so that

$$
\log _{10} \frac{m+1}{10}+\log _{10}\left(1+\frac{y}{(m+1) 10^{m}}\right)=\frac{y}{10^{n x}}
$$

which is easily solved by successive approximations.
But it is simpler, and forms a capital exercise, to find, say to six places, the greater root, by mere inspection of a good Table of Logarithms.

Thus we find, for instance,

\boldsymbol{m}	\boldsymbol{x}
17	$182,615.10^{13}$
18	$192,852.10^{14}$
96	$979,911.10^{98}$
97	$989,956.10^{93}$

Geometrical Proof of the Tangency of the Inscribed and Nine-Point Circles.

By William Harvey, B.A.

S (fig. 85) is the circumscribed centre, and O the orthocentre of the triangle $A B C$; $A X$ the perpendicular from A on $B C$, and P the middle point of $B C$.

SP produced bisects the arc $B C$ in V, and I, the centre of the inscribed circle, lies on AV, and is so situated that AI.IV $=2 \operatorname{Rr}$. (See Note). Also the angle $\mathbf{X A V}=$ angle $A V S=$ angle SAV.
N, the centre of the nine-point circle, bisects the distance OS, and the circumference passes through P, X and L, the middle point of AO. Hence N bisects both LP and $O S$, and

$$
\mathrm{SP}=\mathrm{OL}=\mathrm{AL}
$$

therefore LP is parallel to AS.
NHM is a radius of the nine-point circle, bisecting the chord X.P in H, and the arc $X P$ in M; ID is a radius of the inscribed circle.

Since the chord XMP is bisected at M,

$$
\text { the angle } \begin{aligned}
\mathrm{XPM} & =\frac{1}{2} \text { angle } \mathrm{XLP}, \\
& =\frac{1}{2} \text { - angle XAS, } \\
& =\text { angle XAV or AVS. }
\end{aligned}
$$

Hence, if through I we draw a straight line (not shown in the figure) parallel to $B C$ to meet $A X$ and SV, the segments of this line are respectively equal to XD and PD , and we have by similar triangles

$$
X D: I A=H M: M P ;
$$

PD : IV = HM : MP;
and therefore

$$
X D . P D: I A . I V=H^{2}: M^{2}
$$

But
Hence
IA.IV $=2 R r$, and $M P^{2}=R . H M$. $\mathrm{XD} . \mathrm{PD}=2 r . \mathrm{HM}$.
But
$\mathrm{HP}^{2}-\mathrm{HD}^{2}=\mathrm{XD} \cdot \mathrm{PD}=2 r . \mathrm{HM}$.
Now

$$
\begin{aligned}
\mathrm{IN}^{2} & =(\mathrm{NH}-r)^{2}+\mathrm{HD}^{2}, \\
& =(\mathrm{NH}-r)^{2}+\mathrm{HP}^{2}-2 r . \mathrm{HM}, \\
& =\mathrm{NH}^{2}+\mathrm{HP}^{2}-2 r .(\mathrm{NH}+\mathrm{HM})+r^{2}, \\
& =\frac{\mathrm{R}^{2}}{4}-r \mathrm{R}+r^{2} ;
\end{aligned}
$$

Or

$$
\mathrm{IN}=\frac{\mathrm{R}}{2}-r
$$

Whence the tangency of the circles is evident.

Note.-The following is a simple proof of the theorem AI.IV $=$ $2 \mathrm{R} r$, assumed in the foregoing proof :-

Draw IE perpeudicular to AC, and ST perpendicular to VC.
Since angle $A V C=$ angle $B=2$ angle $I B C$, I lies on the circumference of a circle whose centre is V and radius $V B$ or VC.
Hence $\quad I V=V C$.
Again, the triangles AIE, SVT are clearly similar;

$$
\therefore \mathrm{AI}: \mathrm{IE}=\mathrm{SV}: \mathrm{VT} .
$$

But

$$
V T=\frac{1}{2} V C=\frac{1}{2} I V
$$

$$
\therefore \text { AI.IV }=2 R r .
$$

