Un

i,j,k − 1
�x

∫ t

0
Fi+1/2,j,k(t)− Fi−1/2,j,k(t) dt

− 1
�y

∫ t

0
Gi,j+1/2,k(t)− Gi,j−1/2,k(t) dt

− 1
�z

∫ t

0
Hi,j,k−1/2(t)− Hi,j,k−1/2(t) dt, (3.5)

where Fi = [F,G,H] are the fluxes for the conservative variables. The flux at the
cell interface (i + 1/2, j, k) is then calculated from the distribution function using the
following relation:

Fi = [Fρ,Fρui,FE]T =
∫ ∞

−∞
ciψ fi+1/2,j,k(c, t, ξ) dΞ. (3.6)

Here, Fρ , Fρui and FE represent the density, momentum and energy flux, respectively. The
flux calculations at the cell interface require the interpolation of conservative variables
from the cell centre. The interpolation is performed by a fifth-order weighted essentially
non-oscillatory scheme (Kumar, Girimaji & Kerimo 2013).

The GKM solver used in the current work has already been validated for various
compressible flows: channel flows (Mittal & Girimaji 2020), decaying and homogeneous
shear turbulence (Kumar et al. 2013; Kumar, Bertsch & Girimaji 2014) and mixing layers
with Kelvin–Helmholtz instability (Karimi & Girimaji 2016). In this work, the DNS results
will be compared against LSA for the case of high speed boundary layers.

Temporal simulations (Adams, Sandham & Kleiser 1992; Adams & Kleiser 1993, 1996)
of a flat plate adiabatic boundary layer are considered. The problem set-up is shown in
figure 1. The temporal approach allows for the use of periodic boundary conditions in
both the streamwise (x1) and spanwise (x3) directions. A forcing term (Adams & Kleiser
1996) is added to the governing equation to ensure that the boundary layer is locally
parallel and the basic state is independent of x1. It must be noted that the effects of
boundary layer growth have not been accounted for in the current computations. As a
result, the basic state stays invariant, allowing for a direct comparison with the temporal
stability analysis described in § 2.1. At the wall, no-slip boundary conditions for velocity
are employed, while the temperature is set to the adiabatic wall temperature. The Dirichlet
boundary condition for temperature ensures consistency with linear analysis, wherein the
temperature perturbation vanishes at the wall. A zero gradient boundary condition is used
for density at the wall. At the top boundary, all the variables are set to their respective
free-stream values. The simulations are initialized with a laminar basic state superposed
with low intensity perturbations. The basic state solution is the same as used earlier in the
LSA.

The non-dimensional parameters and the grid sizes for the simulations are listed in
table 2. Simulations C1–C3 are initialized with the most unstable first mode and C4–C6 are
initialized by the most unstable second mode. The domain size in the streamwise direction
(Lx1) is set to twice the wavelength of the instability. The computational grid is uniform in
the streamwise and spanwise directions while a stretched grid with a cell-to-cell grading
of r = 1.015 is employed in the wall-normal direction. The DNS results are validated in
§ 5 by comparing the growth rate of kinetic energy and other statistics against LSA.
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Case Re Pr M ρ∞(kg · m−3) T∞(K) Lx1 Lx2 Lx3 Nx1 Nx2 Nx3

C1 4000 0.5 0.5 1.0 353 144.4 40 5.8 100 400 4
C2 4000 0.9 6.0 1.0 353 193.3 124 127.6 100 200 66
C3 4000 1.3 6.0 1.0 353 104.7 124 98.4 100 200 94
C4 4000 0.5 4.0 1.0 353 37.2 76 1.5 100 400 4
C5 4000 1.3 4.0 1.0 353 35.0 76 1.4 100 300 4
C6 4000 1.3 6.0 1.0 353 65.7 124 2.63 100 200 4

Table 2. Non-dimensional parameters, free-stream properties and grid sizes for the DNSs. The domain sizes
are normalized by the Blasius length scales LR; Nx1, Nx2 and Nx3 denote the number of grid points in the x1, x2
and x3 directions, respectively. The grid resolutions are selected after conducting appropriate grid convergence
studies.

4. Neutral stability curves and eigenspectrum

The neutral stability curves for 2-D disturbances at different Mach and Prandtl numbers
are displayed in figure 3. The neutral stability curves represent contours of zero growth
rate in the Re–α plane. The curves shown in figure 3 are computed for Re ∈ [10, 5000].
At low Mach numbers, the stability curves are reasonably invariant with Prandtl number.
This is not surprising as the base flow for the low Mach number cases is more or less
unaltered in the Prandtl number regime considered. For M ≥ 4, there are two loops of
instability in the α–Re plane. The loop at low wavenumbers corresponds to the first mode
instability while the second mode is unstable at higher wavenumbers. The streamwise first
mode is stable at M = 4 and M = 6 for Pr = 0.5 over the range of Reynolds number
considered. As the Prandtl number is increased the first mode becomes unstable over a
wider range of wavenumbers and the critical Reynolds number (Recr) for the first mode
decreases. The instability region of the second mode also expands with increasing Prandtl
number. For Pr ≤ 0.7 at M = 4, the first mode destabilizes at a higher Reynolds number
than the second mode. However, at Pr = 0.9, Recr for the first mode is lower than the
second mode. The loops corresponding to first and second modes fuse at M = 6 for Pr =
0.9 as destabilization increases with Prandtl number. Ramachandran et al. (2015) also
observed a similar merger of the loops of first and second modes. Figure 4 shows the
effect of Prandtl number on the stability characteristics of 3-D disturbances. The wave
angle for the oblique waves is defined by the following relation:

ψ = tan−1
(
β

α

)
. (4.1)

The stability curves shown in figure 4 correspond to Ψ = 60◦. Much like the 2-D
disturbances, oblique waves are also destabilized at high Prandtl number. The critical
Reynolds number for 3-D disturbances also decreases with increasing Prandtl number.

We now investigate the effect of Prandtl number on the eigenspectrum by examining the
variation of phase speed and growth rate for the fast and slow modes (Fedorov & Tumin
2011). The phase speed and growth rate variation for different Pr at M = 4 are shown in
figure 5. In the limit of α → 0, the fast and slow modes are synchronized with the acoustic
wave (ca± = 1 ± 1/M). The phase speed of the fast mode decreases with increasing
wavenumber and synchronizes with the continuous spectrum branch corresponding to
entropy and vorticity modes (Cr = 1). The fast mode after synchronization with the
vorticity/entropy modes is termed the mode F+ (Fedorov & Tumin 2011). The phase speed
of the fast mode decreases further and it synchronizes with the slow mode. Due to this
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Figure 3. Neutral stability curves of 2-D disturbances for different Prandtl numbers at (a) M = 0.5,
(b) M = 1, (c) M = 4 and (d) M = 6.
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Figure 4. Neutral stability curves of 3-D disturbances (Ψ = 60◦) for different Prandtl numbers at (a) M = 2
and (b) M = 3.
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Figure 5. Variation of (a) phase speed and (b) growth rate for fast and slow modes with wavenumber at M = 4,
Re = 4000 for three different Pr. Solid lines correspond to fast mode and dashed lines represent slow mode;
(a) Cr and (b) Ci.

