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Abstract

We discuss n4 configurations of n points and n planes in three-dimensional projective space. These
have four points on each plane, and four planes through each point. When the last of the 4n incidences
between points and planes happens as a consequence of the preceding 4n − 1 the configuration is called a
‘theorem’. Using a graph-theoretic search algorithm we find that there are two 84 and one 94 ‘theorems’.
One of these 84 ‘theorems’ was already found by Möbius in 1828, while the 94 ‘theorem’ is related to
Desargues’ ten-point configuration. We prove these ‘theorems’ by various methods, and connect them
with other questions, such as forbidden minors in graph theory, and sets of electrons that are energy
minimal.
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Keywords and phrases: geometry, configuration, projective space, theorem, minimal energy electrons,
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1. Introduction

DEFINITION 1.1. A (combinatorial) nk configuration is an incidence structure
(P, B, I ) with a set P of n points and a set B of n blocks (which may be considered
to be subsets of P), such that each block contains k of the points, and each point is
on k of the blocks. A point p ∈ P is on a block b ∈ B if and only if pI b, where I is
the incidence relation. Note that we usually omit the term ‘combinatorial’. When the
points are given homogeneous coordinates of a certain (k − 1)-dimensional projective
space so that the blocks are on hyperplanes (with dual coordinates), we say that the nk
configuration is ‘embedded’.

In general, nk ‘theorems’ are combinatorial nk configurations, with the property that
whenever they are embedded in (k − 1)-dimensional projective space, with k points on
each hyperplane and k hyperplanes through each point, the last of the kn incidences is
determined by the first kn − 1. Sometimes this occurs only when the ambient space is
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76 D. G. Glynn [2]

coordinatised by a certain field, or it may be that the ‘theorem’ is valid for all projective
spaces. For some background to finite projective geometry see [8].

DEFINITION 1.2 (Glynn [10], Levi [13]). The Levi graph of an nk configuration C
with point-set P and block-set B is the bipartite graph (P ∪ B, E), where {p, b} is an
edge in E if and only if p ∈ P , b ∈ B, and p is incident with b; that is, (p, b) is a flag
of C .

REMARK. The generation of nk configurations via graphical methods uses the fact
that a graph is the Levi graph of an nk configuration if and only if it has 2n vertices, is
bipartite and is regular of degree k.

A disconnected configuration could be split into a number of connected
configurations, which may be dealt with separately. Also, in (k − 1)-dimensional
space, k − 2 general points generate a secundum, that is, a (k − 3)-dimensional
subspace, while k − 1 points generate a hyperplane, and dually k − 2 hyperplanes
intersect in a line, while k − 1 hyperplanes intersect in a point. Thus, to avoid an
embedded nk configuration having repeated points, hyperplanes or other degeneracy
we note the following.

REMARK. In order to exclude ‘degenerate’ cases we assume that:
• the configuration (or, equivalently, its Levi graph) is connected;
• no pair of distinct points are incident with the same k − 1 blocks; and
• no pair of distinct blocks are incident with the same k − 1 points.

This paper provides details of certain n4 ‘theorems’, which are not found in
Baker [1], Hilbert [11, 12], or in other easily obtainable sources. These ‘theorems’
were found using the embedding algorithm of Glynn [10], implemented using a short
program in MAGMA [2], with an input of all connected bipartite graphs on 2n vertices
that are regular of degree k. These graphs were created using the geng (generate
graph) program of McKay’s NAUTY package [14].

Since the general philosophy and theories of nk ‘theorems’ are given by Glynn [10],
we concentrate on the properties of the 84 and 94 ‘theorems’ found by searching
when n is small.

It was shown in [10] that the embedding problem reduces to finding a rooted
spanning tree of the related Levi graph, and this tree can easily be found by using
a well-known greedy algorithm. A single algebraic equation can be found involving
many free parameters that expresses the embedding condition. Although a ‘standard’
embedding might not exist for a given field, if the base field is chosen large enough
(for example, if it is algebraically closed) and with the right characteristic, such
embeddings should usually appear, although in some cases it can be shown that
embeddings (with all of the points and hyperplanes distinct) can never appear. (One
of the 103 configurations is a case in point.) The ‘spanning tree algorithm’ generalizes
and explains results for n3 configurations for which various methods have already been
found.
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[3] Points and planes in three-dimensional projective space 77

DEFINITION 1.3. A closed nk configuration is one for which the last incidence (for
example, using the spanning tree algorithm) is always trivially satisfied. Naturally, this
might depend on the field that is chosen. If this holds we call it a ‘theorem’.

