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Abstract. We discuss the formation of globules in planetary nebulae, typified by those ob-
served in the Helix Nebula. We show that the properties of the globules, their number, mass,
separation, and overall geometry strongly support a scenario in which globules are formed by
the fragmentation of a swept-up shell as opposed to models in which the knots form in the AGB
wind. We show that the RT or other instabilities which lead to the break-up of shells formed in
the nebulae by fast winds or ionization fronts can produce arrays of globules with the overall
geometry and within the mass range observed. We also show that the presence of a magnetic
field in the circumstellar gas may play an important role in controlling the fragmentation pro-
cess. Using field strengths measured in the precursor AGB envelopes, we find that close to the
central star where the fields are relatively strong, the wavelengths of unstable MRT modes are
larger than the shell dimensions, and the fragmentation of the shell is suppressed. The wave-
length of the most unstable MRT mode decreases with increasing distance from the star, and
when it becomes comparable to the shell thickness, it can lead to the sudden, rapid break-up of
an accelerating shell. For typical nebula parameters, the model results in numerous fragments
with a mass scale and a separation scale similar to those observed. Our results provide a link
between global models of PN shaping in which shells form via winds and ionization fronts, and
the formation of small scale structures in the nebulae.
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1. Introduction
Globules are the most striking small-scale structures seen in planetary nebulae (PNe).

They consist of dense molecular condensations embedded in and around the periphery of
the ionized gas (e.g., Huggins et al. 2002). In optical images their photo-ionized surfaces
are seen in Hα and other lines, illuminated by the radiation of the central star. They
often have cometary tails extending away from the star in the radial direction. Because
of their small size, globules are only resolved at high resolution in nearby PNe, e.g., in
NGC 7293 (the Helix Nebula) and NGC 6720 (the Ring Nebula), but they are expected
to be a common feature of evolved PNe with a significant component of molecular gas.

The large number and the similarity of the globules in a PN like NGC 7293 point to
an underlying formation mechanism with rather specific characteristics. In this paper we
review the properties of globules, we ask whether simple models can explain some of their
general characteristics, and we explore the possible role of magnetic fields in the globule
formation process.
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Table 1. Properties of the Globules in NGC 7293

globule mass mg 10−5 M� Huggins et al. (2002)
shell mass Ms 0.2 M� Young et al. (1999)
number of globules N 20,000 Meixner et al. (2005)
distance from star r 6–15×1017 cm
angular spacing θ 0.02 rd This paper
shell width/radius ∆r/r 1/20 Forveille & Huggins (1991)

2. Properties of the globules
Table 1 lists the measured properties of globules in NGC 7293 that are likely relevant to

the formation process. The evolution of mature globules is dominated by photo-ionization
processes, but we are interested here in the mechanisms that determine quantities such
as the number and mass-scale of fragments from which the mature globules form.

Most of the properties listed in Table 1 are self-explanatory. The typical angular spacing
of the globules (relative to the central star) is an especially useful quantity because it does
not vary with expansion or the evolution of the globules: it is estimated here from the
surface density in the main ring given by Meixner et al. (2005). The general distribution
of the molecular gas seen in spatio-kinematic CO maps consists of partial shells; the
ratio ∆r/r in the table is taken from high velocity resolution observations made at the
systemic velocity. The spatio-kinematics of the low excitation ionized gas (e.g., Meaburn
et al. 2005) support the shell picture.

NGC 6720 shares some of the characteristics of NGC 7293 but is a factor ∼ 5 younger.
Less of the neutral envelope is in globules, and they are at an earlier stage of development.
Their morphology and relation to the nebula shell structure are of special interest, and
are illustrated in Fig. 1.

Figure 1. Section of NGC 6720 in the [O III] 5007Å line. The globules and shell are seen in
absorption by dust against the nebula emission. The field is 23′′ × 15′′. HST WFPC2 data.

3. Shell models
3.1. General characteristics

The thin, shell-like distribution of the densest gas in NGC 7293 (and NGC 6720) provides
strong support for a model of globule formation based on the fragmentation of a swept-up
shell. For the break-up of a shell of radius Rs into fragments of size ∆Rs, equal to the
shell thickness, we expect: Ms ∼ Nmg, N ∼ 4π/θ2, and θ ∼ ∆Rs/Rs. These relations
are approximately satisfied by the independently measured quantities given in Table 1.
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Figure 2. Evolution of shell properties as a function of shell radius (Rs). Top left : shell mass,
bottom left : shell thickness, top right : fragment mass, bottom right : timescales. The subscript RT
is for the classic RT case, and the subscript M is for the magnetic case. The curve λM (bottom
left) shows the wavelength of the fast growing magnetic mode. See text for details.