synchronization the growth rates of the fast and slow modes exhibit a peak and trough
(Fedorov & Tumin 2011). The phase speed evolution for the fast and slow modes shown
in figure 5(a) are similar for all three Prandtl numbers considered. The synchronization
point between the fast and entropy/vorticity mode and the location of discrete spectrum
branching is weakly dependent on Prandtl number. At M = 4, the slow mode is unstable
at low wavenumbers while the fast mode (F+) becomes unstable at high α for all three
Prandtl numbers considered. Figure 6 plots the phase speed and growth rates for fast
and slow modes at M = 6. Similar to the case at M = 4, the phase speed evolution and
the synchronization wavenumbers do not have a strong dependence on Prandtl number
for M = 6 as well. However, the branching pattern of the eigenspectrum is dependent
on Prandtl number. For low Prandtl number, the mode F+ becomes unstable at high
wavenumbers and exhibits a strong peak. On the other hand, for Pr ≥ 0.7, the slow mode
after synchronization with the fast mode becomes the dominant instability. Fedorov &
Tumin (2011) and Ramachandran et al. (2015) also report a similar branching pattern of
the eigenspectrum depending on the Mach and Prandtl numbers. The effect of Prandtl
number on the eigenfunctions of the fast and slow modes at M = 6, α = 0.05 is shown in
figure 7. The eigenfunctions are normalized by the magnitude of the pressure perturbation
at the wall. In the low wavenumber limit, the eigenfunctions of velocity and pressure for
both the fast and slow modes do not have a strong dependence on Prandtl number. The
eigenfunctions of temperature for the slow mode peak near the critical layer. The critical
layer (ycl) is the location in the flow where the phase speed of the instability (Cr) equals
the base velocity (Mack 1984). In general, ycl increases with Prandtl number, as a result,
there is a moderate shift in the location of peak temperature at high Prandtl number. The
peak value of the temperature eigenfunction is also larger at Pr = 0.9 compared with
Pr = 0.5. The eigenfunctions of the fast (F+) and slow (S) modes before the branching
of the discrete spectrum are presented in figure 8. Before the branching of the discrete
spectrum the fast mode is more unstable at Pr = 0.5 (figure 6) while the slow mode
is the dominant instability at Pr = 0.9. The eigenfunctions for the fast and slow modes
at both Prandtl numbers are similar before the synchronization point. Figure 9 displays
the eigenfunctions of the fast and slow modes near the peak/trough in growth rates. The
pressure eigenfunctions for both F+ and S modes are reasonably invariant with Pr. The
temperature eigenfunction for the F+ mode exhibits a stronger peak at Pr = 0.9, while the
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Figure 6. Variation of (a) phase speed and (b) growth rate for fast and slow modes with wavenumber at M = 6,
Re = 4000 for three different Pr. Solid lines correspond to fast mode and dashed lines represent slow mode;
(a) Cr and (b) Ci.
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Figure 7. Eigenmode shapes of the (a–c) fast (F) and (d–f ) slow (S) modes at M = 6, Re = 4000, α = 0.05,
β = 0 for two different Prandtl numbers; (a) û1, (b) T̂ , (c) p̂, (d) û1, (e) T̂ and ( f ) p̂.

slow mode has higher peak temperature at Pr = 0.5. This can be attributed to the different
branching patterns observed for Pr = 0.5 and Pr = 0.9.

5. Prandtl number effects on flow–thermodynamics interactions

The effect of Prandtl number on the flow–thermodynamics interactions is investigated in
this section. For simplicity, we only consider the most unstable first/second mode for a
given (Re,Pr,M) combination. The most unstable mode is obtained by sweeping over a
range of thestreamwise–spanwise wavenumber pairs (α, β). The Reynolds number for all
the cases considered here is maintained at Re = 4000. At each Prandtl number, the most
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Figure 8. Eigenmode shapes of the (a–c) fast (F+) and (d–f ) slow (S) modes before the branch point at
M = 6, Re = 4000, α = 0.15, β = 0 for two different Prandtl numbers; (a) û1, (b) T̂ , (c) p̂, (d) û1, (e) T̂
and ( f ) p̂.
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Figure 9. Eigenmode shapes of the (a–c) fast (F+) and (d–f ) slow (S) modes near peak/trough in growth rate
at M = 6, Re = 4000, α = 0.175, β = 0 for two different Prandtl numbers; (a) û1, (b) T̂ , (c) p̂, (d) û1, (e) T̂
and ( f ) p̂.

unstable first mode is obtained for M = {0.5, 1, 2, 3, 4, 6}, while the most unstable second
mode is computed for M = {4, 5, 6, 7, 8}.

We first analyse the effect of Mach number and Prandtl number on the instability growth
rate. The growth rates for the most unstable first and second modes are shown in figure 10.
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Figure 10. Growth rates for the most unstable (a) first mode and (b) second mode. Filled symbols are from
LSA computations and unfilled symbols correspond to results of GKM–DNS cases outlined in table 2. (a) First
mode and (b) second mode.

The mean growth rates obtained from GKM–DNS for cases C1–C6 outlined in table 2
are also plotted in figure 10. The growth rates predicted by GKM–DNS are in excellent
agreement with linear analysis for both first and second mode cases. A more rigorous
validation by comparing the mode shapes of perturbations for cases C3 and C6 is provided
in Appendix B.

The most unstable first mode is streamwise for the subsonic Mach numbers, and oblique
for the supersonic and hypersonic Mach numbers. The obliqueness angle for the most
unstable mode decreases with Prandtl number at a given Mach number. At Pr = 0.5,
the growth rate for the first mode decreases monotonically with Mach number. The high
Mach number (M ≥ 2) cases are destabilized with increasing Prandtl number while the
low Mach number cases are unaffected by Prandtl number changes. The instability growth
rates at high Mach numbers increases tenfold as the Prandtl number is increased from
0.5 to 1.3. This is consistent with the findings of Ramachandran et al. (2015), wherein a
similar destabilization of the streamwise first mode is observed for M = 4.

The most unstable second mode is always aligned along the streamwise direction as
the relative supersonic region is of maximum extent for 2-D waves (Mack 1984). Much
like the first mode, the second mode is also destabilized with increasing Prandtl number,
although the destabilization is not as strong as the first mode. As shown in figure 10(b),
the growth rate for all Mach numbers considered at Pr = 1.3 is more than double the
growth rate at Pr = 0.5. A similar destabilization of the second mode was also observed
by Ramachandran et al. (2015). The main novelty of the present work is to examine the
physics underlying the destabilization with increasing Prandtl number.

5.1. Flow–thermodynamics interactions for the first mode
The influence of Prandtl number on the growth rate can be best understood by examining
the flow–thermodynamics interactions in the flow. Toward this end, the internal-kinetic
energy exchange for the first mode instability is analysed. For this analysis we define the
global average Qg as

Qg = 1
Lx2

∫ Lx2

0
〈Q(x1, x2, x3)〉 dx2. (5.1)
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Figure 11. Global averaged (a) internal energy fraction (eg/kg) and (b) pressure-dilatation to production ratio
for the most unstable first mode. The symbols are the same as figure 10; (a) eg and (b) Πg

k /P
g
k .