DEFINITION 1.4. The complement of an nk configuration K with Levi graph L is the
nn−k configuration K̄ with complementary bipartite Levi graph L̄ . (The flags of K
are replaced by antiflags, and vice versa. Equivalently, the edges of L are deleted, and
where there is no edge between a point and block an edge is inserted.)

The complement of any closed (standard) configuration (‘theorem’) was shown by
Glynn [10] to be closed, so that, for example, the well-known Pappus 93 ‘theorem’ in
a plane over a field corresponds to a 96 ‘theorem’ in five-dimensional space over the
same field (actually lying on a Veronese surface).

In some important cases, however, the complement of a ‘theorem’ degenerates by
having all of its hyperplanes passing through a common point. (Dually, the points
would lie in a hyperplane.) In particular this happens when the nk configuration
comes by projection from a similar configuration in one higher dimension; see [10].
The 103 and 94 ‘theorems’ have this property and this is why we have not included
the complementary 107 and 95 ‘theorems’ in the list of nondegenerate ‘theorems’ in
Section 9.

One of the configurations investigated has parameters 84, and is a ‘theorem’ when
embedded in any three-dimensional space coordinatised by a field. This is similar to
the well-known Möbius 84 ‘theorem’, but it is not the same. Another configuration
has parameters 94, and it can be shown to be a ‘theorem’ for any three-dimensional
projective space, by using the two triangle 103 configurational ‘theorem’ of Desargues.
Some other similarities with Desargues’ theorem are discussed in this paper. There is
a connection betwen nk ‘theorems’ and forbidden minors in graph and matroid theory.
In physics, the 84 and 94 ‘theorems’ are attained by sets of eight and nine electrons on
a sphere that are energy minimal. Models of the configurations are also discussed in
Section 8.

2. Embedding configurations into projective space

Several methods were discussed in [10] to embed an nk configuration into projective
space. Here we progress to a ‘spanning tree’ algorithm that generalizes all of them.

DEFINITION 2.1. A spanning tree of a connected graph with v vertices is a set of
v − 1 edges containing no circuit: thus, each vertex appears on at least one of the
edges of the tree.

To embed a configuration K into projective space one must assign homogeneous
coordinates to each point and dual coordinates to each block (considered as a
hyperplane) of K so that the incidences between these points and hyperplanes in space
mirror those of K .

We spell out the method to embed an nk configuration using a spanning tree of the
Levi graph; see Definitions 1.2 and 2.1. What one does is start from the outside of
the tree (that is, with vertices of valency one), and work inwards, always keeping a
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connected tree by deleting vertices of valency one. This gives a construction sequence
of elements (points and hyperplanes) of the configuration, so that the homogeneous
coordinates of the first (or outer) elements of the tree are known before the later
elements. The final incidence is problematic (depending, in general, on the solution of
an algebraic equation) unless of course the configuration is a ‘theorem’.

3. The search algorithm

Here we explain how a computer search was made for nk ‘theorems’. The method
relied on using certain popular computer packages: the general mathematical program
MAGMA [2] and the graph-theoretic program NAUTY [14]. The algorithm was easily
implemented using a MAGMA script, since that program has inbuilt functions that
reference NAUTY. We wrote it so that all calculations were made within the geometry
over the field of rational numbers Q. It could easily be extended to other fields, in
particular fields of characteristic p. Doing this over the reals, for example, could create
problems in that determinants calculated on a computer have only a certain precision.

3.1. The method. Our method is as follows.

Step 1. Construct all nonisomorphic, connected regular bipartite graphs of 2n vertices
and of valency k. These are easily seen to be in correspondence with the Levi graphs of
combinatorial connected nk configurations. We used the ‘geng’, or ‘generate graph’,
function of NAUTY.

Step 2. For each of these graphs G construct a spanning tree S. This will have all 2n
vertices of G and 2n − 1 edges without any circuit.

Step 3. Find a vertex v of S of valency one. (It is on the ‘outside’ of S.)

Step 4. Construct the orthogonal space O(v) in k-dimensional vector space Qk to the
space generated by the coordinates of all vertices in G joined to v that have already
been given coordinates. There are at most k − 1 of these (because S has more vertices
connected to v), and so the rank of O(v) is at least one.

Step 5. Find a random vector c(v) in O(v) and use this as the coordinates for v.
(Here v is either a point or hyperplane of PG(k − 1,Q) and so c(v) gives either the
homogeneous coordinates or dual homogeneous coordinates, respectively, for v.)

Step 6. Delete v from S and repeat the loop starting with Step 3 until there is only one
vertex left in S.