In order to construct a physical model, we consider for simplicity the case of a shell
driven by a constant, momentum-conserving wind (Kahn & Breitschwerdt 1990) which
sweeps up the precursor AGB envelope with an r−2 density distribution. This simple
case leads to a shell model that travels with a constant velocity. In reality, fragmentation
of the shell will require modest accelerations. The difference between the two cases, in
terms of shell conditions, will likely be small. The constant velocity shell is completely
specified by the AGB wind velocity (U) and mass-loss rate (Ṁ), the shell velocity (Vs),
and the sound speed in the shell (cs). Fig. 1 shows the properties of this shell as a
function of the shell radius for U = 15 km s−1, Ṁ = 10−4 M� yr−1, V = 23.5 km s−1,
and cs = 1.5 km s−1 (we assume the gas is in a PDR). The left hand panels show the
shell mass, and thickness. Note that ∆Rs/Rs ∼ 1/100 is close to that observed. Note
also that Ms does not reach a few tenths of a solar mass until the shell is large ∼ 1017

cm. The top right panel shows the mass of fragments if the shell breaks up at radius Rs

on a size scale ∆Rs. Note that the mass of a fragment is small at small Rs, and only
reaches > 10−6 M� at Rs > 1017 cm.

3.2. Fragmentation
Several different processes have been suggested for the actual break-up of PN shells
including the NTSI, the TSI and the related ISFI, and the RT instability (e.g., Dwarkadas
& Balick 1998, Garcia-Segura et al. 1999). In simulations, the NTSI may develop at an
early phase but it may not lead to fragmentation, and from the discussion above it is
doubtful that it could generate the ensemble of observed globules at that time. The
RT instability is well-studied and it occurs when the shell is accelerated. The onset of
ionization is one of several means of shell acceleration and the RT instability may couple
to the ISFI at that stage. Note also that propagation of the shell down a steeper than
ρ ∼ r−2 gradient will also produce an acceleration. For a nominal acceleration of 10
km s−1/1000 yr, the RT growth time for the length scale equal to ∆Rs is shown in the
bottom left panel. It is significantly less than the expansion time of the shell for all values
of Rs. Thus the shell is fragile. If it accelerates near this nominal level before it reaches
1017 cm, it will break-up into low-mass fragments with a low total mass.
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4. Effect of a magnetic field
The role of magnetic fields in PN formation is an area of ongoing debate. Significant

fields are measured in the envelopes of AGB stars in the SiO, H2O, and OH maser lines,
and it can be expected that the fields will be swept up into PN shells. We explore here
how this may affect the fragmentation process.

The presence of a tangential magnetic field at an interface (the situation expected in
a swept-up shell) typically has a stabilizing effect. The theory is well studied for the
RT instability, and simulations for the magnetic case have been reported by Jun et al.
(1995). The field has two effects. First, it suppresses all RT modes at short wavelengths
with a cut-off given by λc = B2/aρ, where a is the acceleration and ρ is the density of
the shell (assumed to be much denser than the driving wind). Second, the wavelength of
the fastest growing mode is 2λc, with a growth rate similar to the non-magnetic case.

For the shell model discussed earlier, the curves with subscript M in Fig 2. show the
effects of a magnetic field in the AGB wind. The field is assumed to have the form
B = (r/1016)2 mG, based on an ensemble of circumstellar envelopes (Vlemmings et al.
2002). At early times, the field contributes to the pressure when it is swept into the shell,
with the result that the shell thickness increases, and the potential break-up mass for
small Rs is 10−6–10−5 M�, close to that observed. The break-up can not, however, occur
at these scales because at small Rs the magnetic-RT critical wavelength is much larger
than the shell thickness. The break-up of the shell is suppressed in the early phases.

At larger Rs, where the fields become weaker, the critical wavelength decreases. and
when it becomes comparable to the shell thickness, the growth time for the instability
drops rapidly to a low value. The effect is like a switch. If the system is accelerating, it
leads to the sudden, rapid break-up of the shell. At these scales the mass of the fragments
and the total mass are in the observed ranges.

5. Conclusions
The properties of globules in PNe support a scenario in which globules are formed by

fragmentation of a swept-up shell. Instabilities in simple shell models can produce arrays
of globules with the overall geometry and within the mass range observed. The magnetic
field in the AGB wind may play a key role in controlling the fragmentation process. Our
results provide a link between global models of PN shaping and globule formation.
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