The global averaged perturbation internal energy is obtained from LSA by integrating the
amplitude of pressure perturbations in the wall-normal direction

eg = 1
Lx2

∫ Lx2

0

p̂(x2)p̂c(x2)

2γ P̄
dx2, (5.2)

where p̂ is the mode shape of pressure perturbation obtained from linear theory and p̂c is
the complex conjugate of p̂. Similarly, the global averaged perturbation kinetic energy kg

is determined by the following expression:

kg = 1
2Lx2

∫ Lx2

0
ρ̄(x2)[û1(x2)ûc

1(x2)+ û2(x2)ûc
2(x2)+ û3(x2)ûc

3(x2)] dx2. (5.3)

The global averaged perturbation internal energy normalized by the global averaged
perturbation kinetic energy at different M and Pr is presented in figure 11(a). It is evident
from figure 11(a) that the internal energy content increases with increasing Prandtl number
at high Mach numbers, suggesting thermodynamic effects are stronger in high Prandtl
number fluids. For the first mode, the perturbation internal energy content is at least 20
times smaller than the kinetic energy. As mentioned previously, the internal and kinetic
modes are coupled via pressure dilatation. The perturbation velocity field interacts with
the mean flow and the perturbation internal field via production and pressure dilatation,
respectively. Therefore, the ratio of pressure dilatation to production is key for quantifying
internal-kinetic energy exchange. The ratio of globally averaged pressure dilatation to
production is shown in figure 11(b). The ratio is always negative, indicating energy is
transferred from kinetic to the internal mode. The plots also indicate that production is an
order of magnitude greater than pressure dilatation for all cases. As pressure dilatation is
small compared with production, the internal-kinetic energy exchange is not significant for
the first mode.

The globally averaged internal energy and pressure-dilatation to production ratio
obtained from GKM–DNS are also shown in figure 11(a,b). As the DNSs are initialized
by the mode computed from LSA, the mean values of eg andΠg

k /P
g
k in time are presented.

The spatial derivatives in the Πg
k computations are obtained with spectral accuracy in the

homogeneous directions while a fourth-order central difference scheme is employed in the
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Figure 12. Global averaged terms in the kinetic energy budget: (a) production Pg
k , (b) pressure dilatation Πg

k
and (c) dissipation εg

k for the most unstable first mode. All budget terms are normalized by ζ = 2kgU∞/Lr.

wall-normal direction. The mean eg and pressure-dilatation to production ratio obtained
from GKM–DNS are in good agreement with linear analysis.

We now consider the effect of Prandtl number on the various processes in the kinetic
energy budget detailed in (2.16). Once again, the statistics are averaged in the wall-normal
direction. The global averaged terms in the kinetic energy budget are normalized by
ζ = 2kgU∞/Lr. The normalization ensures that the same level of perturbation kinetic
energy is maintained allowing for a valid comparison across different cases. The global
average of the transport term is identically zero as the velocity perturbations vanish at
the top and bottom boundaries. Figure 12 plots global averaged production (Pg

k), pressure
dilatation (Πg

k ) and dissipation (εg
k ) for the first mode at three different Prandtl numbers.

At all Pr–M combinations, production is the dominant process and pressure dilatation
is considerably smaller. The kinetic energy budget is essentially a balance between
production and dissipation. At Pr = 0.5, production is highest for M = 0.5 and decreases
monotonically with Mach number. Dissipation is fairly constant across all M at this Prandtl
number. The production decrease leads to stabilization of the first mode with Mach number
at Pr = 0.5. As the Prandtl number is increased, production increases almost tenfold
for the high Mach number cases. On the other hand, production levels are unchanged
for the low Mach number (M ≤ 1) cases. Dissipation exhibits only a marginal increase
with Prandtl number. Thus, the main cause of increased destabilization with Pr is the
enhancement of production.

Delving further, we examine the inter-component exchange of energy amongst the three
kinetic modes by considering the diagonal components of the stress budget (2.20). The
globally averaged terms on the right-hand side of the streamwise component of the stress
(Rg

11) budget are shown in figure 13(a–c). Since the base flow is two-dimensional and
parallel, the streamwise energy production (Pg

11) is the only non-zero diagonal component
of the production tensor. Consequently, Pg

11 is equal to twice the total production of kinetic
energy. The streamwise component of pressure–strain correlation (Πg

11) is of the order of
Pg

11 even though pressure dilatation is negligible. It is evident form figure 13(b) that the
sign of Πg

11 is always negative, indicating that energy is extracted from the streamwise
mode. The amount of energy extracted by pressure–strain correlation from the streamwise
mode increases with Prandtl number. The streamwise component of the dissipation tensor
(εg

11) is fairly constant with Prandtl number and is the least significant of the three
processes. Overall, Pg

11 +Π
g
11 increases with Pr for a given Mach number.

The averaged terms on the right-hand side of the wall-normal kinetic energy budget are
shown in figure 14(a,b). Here, Pg

22 is identically zero due to the absence of mean velocity
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Figure 13. Global averaged terms in the streamwise kinetic energy (R11) budget: (a) production Pg
11,

(b) pressure–strain correlation Πg
11 and (c) dissipation εg

11 for the most unstable first mode. All budget terms
are normalized by ζ = 2kgU∞/Lr .
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Figure 14. Global averaged terms in the wall-normal kinetic energy (R22) budget: (a) pressure–strain
correlationΠg

22 and (b) dissipation εg
22 for the most unstable first mode. (c) Wall-normal kinetic energy fraction

(Rg
22/2kg) for the most unstable first mode. All budget terms are normalized by ζ = 2kgU∞/Lr . The symbols

are the same as figure 10.

in the wall-normal direction. Energy extracted from the streamwise mode is transferred to
the wall-normal mode via Πg

22. The wall-normal component of the dissipation tensor is
negligible, indicating that almost all of the energy transferred to the wall-normal mode is
retained. Also, Πg

22 increases with Prandtl number, resulting in higher kinetic energy in
the wall-normal direction. This is shown in figure 14(c), wherein the wall-normal kinetic
energy fraction is plotted. The wall-normal kinetic energy content (Rg

22) increases with
Prandtl number due to increase in Πg

22. The fraction of wall-normal kinetic energy as
obtained from GKM–DNS is also presented in figure 14(c). The results from DNS are in
excellent agreement with linear analysis.

Figures 15(a) and 15(b) present the global averaged terms on the right-hand side of the
spanwise kinetic energy budget. As the most unstable first mode at M = 0.5 is aligned in
the streamwise direction, the spanwise kinetic energy is negligible. For the oblique modes
(M ≥ 1), Πg

33 provides a source of spanwise energy. Some of this energy is dissipated
via the spanwise component of the dissipation tensor εg

33. The dissipated energy is not
significant compared with Πg

33 at high Prandtl numbers. Also, Πg
33 increases with Prandtl

number, resulting in increased energy in the spanwise mode, as shown in figure 15(c).
The DNS results for the spanwise energy fraction are also shown in figure 15(c), and once
again the agreement with linear analysis is very good.