Step 7. At this stage all points and hyperplanes except one in the nk configuration have
been given coordinates. So, for the last vertex v of S determine whether rank(O(v)) is
zero or positive. If O(v) has rank zero then G does not correspond to an nk ‘theorem’.
However, if the rank is one (in general, it should not be more than that), then it almost
certainly is an nk ‘theorem’. (Analogously, it is highly likely that a set of k vectors in
Qk , randomly chosen by a computer, is independent).
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FIGURE 1. The 84 ‘theorem’.

Step 8. To be doubly sure, it is possible to repeat the algorithm again with different
random coordinates. If the rank of the last space O(v) is positive, then we are highly
optimistic that we have an nk ‘theorem’.

3.2. The results of the search. The algorithm of Section 3.1 was performed on
a small computer for various parameters nk with n ≤ 11 and with the field set as
the rational numbers. It found the known nk ‘theorems’ such as the Pappus 93,
Desargues 103 and Möbius 84 configurations very quickly but also determined that
two other configurations, 84 and 94, were strong candidates for being ‘theorems’ as
well. (Some other configurations were rejected even though they passed the above
algorithm, because they had degenerate properties.) We consider these 84 and 94
configurations in the following sections.

4. An 84 ‘theorem’ for PG(3,F), F a field

4.1. The description of the 84 configuration. Note that an n4 configuration will
have n points and n planes in three-dimensional space as in this case hyperplanes are
the same as planes. Here we describe the non-Möbius 84 configuration found by the
computer.

Consider Figure 1. There are eight ‘large’ points, in two subsets which are
tetrahedra in three-dimensional space. Label the first tetrahedron P1, P2, P3, P4, and
the second tetrahedron P5, P6, P7, P8. There are also eight ‘small’ points h1, h2, h3,

h4, h5, h6, h7, h8, which are in correspondence with the planes of the configuration.
Thus, it can be considered to be two tetrahedra. Each tetrahedron has six edges, two
of which are special (we call them ‘diagonals’) and they are skew. The remaining
four edges form a 4-cycle. Each plane of the 84 configuration contains an edge of one
tetrahedron and a diagonal of the other tetrahedron: thus, it contains four points in
total. The diagonals of the first tetrahedron are the line joining P1 and P3 and the line
joining P2 and P4. Similarly, the diagonals of the second tetrahedron connect P5 with
P7, and P6 with P8.
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Thus, we assume that the planes of the configuration are:

h1 := {P1, P3, P5, P8}, h2 := {P2, P4, P5, P6},

h3 := {P1, P3, P6, P7}, h4 := {P2, P4, P7, P8},

h5 := {P1, P2, P5, P7}, h6 := {P2, P3, P6, P8},

h7 := {P3, P4, P5, P7}, h8 := {P1, P4, P6, P8}.

Each plane hi contains four points Pj and within this plane, the edge of one
tetrahedron meets the diagonal of the other in a certain point. If we identify the planes
with the small points hi of the diagram, then there are four lines each containing
four points in three-dimensional space. These are formed from the diagonals of the
two tetrahedra:

l1 := {P1, P3, h1, h3}, l2 := {P2, P4, h2, h4},

l3 := {P5, P7, h5, h7}, l4 := {P6, P8, h6, h8}.

There are eight three-point lines (which are the nondiagonal edges of the
tetrahedra):

{P1, P2, h5}, {P2, P3, h6}, {P3, P4, h7}, {P4, P1, h8},

{P5, P6, h2}, {P6, P7, h3}, {P7, P8, h4}, {P8, P5, h1}.

REMARK. It is an easy exercise to see that the above 84 configuration is self-dual; that
is, the transpose of any incidence matrix between points and hyperplanes is isomorphic
to the incidence matrix. Also, it is self-complementary; that is, the complement of any
incidence matrix is isomorphic to itself.

REMARK. Using NAUTY [14] we calculated the order of the automorphism group of
the Levi graph of this 84 configuration, and it is 64. Since this configuration is self-
dual, the configuration has an automorphism group G of size 32. Let each point Pi
of the 84 configuration be represented as i . Thus we can consider G as a subgroup of
the symmetric group S8 of permutations of the set {1, . . . , 8}. Using MAGMA [2] we
found that

G = 〈(18)(45)(36)(27), (13)(56)(78), (57)(68)〉

(G also acts equivalently on the eight points hi , which form an isomorphic 84
configuration). The centre of G is 〈(13)(24)(57)(68)〉 of order two, which flips the
points on the diagonals of each tetrahedron. There are automorphisms of order eight
in G, for example, (1, 7, 2, 8, 3, 5, 4, 6), so the group is transitive on the points. Note
also that (57)(68) fixes the first tetrahedron pointwise. In contrast, the 84 configuration
of Möbius [15] has an automorphism group of size 192. See the following.