The above results indicate that the destabilization of the first mode with Prandtl number
is due to increased production. For a parallel flow, production is dependent on the shear
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Figure 15. Global averaged terms in the spanwise kinetic energy (R33) budget: (a) pressure–strain correlation
Π

g
33 and (b) dissipation εg

33 for the most unstable first mode. (c) Spanwise kinetic energy fraction (Rg
33/2kg) for

the most unstable first mode. All budget terms are normalized by ζ = 2kgU∞/Lr . The symbols are the same
as figure 10.
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Figure 16. (a) Global averaged shear stress production Pg
12, (b) absolute value of ratio of pressure–strain

correlation Πg
12 to shear stress production for the most unstable first mode. (c) Sum of all the terms on the

right-hand side of the shear stress budget equation (2.20). All budget terms are normalized by ζ = 2kgU∞/Lr;
(a) Pg

12, (b) |Πg
12/P

g
12| and (c) Πg

12 + Pg
12 + ε

g
12.

stress anisotropy 〈R12〉. The shear stress budget is examined in figure 16(a–c). The shear
stress production (P12) and the shear component of pressure–strain correlation tensor
(Π12) are given by the following relation:

P12 = −〈ρ̄u′
2u′

2〉
dŪ1

dx2
; Π12 =

〈
p′
(
∂u′

1
∂x2

+ ∂u′
2

∂x1

)〉
. (5.4a,b)

Here, P12 is dependent on the wall-normal kinetic energy and the mean velocity gradient.
As mentioned previously, the wall-normal energy content increases with Prandtl number.
Consequently, the global averaged production of shear stress (Pg

12) increases in magnitude,
as shown in figure 16(a). The absolute value of the ratio Π

g
12/P

g
12 is presented in

figure 16(b). Here, Πg
12 is positive for all (M,Pr) combinations. The ratio |Πg

12/P
g
12| is

approximately unity at low Mach numbers and decreases monotonically with increasing
Mach number. Furthermore, as the Prandtl number is increased, the ratio |Πg

12/P
g
12|

decreases. It must be noted that Πg
12 increases with Prandtl number in such a way that

the ratio of pressure–strain correlation to shear production decreases. This results in a net
increase in the magnitude of the shear stress budget (figure 16c).

Seeking the reason for increased production with Pr, we now examine shear stress
and mean velocity gradients. The shear stress is shown in figure 17(a). The shear stress
becomes more negative with increasing Prandtl number. This is also confirmed by DNS
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Figure 17. (a) Shear stress anisotropy (Rg
12/2kg) for the most unstable first mode. (b) Mean velocity gradient

(dŪ1/dx2) at the critical layer for the most unstable first mode. The symbols are the same as figure 10.

results presented in figure 17(a). The base velocity gradient at the critical layer in the flow
is presented in figure 17(b). The location of the critical layer corresponds to maximum
production in the flow. Although the base velocity gradient at the critical layer decreases
slightly with Prandtl number, the significant increase in the shear stress anisotropy allows
for higher production. At Pr = 1.3, the magnitude of shear stress anisotropy increases
monotonically with Mach number. The mean velocity gradient, on the other hand,
decreases monotonically with the Mach number. The competing trends for shear stress
anisotropy and mean velocity gradient leads to a production peak (figure 12) at M = 4 for
Pr = 1.3.

5.2. Flow–thermodynamics interactions for the second mode
In this subsection, we analyse the effect of Prandtl number on the flow–thermodynamics
interaction of the most unstable second mode. The global averaged perturbation internal
energy normalized by kg for the most unstable second mode is shown in figure 18(a). The
internal energy content increases with Prandtl number as thermodynamic effects become
stronger with increasing Prandtl number. Unlike the first mode, internal energy for the
second mode is of the same order as the perturbation kinetic energy. The internal-kinetic
energy interactions can be quantified by the ratio of pressure dilatation to production
shown in figure 18(b). The ratio Πg

k /P
g
k ∼ O(1), indicating pressure work is significant

for the second mode. Energy is transferred from the kinetic to the internal mode asΠg
k /P

g
k

is always negative. For a given Mach number, the ratio of pressure dilatation to production
decreases in magnitude with Prandtl number, and yet the internal energy fraction increases
with Prandtl number. The mean values of eg and Πg

k /P
g
k computed from GKM–DNS also

shown in figure 18(a,b) are in excellent agreement with linear analysis.
We now analyse the effect of Prandtl number on the flow processes. The global average

of the terms on the right-hand side of the kinetic energy budget (2.16) are shown in
figure 19(a–c). As in the case of the first mode, production is the dominant process and
increases with Prandtl number. Dissipation also increases with Prandtl number, although
it is small compared with production at high Prandtl numbers. Pressure dilatation for the
second mode is non-negligible, as seen previously. This kinetic to internal energy transfer
becomes stronger as the Prandtl number of the fluid increases. Nonetheless, the increase
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Figure 18. Global averaged (a) internal energy fraction (eg/kg) and (b) pressure-dilatation to production ratio
for the most unstable second mode. The symbols are the same as figure 10; (a) eg and (b) Πg

k /P
g
k .
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Figure 19. Global averaged terms in the kinetic energy budget: (a) production Pg
k , (b) pressure dilatation Πg

k
and (c) dissipation εg

k for the most unstable second mode. All terms in the budget are normalized by ζ =
2kgU∞/Lr .

in Pg
k is larger compared with the other two processes, resulting in higher kinetic energy

growth rates with increasing Prandtl number.
The inter-component energy transfer amongst the normal stresses is considered next.

Since the most unstable second mode is always aligned with the streamwise direction, the
spanwise modes have no energy. Figures 20(a)–20(c) plot the global averaged production
of the streamwise kinetic energy (Pg

11), the streamwise pressure–strain correlation (Πg
11)

and the streamwise component of the dissipation tensor (εg
11), respectively. Similar to

the first mode, Pg
11 equals twice the total production of kinetic energy. Pressure–strain

correlation extracts energy from the streamwise mode. The amount of energy extracted
increases with Prandtl number. A small portion of the energy gained via production is
dissipated, and the effect of dissipation increases slightly with Prandtl number.

Once again, Πg
22 provides a source of wall-normal energy. This is evident from

figure 21(a,b), wherein the global averaged terms of the wall-normal kinetic energy budget
are shown. A small fraction of the energy attained byΠg

22 is dissipated by the wall-normal
perturbations via ε22. Also, Πg

22 increases with Prandtl number whereas εg
22 is fairly

constant across all Prandtl numbers. The higher pressure–strain correlation level leads to
increased energy content in the wall-normal mode with increasing Prandtl number. This is
shown in figure 21(c), wherein the fraction of wall-normal energy is presented. The DNS
results are also presented in the same figure, corroborating the linear analysis findings.
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Figure 20. Global averaged terms in the streamwise kinetic energy (R11) budget: (a) production Pg
11, (b)

pressure–strain correlation Πg
11 and (c) dissipation εg

11 for the most unstable second mode. All terms in the
budget are normalized by ζ = 2kgU∞/Lr .
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Figure 21. Global averaged terms in the wall-normal kinetic energy (R22) budget: (a) pressure–strain
correlation Πg

22 and (b) dissipation εg
22 for the most unstable second mode. (c) Wall-normal kinetic energy

fraction (Rg
22/2kg) for the most unstable second mode. All budget terms are normalized by ζ = 2kgU∞/Lr .

The symbols are the same as figure 10.

The wall-normal component of kinetic energy contributes to the production of shear
stress (R12). The shear stress budget is examined in figure 22(a–c). Unlike the first
mode, the shear stress production (Pg

12) decreases in magnitude with Prandtl number. The
absolute value of the ratio ofΠg

12 to Pg
12 is of the order of unity. This is consistent with the

findings of Bertsch, Suman & Girimaji (2012) for homogeneous shear flows. For a given
Prandtl number, the ratio decreases monotonically with Mach number. Also, |Πg

12/P
g
12|

decreases with Prandtl number at a given M. This results in net magnitude increase of the
shear stress budget, as shown in figure 22(c).

We now examine the kinetic energy production. Figures 23(a) and 23(b) plot the
averaged shear stress anisotropy and the base velocity gradient at peak production,
respectively. The maximum production is at the sonic line for low Prandtl number fluids
but moves toward the boundary layer edge as the Prandtl number is increased. The sonic
line (x2a) is defined as the location in the flow wherein the relative disturbance Mach
number (Mr) equals 1. The relative disturbance Mach number (Mack 1984) is defined as

Mr = (αŪ1 − ωr)M
[(α2 + β2)T̄]1/2

. (5.5)

The magnitude of the globally averaged shear stress anisotropy increases with Prandtl
number but the base velocity gradient at peak production decreases with Prandtl number.
The significant increase in the shear stress magnitude permits the high levels of production
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Figure 22. Global averaged shear stress production Pg
12, (b) absolute value of ratio of pressure–strain

correlation Πg
12 to shear stress production for the most unstable second mode. (c) Sum of all the terms on the

right-hand side of the shear stress budget equation (2.20). All budget terms are normalized by ζ = 2kgU∞/Lr;
(a) Pg

12, (b) |Πg
12/P

g
12| and (c) Pg

12 +Π
g
12 + ε

g
12.
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Figure 23. (a) Shear stress anisotropy (Rg
12/2kg) for the most unstable second mode. (b) Mean velocity

gradient (dŪ1/dx2) at peak production for the most unstable second mode. The symbols are the same as
figure 10.

observed in figure 19(a). For a fixed Prandtl number, the magnitude of Rg
12 increases with

Mach number while the base flow gradient at peak production decreases. This results in
a non-monotonic dependence of production with respect to Mach number, as shown in
figure 19(a). The mean Rg

12 obtained from DNS is also shown in figure 23(a). The DNS
results are in excellent agreement with linear analysis.

Finally, we examine the internal energy budget (2.19) in figure 24(a–c). Internal and
kinetic modes exchange energy via pressure dilatation. The kinetic to internal energy
transfer increases with Prandtl number at a given Mach number. The perturbation internal
mode also interacts with the mean internal mode via the thermal flux (Tg

s ) and viscous
terms (εg

s ). A significant portion of the energy gained by the perturbation internal mode
is transferred to the mean internal mode via the action of thermal flux. The thermal flux
action weakens with increasing Prandtl number as it is inversely proportional to Prandtl
number. The viscous action is small compared with Πg

k and Tg
s . The increased pressure

work combined with reduced thermal flux action leads to higher internal energy content
in high Prandtl number fluids (figure 18a).
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Figure 24. Global averaged terms in the internal energy budget: (a) negative of pressure dilatation −Πg
k , (b)

thermal flux Tg
s and (c) viscous term ε

g
s for the most unstable second mode. All budget terms are normalized

by ζ = 2kgU∞/Lr .
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Figure 25. Profiles of (a) wall-normal kinetic energy (R22), (b) mean velocity gradient dŪ1/dx2 and (c)
production of shear stress (P12) for the most unstable first mode at M = 4.

5.3. Flow physics underlying Prandtl number effects
In this subsection the sequence of flow processes underlying the observed Pr effects on
the first and second modes will be summarized. It is already established that for both
the first and second modes the averaged shear stress anisotropy increases with Prandtl
number. And yet, Pg

12 increases with Prandtl number for first mode while it decreases for
the second mode. We examine the contrasting behaviour of Pg

12 by considering the profiles
of wall-normal kinetic energy (R22), base flow gradient (dŪ1/dx2) and P12. The profiles
for first mode at M = 4 are shown in figure 25(a–c). For the first mode, the wall-normal
kinetic energy increases with Prandtl number throughout the boundary layer. The base
flow gradient near the R22 peak is also higher at high Prandtl numbers. Therefore, Pg

12
increases with Prandtl number for the first mode.

We now summarize the flow–thermodynamics interactions for the first mode. A
schematic representing the key interactions is displayed in figure 26. Energy is extracted
from the mean flow via production and transferred to the streamwise perturbations.
Pressure dilatation (pressure work) is not significant and does not play an important role in
the instability dynamics. The effect of Prandtl number manifests through pressure–strain
correlation. Production and all components of pressure–strain correlation increase with
Prandtl number. The more energetic wall-normal mode leads to a rise in the production
of shear stress. The ratio of Pg

12 to Πg
12 decreases with Prandtl number. As a result, the

difference of Pg
12 and Πg

12 increases with Prandtl number, leading to increased magnitude
of shear stress anisotropy. The higher shear stress anisotropy ultimately allows for higher
production, leading to increased destabilization at higher Prandtl number.
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Figure 26. Schematic of energy interactions between internal and kinetic modes for the first mode instability.
Up/down arrows indicate increasing/decreasing magnitude of the processes with increasing Prandtl number.
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Figure 27. Profiles of (a) wall-normal kinetic energy (R22), (b) mean velocity gradient dŪ1/dx2 and (c)
production of shear stress (P12) for the most unstable second mode at M = 4.

For the second mode, the global averaged wall-normal energy (Rg
22) increases with

Prandtl number while Pg
12 decreases in magnitude with Prandtl number. The profiles of

R22, base flow gradient and P12 for the second mode at M = 4 are shown in figure 27(a–c),
respectively. Unlike the case of the first mode, the R22 profile has a global and a local
maximum. The global maximum is located near the sonic line (x2 ≈ 3). The global
maximum of the wall-normal energy decreases with Prandtl number. The mean velocity
gradient near the sonic line also decreases with Prandtl number. Hence, the low Prandtl
number fluid has a much stronger global minimum of P12, located near the sonic line. The
local R22 maximum, near the boundary layer edge (x2 ≈ 10) is stronger for higher Prandtl
number fluid. However, the mean flow gradient is negligible near the boundary layer
edge. Consequently, the local P12 minimum near the boundary layer edge is substantially
smaller compared with the global minimum, leading to a decrease in Pg

12 magnitude with
increasing Prandtl number.