REMARK. An easy way to remember how to construct the block patterns of the
Möbius 84 configuration and the ‘other’ 84 configuration is as follows. For the
Möbius 84 configuration the points are on two ‘squares’, the corresponding sides of
which are ‘parallel’. The eight blocks are formed by taking any two points on a side of
one square together with two points on a parallel side of the other square. The ‘other’
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84 configuration also has two ‘squares’ of points, but in this case each diagonal of
one square is parallel to two sides of the other square. Then each of the eight blocks
is formed by two points on a side of one square joined with the two points on the
diagonal of the other square that is parallel to that side. Note that the squares in these
constructions do not correspond to blocks, and so will not form planes in a general
three-dimensional representation.

REMARK. The group of order 192 of the Möbius 84 configuration may be constructed
as a subgroup of index 15× 7= 105 in the simple group PGL(4, 2). We may consider
an incident point/plane pair (P, π), that is, a ‘flag’ in the finite projective space
PG(3, 2) of dimension three over the finite field GF(2) of order two. The structure
consisting of the eight points of PG(3, 2) not on π and the eight planes of PG(3, 2)
not through P is the Möbius 84 configuration. However, the subgroup S(P, π) of
the automorphism group PGL(4, 2) of PG(3, 2) that fixes the flag contains the normal
subgroup T (π) (see the next remark) which are the translations with axis π (this is
isomorphic to the elementary abelian group Z3

2 of order eight). Next, the factor group
of S(P, π)/T (π)∼= S4, which may be considered to be the subgroup of index seven
in PGL(3, 2), permuting the four lines not through P in the plane π . Thus, we obtain
the structure of the group of order 192= 24× 8.

REMARK. Felix Klein once noted that the way to obtain a normal subgroup N in the
automorphism group G of a geometrical structure is first to find a set S of geometrical
objects related to the structure that are permuted amongst themselves. Then, N is
the subgroup of G that fixes each s in S. For example, in an affine geometry the
parallel classes are permuted amongst themselves. The set of translations, which are
the automorphisms that fix all parallel classes, therefore forms a normal subgroup of
the automorphism group of the affine geometry.

REMARK. The automorphism group of the Möbius 84 configuration, considered as a
permutation group on the points, is imprimitive: each point X has a unique ‘antipodal’
point X ′, such that no planes of the configuration pass through both X and X ′. Thus,
there are four sets of imprimitivity, each of size two. Similarly, the automorphism
group of the other 84 configuration is imprimitive: there are two sets of imprimitivity
of size four, which are the two tetrahedra considered previously.

There are alternative proofs, geometric and algebraic, of the fact that the ‘other’ 84
configuration defined above is a ‘theorem’. All proofs rely naturally on the fact that
the base coordinate system is over a field.

4.2. A proof of the 84 ‘theorem’ using projectivity groups over a field. This proof
uses projectivities between the four lines li of Section 4.1.

A projectivity in the classical sense of von Staudt [22], who called it a throw (Wurf
in German), is related to the bijection induced in the plane between the points on a line
and the lines through a point, where the point and line are not incident. If we have a
sequence of lines alternating with points then these projectivities may be multiplied,
and they form a projectivity group when the sequences all start and end with the
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same line. It is a classical result that for any projective plane the same permutation
group is obtained no matter what the starting line is. Also, the plane is Pappian
(that is, coordinatized by a field) if and only if this group is sharply 3-transitive: every
ordered set of three elements (points or lines) is mapped to any other ordered set of
three elements by a unique member of the group. The group is then isomorphic to the
classical group of 2× 2 nonsingular matrices PGL(2, F), where F is the base field that
coordinatizes the plane. See Strambach and Plaumann [16] and Coxeter [7] for the
notation that we use below.

All this is known. What is less well known is that projectivity groups can be
defined in a very similar way within any projective space. First, one starts with a
skew line/secundum pair (a secundum being a subspace of dimension two less than
the whole space). The hyperplanes containing the secundum are in natural bijective
correspondence with the points on the line, and so a projectivity induced by incidence
is obtained. Then by using a sequence of lines alternating with secunda, one obtains,
in exactly the same way as in the plane, a projectivity group that maps the set of points
on a line to itself (or dually the set of hyperplanes on a secundum). It is quite easy to
calculate that the groups are isomorphic to the plane case. Thus, PGL(2, F) is obtained
when the projective space is Pappian.

Now we can see that there is an unusual occurrence when the space has three
dimensions: a line is also a secundum. Thus, given a sequence of an even number
of lines, each skew to the next, and the last skew to the first, there are two ways of
choosing them so that lines and secunda alternate. Hence, two different projectivities
can be defined.