The flow–thermodynamics interactions for the second mode are summarized in the
schematic shown in figure 28. Energy is transferred from the mean flow to the streamwise
mode of perturbation kinetic energy via production. Unlike the first mode, pressure
dilatation is significant for the second mode. Pressure work transfers energy from the
kinetic to the internal mode and pressure–strain correlation redistributes energy amongst
the stress components. Production, pressure dilatation and the diagonal components ofΠg

ij
increase with Prandtl number. This leads to higher wall-normal and internal energy with
increasing Prandtl number. The production of shear stress and the shear component of
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Figure 28. Schematic of energy interactions between internal and kinetic modes for the second mode
instability. Up/down arrows indicate increasing/decreasing magnitude of the processes with increasing Prandtl
number.

Case Re Pr M ρ∞(kg · m−3) T∞ (K) Lx1 Lx2 Lx3 Nx1 Nx2 Nx3

R1 4000 0.5 3.0 1.0 353 924 59 924 200 300 200
R2 4000 0.7 3.0 1.0 353 924 59 924 200 300 200
R3 4000 1.3 3.0 1.0 353 924 59 924 200 300 200
R4 4000 0.5 6.0 1.0 353 359 124 359 200 300 200
R5 4000 0.7 6.0 1.0 353 359 124 359 200 300 200
R6 4000 1.3 6.0 1.0 353 359 124 359 200 300 200

Table 3. Non-dimensional parameters, free-stream properties and grid sizes for DNSs with random pressure
forcing.

pressure–strain correlation decrease with Prandtl number. The difference of Pg
12 and Πg

12
increases with Prandtl number, leading to high shear stress anisotropy. The increased shear
stress anisotropy permits the higher level of production leading to increased instability
growth rate at higher Prandtl number.

6. Boundary layer response to random pressure forcing at different Prandtl numbers

The nature and composition of free-stream disturbances is not necessarily known for
all transition experiments (Hader & Fasel 2018). Consequently, Hader & Fasel (2018)
modelled the free-stream disturbance by random pressure (acoustic) disturbances to
simulate natural transition in high speed boundary layers. More recently, Mittal, Sharma
& Girimaji (2021) employed random acoustic disturbances to study instability evolution
in Poiseuille flow. Following previous works, we perform DNSs of temporally evolving
boundary layers with randomly generated pressure forcing at different Mach and Prandtl
numbers. The temporal simulations are initialized by a laminar basic state superposed
with low intensity random pressure forcing (Hader & Fasel 2018; Mittal et al. 2021).
The intensity of pressure forcing is 1 % of the free-stream pressure. The simulations
are performed at M = 3 and M = 6 for Pr = {0.5, 0.7, 1.3}. The grid sizes and relevant
parameters for the simulations are listed in table 3.

The evolution of globally averaged kinetic and internal energy at M = 6 for three
different Prandtl numbers is shown in figure 29. After the lapse of an initial transience,
kinetic energy grows exponentially at the dominant eigenmode growth rate predicted by
LSA. The dominant eigenmode corresponds to the streamwise–spanwise wavenumber
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Figure 29. Evolution of globally averaged (a) kinetic energy (kg) and (b) internal energy (eg) at M = 6 and
Re = 4000 for three different Prandtl numbers. The dashed lines represent the dominant eigenmode growth at
the rate predicted by LSA; (a) kg and (b) eg.

pair (10, 0) for Pr = {0.5, 0.7}, while the mode (12, 0) dominates for Pr = 1.3. Here,
(m, n) denotes the mth and nth harmonic of the fundamental streamwise and spanwise
wavenumber resolved by the simulation. The asymptotic growth rate of kg increases with
increasing Prandtl number. Since the dominant mode at M = 6 is a second mode, the
internal energy also grows beyond the transient region and the growth rate of eg agrees
well with LSA. The initial forcing generates a broadband spectrum with energy randomly
distributed in all wavenumbers. This is evident from the spectral spread of global kinetic
energy shown in figure 30. The high wavenumbers are linearly stable and dissipate quickly,
resulting in kinetic energy decay in the transient stage. As a result by t = 500 most
of the energy is contained in the linearly unstable wavenumbers. During the transient
stage non-modal interactions are prevalent and the evolution cannot be determined by an
eigenmode analysis. The length of the transient stage decreases with increasing Prandtl
number (figure 29). Consequently, the higher Prandtl number cases attain the asymptotic
state faster and are more energetic at all times than the low Pr case. For Pr = 0.5 the
Fourier mode (10, 0) becomes the most energetic mode at late times. Linear stability
analysis also predicts the mode (10, 0) as the fastest growing mode. The kinetic energy
spectrum for higher Prandtl number cases has multiple modes with similar energy content.
The modes (10, 0) and (10, 1) are the most energetic modes for Pr = 0.7. This is perhaps
due to the fact that the most unstable eigenmodes corresponding to (10, 0) and (10, 1) have
similar growth rates. Similarly, the modes (10, 0), (11, 1) and (12, 0) are most energetic
for Pr = 1.3. The Fourier mode shapes corresponding to mode (10, 0) at late times are
presented in figure 31. For all three Prandtl numbers, the mode shapes obtained from DNS
are in excellent agreement with the dominant eigenmode shapes obtained from LSA. This
confirms that in the asymptotic limit the boundary layer response to external forcing is
completely characterized by the most unstable eigenmode(s).

The evolution of globally averaged terms in the kinetic energy budget are shown in
figure 32(a–c). Production increases exponentially after the lapse of the transient stage
for all Pr. In the transient regime, Pg

k exhibits a oscillatory behaviour and is always
positive. The production level increases with Prandtl number at all times. Dissipation
decays with time initially and grows exponentially once the transient stage ends. Much
like production, dissipation is higher at high Prandtl numbers for all times. The evolution
of pressure-dilatation magnitude shown in figure 32(b) suggests that Πg

k also has an
exponential variation in the asymptotic limit. At late times, pressure dilatation is negative

948 A16-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.678


B. Sharma and S.S. Girimaji

0 5

4

8

12

10 15 20

β

α
0 5

4

8

12

10 15 20
α

0 5

4

8

12

10 15 20

0 5

4

8

12

10 15 20

β

0 5

4

8

12

10 15 20 0 5

4

8

12

10 15 20

0 5

4

8

12

10 15 20

β

0 5

4

8

12

10 15 20 0 5

4

8

12

10 15 20

α

kg: 5.0×10–7 1.9×10–6 3.2×10–6 4.5×10–6 kg: 5.0×10–7 1.9×10–6 3.2×10–6 4.5×10–6 kg: 4.5×10–6 1.7×10–5 2.9×10–5 4.1×10–5

kg: 5.0×10–7 1.9×10–6 3.2×10–6 4.6×10–6 kg: 5.0×10–7 1.9×10–6 3.2×10–6 4.6×10–6 kg: 3.5×10–5 1.3×10–4 2.2×10–4 3.2×10–4

kg: 5.0×10–7 1.9×10–6 3.2×10–6 4.5×10–6 kg: 5.0×10–7 1.9×10–6 3.2×10–6 4.5×10–6 kg: 3.0×10–2 1.1×10–1 1.9×10–1 2.7×10–1

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

t = 500t = 30 t = 1500

Figure 30. Global kinetic energy (kg) spectrum at M = 6, Re = 4000 for (a–c) Pr = 0.5, (d–f ) Pr = 0.7 and
(g–i) Pr = 1.3.

as energy is transferred from the kinetic to internal mode. However, in the transient stage,
Π

g
k is dominantly positive as energy is transferred from the internal to the kinetic mode.