If a, b and c are three lines in three-dimensional space, with a and b skew, and b
and c skew, then let us use the classical notation

a
b
=∧ c,

to denote the projectivity with centre b taking the points on a to the points on c. Thus,
if P is any point on a, the image point on c is the intersection of the plane 〈P, b〉

with c. Note that the inverse mapping is c
b
=∧ a.

For two skew lines a and b the projectivity with centre b taking a to itself, a
b
=∧ a, is

trivial (the identity), but what happens if we have four lines?
Suppose that the space is Pappian and the coordinatizing field is algebraically closed

(or at least extended enough). Now four general lines in a Pappian three-dimensional
space have two transversals. One takes the unique quadric containing three of the lines
and the intersection of the fourth line with the quadric is two points. Each of these
points lies on a transversal. This means that the projectivities defined using a circuit
of the four lines automatically have two fixed points. We need the following result.

LEMMA 4.1. Let a, b, c, d be four mutually skew lines in Pappian three-dimensional
space. Let π be the projectivity

a
b
=∧ c

d
=∧ a.
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Then πn is the identity if and only if Pπ
n
= P for any point P on the line a with

Pπ 6= P.

PROOF. Suppose that Pπ
n
= P . We have noted already that π has two fixed points.

Thus, πn has at least three fixed points. Since the group of projectivities is sharply
3-transitive the identity projectivity is the only member of the group that fixes three
points. Hence, πn is the identity. The converse is obvious. 2

REMARK. Lemma 4.1 applies to any Pappian projective space (not just those
‘extended enough’), because an appropriate field and, hence, geometrical extension
of the space may be made.

Consider the tetrahedron P1, P2, P3, P4 of our 84 configuration. The projectivity

ρ := l1
l3
=∧ l2

l4
=∧ l1

defined by the ‘circuit’ l1.l3.l2.l4 (starting and ending with the line l1) takes P1 via the
plane h5 = 〈P1, l3〉 to the point P2 = h5 ∩ l2 and then via the plane h6 = 〈P2, l4〉 to
the point P3. Then applying ρ again, P3 goes via h7 to P4, and then via h8 back to P1.
From Lemma 4.1, ρ2 is the identity.

Similarly, consider the tetrahedron P5, P6, P7, P8, and the projectivity φ defined
by the circuit l3.l2.l4.l1. This also has order two and clearly the meaning of the 84
‘theorem’ is that ρ has order two if and only if φ has order two.

To show this geometrically we consider the tetrahedron with (point) vertices h1, h2,

h3, h4. Since h1, h2, P5, P6 and P8 are coplanar, the line h1.h2 intersects l4 = P6.P8.
Similarly h2.h3 intersects l3, h3.h4 intersects l4, and h4.h1 intersects l3. Thus we see
that ρ takes h1 to h3, and it then takes h3 back to h1. Hence the fact that φ has order 2
implies that ρ2 takes h1 to itself. Hence ρ has order 2 if φ has order 2. Thus we indeed
have a ‘theorem’ in this 84 configuration.

REMARK. It is possible to use matrix calculations to verify this result about
projectivities. Briefly, we can assume that the points on the line l1 have homogeneous
coordinates (0, 0, x, y), the points on the line l2 have coordinates (x, y, 0, 0), the
points on the line l3 have coordinates (x, y, x, y), and the points on the line l4 have
coordinates (x, y, a, b), where (a, b)= (x, y)A, for some nonsingular 2× 2 matrix
A over F. We can assume that A 6= k I as otherwise l4 is in the regulus determined by
the other li , and in this case ρ would be equal to the identity. Then it is easy to check
that ρ has order two if and only if A2

= k I (k 6= 0) if and only tr(A)= 0. One can
then verify by using these matrices that the projectivity φ has order that. See Fishback
[9, §8.6] for further information and some history of projectivities of order two, that
is, involutions on the line (in the case of the real numbers).

REMARK. The relationship between the four lines li is actually one about pairs of

pairs of lines: that is, {{l1, l2}, {l3, l4}}. For the projectivity l1
l3
=∧ l2

l4
=∧ l1 is equal to its
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inverse l1
l4
=∧ l2

l3
=∧ l1 (they have order two), and also

l3
l2
=∧ l4

l1
=∧ l3 = l3

l1
=∧ l4

l2
=∧ l3.

REMARK. An easy way to construct such pairs of pairs of lines is to start with a
general tetrahedron T in three-dimensional space. Let {l1, l2} be opposite edges of T .
Then let l3 be any line joining any point on a further edge of T with any point on its
opposing edge. There are two remaining edges of T , which also form an opposite pair.
Finally, l4 can be chosen to be any line that joins points on these last edges.

4.3. A proof using homogeneous coordinates. In addition to the above more
geometrical proof, we now give a completely algebraic one that only uses
homogeneous coordinates.