This is not surprising as, initially, all the perturbation energy is in the internal mode
and pressure does work on the velocity field to facilitate the energy transfer. Similar to
Pg

k and εg
k , at late times the magnitude of Πg

k is also higher for high Prandtl number.
During the transient stages, however, pressure dilatation is similar in magnitude for all
three Prandtl numbers. Figure 33 presents the kinetic energy budget terms normalized
by the instantaneous kinetic energy at M = 6. The normalization ensures that the budget
term asymptotes to a constant at late times. The asymptotic value is approximately equal to
the budget contributions of the most unstable eigenmode predicted by linear theory. This
is also not surprising, as at late times, the evolution is determined by the most unstable
eigenmode.

The kinetic energy evolution at M = 3 and Re = 4000 for different Pr is shown in
figure 34. Similar to the M = 6 case, kg at M = 3 also increases exponentially after a
transient decay stage. The length of the transient stage also decreases with increasing Pr.
The kinetic energy growth at late times is slower than the most unstable eigenmode growth
rate predicted by LSA. At M = 3 for all Prandtl numbers, there exist several modes with
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Figure 31. Mode shapes corresponding to mode (10, 0) at M = 6, Re = 4000 for (a–c) Pr = 0.5, (d–f )
Pr = 0.7 and (g–i) Pr = 1.3: (a) û1, (b) T̂ , (c) p̂, (d) û1, (e) T̂ , (f ) p̂, (g) û1, (h) T̂ and (i) p̂.
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Figure 32. Evolution of globally averaged terms in the kinetic energy budget: (a) production (Pg
k), (b) absolute

value of pressure dilatation (|Πg
k |) and (c) dissipation (−εg

k ) at M = 6 and Re = 4000 for three different Prandtl
numbers. The dashed lines represent dominant eigenmode growth at the rate predicted by LSA.

growth rates nearly identical to the most unstable mode. As a result, there are multiple
Fourier modes with similar energy content at late times. However, the mode shapes for
these modes are qualitatively similar. The kinetic energy budget terms normalized by
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Figure 33. Evolution of globally averaged terms in the kinetic energy budget normalized by instantaneous
kinetic energy for (a) Pr = 0.5, (b) Pr = 0.7 and (c) Pr = 1.3 at M = 6 and Re = 4000. All budget terms
are normalized by ζ = 2kgU∞/Lr . The dashed lines represent the budget contributions of the most unstable
eigenmode predicted by LSA.
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Figure 34. Evolution of globally averaged kinetic energy (kg) at M = 3 and Re = 4000 for three different
Prandtl numbers. The dashed lines represent the dominant eigenmode growth at the rate predicted by LSA.
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Figure 35. Evolution of globally averaged terms in the kinetic energy budget normalized by instantaneous
kinetic energy for (a) Pr = 0.5, (b) Pr = 0.7 and (c) Pr = 1.3 at M = 3 and Re = 4000. All budget terms
are normalized by ζ = 2kgU∞/Lr . The dashed lines represent the budget contributions of the most unstable
eigenmode predicted by LSA.

instantaneous kinetic energy is presented in figure 35. The budget terms at M = 3 also
asymptote to the contributions of the most unstable eigenmode.

Overall, the response of the boundary layer to random pressure forcing can be
completely determined by the most unstable eigenmode(s) at late times. Since the growth
rate of the most unstable eigenmode increases with Pr, random pressure forcing leads to
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substantial increase in perturbation energy growth for high Prandtl numbers. There exists
a transient region where non-modal interactions are significant. During the transient stage
total energy decays as dissipation dominates production. The length of transient regime
increases with decreasing Pr.

7. Conclusions

In this work, the influence of the Prandtl number on the flow–thermodynamics interaction
for compressible boundary layer instability is examined. LSA and DNS of compressible
boundary layers are performed in the parameter regimes M ∈ [0.5, 8] and Pr ∈ [0.5, 1.3].
The most unstable first and second modes are identified and the influence of both Mach
and Prandtl numbers is studied. Both first and second modes are destabilized by increasing
Prandtl number. The underlying flow–thermodynamics interactions are investigated. It is
shown that the internal energy content is negligible compared with kinetic energy for
the first mode, while the second mode has considerable internal energy content. Pressure
dilatation is not significant for the first mode and does not play an important role in the
instability dynamics. For the second mode, pressure work transfers considerable energy
from the perturbation kinetic to the internal mode.

Despite the marked difference in pressure dilatation both modes exhibit increased
production with Prandtl number. In the case of the first mode all components of
the pressure–strain correlation increase with Prandtl number. Higher energy in the
wall-normal mode leads to increased production of the shear stress at high Prandtl number.
The shear pressure–strain correlation also increases with Prandtl number but not as rapidly
as shear production. Thus, the net difference between Pg

12 and Πg
12 increases with Prandtl

number. The net shear stress anisotropy increase permits higher production leading to
increased destabilization of the first mode at higher Prandtl numbers. In the case of
the second mode, both Pg

12 and Πg
12 decrease with Prandtl number. However, the net

difference of Pg
12 and Πg

12 increases with Prandtl number. The resulting higher shear
stress anisotropy allows for increased production levels at higher Prandtl numbers leading
to increased growth rates at high Prandtl numbers. These findings not only enhance our
understanding of Prandtl number effects, they also provide the insight needed for closure
model development.
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Appendix A

A.1. Linearized perturbation equations
The linearized perturbation equations (Malik 1989) for a compressible parallel boundary
layer flow are detailed in this subsection. The linearized continuity equation is given by
the following relation:

∂ρ′

∂t
+ Ūi

∂ρ′

∂xi
+ ∂ρ̄

∂xi
u′

i + ρ̄
∂u′

i
∂xi

= 0. (A1)
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The momentum equations are obtained as

ρ̄
∂u′

i
∂t

+ ρ̄Ūk
∂u′

i
∂xk

+ ρ̄
∂Ūi

∂xk
u′

k = −∂p′

∂xi
+ 1

Re
∂′

ik
∂xk

, (A2)

where ′
ik is the linearized viscous stress tensor. The components of the linearized viscous

stress tensor ′
ik are given by

′
ik = μ̄

(
∂u′

i
∂xk

+ ∂u′
k

∂xi

)
+ μ′

(
∂�Ui

∂xk
+ ∂ �Uk

∂xi

)
+ λ̄∂u′

k
∂xk

δik. (A3)