PROOF. Let the first tetrahedron be coordinatized by the unit vectors as follows:
P1 = (1, 0, 0, 0), P2 = (0, 1, 0, 0), P3 = (0, 0, 1, 0), P4 = (0, 0, 0, 1). Let the sec-
ond tetrahedron be P5 = (a1, a2, a3, a4), P6 = (b1, b2, b3, b4), P7 = (c1, c2, c3, c4),
P8 = (d1, d2, d3, d4), where ai , bi , ci , di ∈ F.

Then the eight plane conditions become∣∣∣∣a1 c1
a2 c2

∣∣∣∣= ∣∣∣∣a3 c3
a4 c4

∣∣∣∣= ∣∣∣∣b1 d1
b4 d4

∣∣∣∣= ∣∣∣∣b2 d2
b3 d3

∣∣∣∣= 0

and ∣∣∣∣a1 b1
a3 b3

∣∣∣∣= ∣∣∣∣a2 d2
a4 d4

∣∣∣∣= ∣∣∣∣c1 d1
c3 d3

∣∣∣∣= ∣∣∣∣c2 b2
c4 b4

∣∣∣∣= 0.

Thus

a1c2 − a2c1 = a4c3 − a3c4 = b4d1 − b1d4 = b3d2 − b2d3 = 0, and

a1b3 − a3b1 = a4d2 − a2d4 = c3d1 − c1d3 = c2b4 − c4b2 = 0.

Now by multiplying the first monomials in the first four expressions above together,
and also the second monomials paired with them, the first four of these determinant
conditions imply that

a1a4b4b3c3c2d2d1 = a3a2b2b1c1c4d4d3,

which is the same condition implied by the last four determinant conditions above.
Thus, we see that any seven of the conditions imply the final one, and the 84 ‘theorem’
is proved in an algebraic fashion. 2

5. A 94 ‘theorem’ for three-dimensional space (over a field or skew-field)

Let l be a line of three-dimensional space and let A, B, C be three distinct points
on l. Let α1, α2, and α3 be three distinct planes through l. Let T1 = {P11, P12, P13}

in α1, T2 = {P21, P22, P23} in α2, T3 = {P31, P32, P33} in α3 be triangles of points in
these planes such that for all 1≤ i ≤ 3, Pi1.Pi2 is a line through A, Pi1.Pi3 is a line
through B, and Pi2.Pi3 is a line through C . See Figure 2.
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[11] Points and planes in three-dimensional projective space 85

FIGURE 2. The 94 ‘theorem’.

By the three-dimensional Desargues theorem it follows that the triangles T1 and T2
are in perspective from a point D: that is, the corresponding points P1 j and P2, j are
collinear with D, for 1≤ j ≤ 3. Similarly, the triangles T1 and T3 are in perspective
from a point E , while the triangles T2 and T3 are in perspective from a point F .

Further, using Desargues theorem again it is possible to show that the three points
D, E and F are collinear. (See the following remark.) There are nine planes defined
as follows: these each contain one of the three collinear points A, B, C , and one of the
other three collinear points D, E , F . Each of these planes also contains four points
Pi j . For example, the plane containing A and D also contains P11, P12, P21 and P22.

The combinatorial configuration of the nine points Pi j and the nine planes is the 94
‘theorem’ to be discussed in this section.

REMARK. The textbook by Fishback [9, §5.1, Exercise 9] asks the reader to prove
(using Desargues theorem) the result: ‘If three triangles are Desarguean in pairs with a
common axis of perspectivity, the centers of perspectivity are concurrent’. In [9, §5.1,
Exercise 10] there is the dual question, reversing the roles of centres and axes. Clearly
this plane ‘theorem’ is closely related to the 94 ‘theorem’.

If we consider the graph defined by the nine points Pi j with edges {Piu, Piv}

(1≤ i ≤ 3, 1≤ u < v ≤ 3) and {Piu, Pju} (1≤ i < j ≤ 3, 1≤ u ≤ 3), it is the graph
on nine vertices that is the Cartesian product of the complete graph on three vertices,
K3, with itself. Equivalently, it is the line graph of the complete bipartite graph K3,3.

REMARK. This 94 configuration is geometrically self-dual. Since it is associated with
the graph K3,3, it has an automorphism group of order 3! × 3! × 2= 72. This group
of order 72 thus appears as the subgroup of the symmetric group S6 that preserves a
subset of size three, or takes it to its complementary subset of size three. It is well
known that PSp(4, 2)∼= S6, and this leads us to a geometrical representation of the
configuration and its group, as considered in the following remark.

REMARK. When q is even, the projective symplectic group PSp(4, q) has order
q4(q4

− 1)(q2
− 1), which is 720 when q = 2. Also PSp(4, 2) is the automorphism

group of the linear complex W (2) of 15 points and 15 lines embedded in the finite pro-
jective three-dimensional space PG(3, 2) over GF(2). There are 35 lines in PG(3, 2).
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If we consider the symplectic polarity ω corresponding to the linear complex in
PG(3, 2) then there are (35− 15)/2= 10 pairs of conjugate lines {l, lω} such that l 6=
lω. It may be ascertained that if any of these pairs of lines, and the six points on them,
and dually the six planes through the lines, are deleted from PG(3, 2), then the remain-
ing configuration contains the 94 ‘theorem’. (The incidences that are a point P on its
polar plane Pω have to be disregarded.) Since 72= 720/10, the group of automor-
phisms of the 94 configuration occurs as a subgroup of PSp(4, 2), and it is the subgroup
that fixes any set of two conjugate lines l 6= lω of the symplectic polarity ω of PG(3, 2).

LEMMA 5.1. In three-dimensional space consider three points of a triangle
A1, A2, A3 in a plane, and three points in a triangle B1, B2, B3 on another
plane, such that the three sets of four points, {A1, A2, B1, B2}, {A1, A3, B1, B3},
{A2, A3, B2, B3} are coplanar. Then the two triangles are in perspective from a
point X. That is, Ai , Bi , X are collinear for 1≤ i ≤ 3.

PROOF. The three lines joining Ai with Bi are pairwise in planes, and so they intersect
nontrivially. However, three lines in three-dimensional space with this property
must be either coplanar, or concurrent in a point X . If they were coplanar, the
triangles would be ‘flattened out’ into lines. This is not the case, and so the lines
are concurrent. 2

There are various geometric observations that help with the synthetic proof of the
94 ‘theorem’. First, we rely on Lemma 5.1. Referring to that lemma, a prism is a
certain figure of six points defined by three planes on its sides.

There are six triangles in the 94 configuration, and also six prisms. Each plane of
four points is in two prisms, each triangle is in two prisms, and each prism contains
two triangles.

If we do not know whether a certain four-point plane is satisfied in the configuration,
then since the plane is in two prisms we do know that we have four prisms satisfied.
Then Lemma 5.1 tells us that various triangles are in perspective from four points.
By using Desargues theorem four times we see how there are two further points of
perspective, yielding the fact that the last plane of four points is satisfied. Thus, the
resulting configuration has six further points of perspective, grouped into two lines of
three points each.

After these observations we present a brief synthetic proof of the 94 ‘theorem’.

PROPOSITION 5.2. The 94 configuration is a ‘theorem’ in projective space of three
dimensions over a field or skew-field.

PROOF. Using a similar notation to above let the configuration have the nine points
Pi j , 1≤ i ≤ 3, 1≤ j ≤ 3. Let the following be eight planes:

π33 := {P11, P21, P12, P22}, π32 := {P11, P21, P13, P23},

π13 := {P21, P31, P22, P32}, π11 := {P22, P32, P23, P33},

π12 := {P21, P31, P23, P33}, π23 := {P11, P31, P12, P32},

π22 := {P11, P31, P13, P33}, π21 := {P12, P32, P13, P33}.
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We have to show that the four points P12, P22, P13, P23 lie on a plane π31. Using
Lemma 5.1 and planes π12, π22, π32, the two triangles P11, P21, P31 and P13, P23, P33
are in perspective from a point α1. Similarly, using planes π13, π23, π33, the triangles
P11, P21, P31 and P12, P22, P32 are also in perspective from a point α2. Using planes
π21, π22, π23, the triangles P11, P12, P13 and P31, P32, P33 are in perspective from a
point ω1. Using planes π11, π12, π13, the triangles P21, P22, P23 and P31, P32, P33 are
in perspective from a point ω2.

Consider the line l := ω1.ω2 generated by ω1 and ω2. Using the perspectivity from
α1, we see that the point of intersection of lines m := P11.P21 and n := P13.P23 is on
l, that is, n is on the intersection X of m with l, while using the perspectivity from α2,
we also see that the point of intersection of the lines m and r := P12.P22 is on l, that is,
r is on X . Thus, we see that m, n and r are concurrent with X on l. In particular, the
lines n and r meet at this point. Since these lines contain the points P12, P22, P13, P23,
they are coplanar and the plane may be labelled π31. 2

6. Minimum-energy configurations of electrons

Thomson studied configurations of electrons arranged on a sphere in three-
dimensional Euclidean space. Since electrons repel each other according to an inverse
square law if a collection of n electrons are ‘thrown’ randomly onto a sphere then
they will automatically reconfigure into a minimum energy configuration. For small
numbers of electrons (up to 15) the pattern is unique; that is, the local energy minimum
is also global. See [3].