Here, λ̄ is the bulk viscosity and is set to λ̄ = −2μ̄/3.
The energy equation can be expressed in multiple formulations. In the present

work, the energy equations in both the enthalpy and pressure formulations are
utilized. The energy equation expressed in the enthalpy formulation is employed for
linear stability computations whereas the pressure formulation is used to describe
the flow–thermodynamics interactions. The linearized energy equation in the enthalpy
formulation is expressed as

ρ̄
∂T ′

∂t
+ ρ̄Ūi

∂T ′

∂xi
+ ρ̄u′

i
∂T̄
∂xi

= (γ − 1)M2
[
∂p′

∂t
+ Ūi

∂p′

∂xi

]
− 1

RePr
∂q′

k
∂xk

+ (γ − 1)M2

Re

[
τ ′

ij
∂�Ui

∂xj
+ ̄ij

∂u′
i

∂xj

]
. (A4)

Here, q′
k is the perturbation thermal conductivity as defined below

q′
k = −κ̄ ∂T ′

∂xk
− κ ′ dT̄

dxk
. (A5)

The energy equation expressed in the pressure formulation is given by the following
relation:

∂p′

∂t
+ Ūi

∂p′

∂xi
= −γ P̄

∂u′
k

∂xk
− 1

RePrM2

∂q′
k

∂xk
+ γ − 1

Re

[
τ ′

ij
∂Ūi

∂xj
+ ̄ij

∂u′
i

∂xj

]
. (A6)

The density perturbations are related to pressure and temperature perturbations by the
following state equation:

ρ′ = γM2 p′

T̄
− ρ̄

T̄
T ′. (A7)

A.2. Components of matrices A and B
The components of the coefficient matrices A and B in (2.12) are detailed in this appendix.
It must be noted that the components of the coefficient matrices for the same eigenvalue
problem expressed in a marginally different form are presented in Appendix I of Malik
(1990). For the sake of clarification, the components of the coefficient matrices are

948 A16-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.678


Hydrodynamic stability of compressible boundary layers

presented here as well. The non-zero elements of matrix A are as follows:

A11 = −1; A22 = −1; A33 = −1; A44 = 1
T̄

;
A45 = −γM2; A54 = −1; A55 = (γ − 1)M2T̄.

⎫⎬
⎭ (A8)

The elements of matrix B are listed below

B11 = −αŪ1 + ι(β2 + 2α2)μ̄T̄
Re

+ ια2λ̄T̄
Re

− ιT̄
Re

dμ̄
dT̄

dT̄
dx2

D − ιμ̄T̄
Re

D2;

B12 = ι
dŪ1

dx2
+ αT̄

Re
dμ̄
dT̄

dT̄
dx2

+ αT̄
Re
(μ̄+ λ̄)D;

B13 = ιαβT̄
Re

(μ̄+ λ̄);

B14 = − ιT̄
Re

dμ̄
dT̄

d2Ū1

dx2
− ιT̄

Re
d2μ̄

dT̄2

dT̄
dx2

dŪ1

dx2
− ιT̄

Re
dμ̄
dT̄

dŪ1

dx2
D;

B15 = −αT̄;

B21 = αT̄
Re

dλ̄
dT̄

dT̄
dx2

+ αT̄
Re
(μ̄+ λ̄)D;

B22 = −αŪ + ιμ̄T̄
Re

− ι(β2 + α2)T̄
Re

(
2

dμ̄
dT̄

+ dλ̄
dT̄

)
dT̄
dx2

D − ιT̄
Re
(2μ̄+ λ̄)D2;

B23 = βT̄
Re

dλ̄
dT̄

dT̄
dx2

+ βT̄
Re
(μ̄+ λ̄)D;

B24 = αT̄
Re

dμ̄
dT̄

dŪ1

dx2
;

B25 = ιT̄D;

B31 = ιαβT̄
Re

(μ̄+ λ̄);

B32 = βT̄
Re

dμ̄
dT̄

dT̄
dx2

+ βT̄
Re
(μ̄+ λ̄)D;

B33 = −αŪ1 + ι(α2 + 2β2)μ̄T̄
Re

+ ιβ2λ̄T̄
Re

− ιT̄
Re

dμ̄
dT̄

dT̄
dx2

D − ιμ̄T̄
Re

D2;

B34 = 0;
B35 = −βT̄;

B41 = −α; B42 = − ι

T̄
dT̄
dx2

+ ιD; B43 = −β;

B44 = αŪ1

T̄
; B45 = −αγM2Ū1;

B51 = −2ι(γ − 1)M2μ̄T̄
Re

dŪ1

dx2
D;

B52 = ι
dT̄
dx2

+ 2α(γ − 1)M2μ̄T̄
Re

dŪ1

dx2
;

B53 = 0;

B54 = −αŪ − ι(γ − 1)M2T̄
Re

dμ̄
dT̄

(
d2Ū1

dx2
2

)2

− ιT̄
Pr Re

dκ̄
dT̄

d2T̄

dx2
2

− ιT̄
Pr Re

d2κ̄

dT̄2

(
dT̄
dx2

)2

+ ικ̄T̄
Pr Re

(α2 + β2)− 2ιT̄
Pr Re

dκ̄
dT̄

dT̄
dx2

D − ικ̄T̄
Pr Re

D2;

B55 = (γ − 1)M2αŪT̄.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)
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Figure 36. Evolution of globally averaged kinetic energy (kg) for (a) case C3 and (b) case C6. Solid black line
corresponds to DNS results and kinetic energy growth based on LSA is marked with red symbols.
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Figure 37. Mode shapes of (a) streamwise velocity, (b) wall-normal velocity, (c) temperature and (d) density
for case C3 at two different times; (a) û1, (b) û2, (c) T̂ and (d) ρ̂.
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Figure 38. Mode shapes of (a) streamwise velocity, (b) wall-normal velocity, (c) temperature and (d) density
for case C6 at two different times; (a) û1, (b) û2, (c) T̂ and (d) ρ̂.

Here, the symbols D and D2 denote the first- and second-order derivatives in the
wall-normal direction, respectively.

Appendix B. Validation of GKM–DNS

The DNS results are validated by comparing against LSA. The evolution for volume
averaged perturbation kinetic energy k is shown in figure 36 for cases C3 and C6. The
kinetic energy is normalized by the initial perturbation kinetic energy. For both cases, the
kinetic energy grows exponentially. The growth rate of kinetic energy agrees very well
with the rate predicted by linear stability analysis.

The mode shape profiles for the case C3 at t = 1446 and t = 0 are shown in figure 37.
Specifically, the mode shapes for streamwise velocity, wall-normal velocity, temperature
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and density are presented. The mode shapes are initialized with the profiles based on LSA.
The mode shape profiles of all the disturbances are retained throughout the duration of the
simulation. A similar plot of the mode shapes for the case C6 is displayed in figure 38.
The mode shapes for the second mode case are also retained throughout the simulation.
Overall, the GKM–DNS results are in excellent agreement with LSA results.
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