EXAMPLE 1. For three electrons the minimum energy occurs when they are equally
spaced on a great circle (for example, the equator). When there are four electrons they
form a tetrahedron on the sphere. Six electrons form an octahedron.

EXAMPLE 2 (The 84 ‘theorem’). When there are eight electrons they form two
squares on two parallel planes. Note that this is not a cube. Instead, the second square
is rotated at 45◦ to the first, so that the diagonals of one square are parallel with the
sides of the other. This means that there are eight more planes defined, each containing
a side of one square and a diagonal of the other. Clearly the eight points and these latter
eight planes form the 84 configuration of Section 4, in a special case where the two
tetrahedra are collapsed into parallel planes.

EXAMPLE 3 (The 94 ‘theorem’). When there are nine electrons we again have a
connection with an nk ‘theorem’. In this case the minimum energy occurs in a
configuration having three equilateral triangles in parallel planes on the sphere. The
‘top’ and ‘bottom’ triangles are oriented in the same way, vertically below each other
with respect to the poles of the sphere, while the ‘middle’ triangle on the ‘equator’ is
rotated at 180◦ with respect to the other two. However, the sides of all three triangles
still occur in three parallel classes. This configuration is seen to be another case of the
94 ‘theorem’ of Section 5.
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7. Forbidden minors in graph/matroid theory

Many ‘forbidden minor’ characterizations of graphs and matroids correspond to
certain lists of nk ‘theorems’. ‘Minors’ are the matroid equivalent of submatrices
of matrices over a field, the columns of which coordinatize configurations in space.
For an elementary introduction to matroids and graphs see Wilson [21]. Some
examples follow.

We denote the Fano matroid (that is, the projective plane of order two) by F , and
the dual of a matroid M by M∗. ‘Binary’ matroids are those representable over GF(2).

EXAMPLE 4. A matroid is binary if and only if it has no minor isomorphic to the four-
point line; that is, the rank-two matroid having four points, every pair independent.

REMARK. The ‘Ursatz’ 22 ‘theorem’ also has four points (actually two of them are
‘dual’ points) on the line. However, this degenerate ‘theorem’ is about all of the points
being the same if three pairs of them are equal.

EXAMPLE 5 (Tutte 1958 [17]). A matroid is regular if and only if it is binary and has
no minor isomorphic to F or F∗ if and only if it is unimodular.

REMARK. The Fano matroid F is the 73 ‘theorem’ and F∗ is the 74 ‘theorem’ for
fields of characteristic two.

EXAMPLE 6 (Tutte 1959 [18]). A matroid is graphic (that is, it is the circuit matroid
of a graph) if and only if it is binary and contains no minor isomorphic to M∗(K5),
M∗(K3,3), F or F∗.

REMARK. Here M∗(K5) and M∗(K3,3) are closely related to the 107 and 95
configurations, which are the complements of Desargues and 94 ‘theorems’, while
F and F∗ are the 73 and 74 ‘theorems’.

EXAMPLE 7. A graph (with nondirected edges) is nonplanar (every embedding into
the Euclidean plane has an edge-crossing somewhere) if and only if it has a minor
(a subgraph constructed by a sequence of deletions and contractions of edges) that is
K5 or K3,3.

REMARK. The graph K5 corresponds to the Desargues 103 ‘theorem’ in three-
dimensional space. One way to construct such a configuration of ten points in the
plane (over a skew-field) is to consider five independent points in four-dimensional
space. There are ten subsets of two points from these five points, and these subsets
generate ten lines intersecting a general hyperplane in the three-dimensional Desargues
configuration. Any embedding of the Desargues configuration in the plane is obtained
by a projection from the three-dimensional Desargues configuration from a point to the
plane. Thus, the rank-four Desargues 103 configuration is the circuit matroid of K5.

EXAMPLE 8. The graph K3,3 corresponds to the 94 ‘theorem’. One way to construct
the 94 configuration in three-dimensional space is to consider six independent points
in five-dimensional space. Split the six points into a partition of two subsets of three
points each. The nine lines joining a point of one subset with a point from the
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other intersect a general hyperplane in the four-dimensional 94 configuration. Then
any embedding of the 94 configuration in three-dimensional space is obtained by a
projection of the four-dimensional configuration from a point to the three-dimensional
space. In matroid theory the rank-five 94 configuration represents the circuit matroid
of K3,3.

REMARK. It follows from Brylawski and Lucas [4] and White [20] that if a binary
matroid is representable over a certain field, then it is uniquely representable, that
is, up to homographies (linear collineations), in that projective (or affine) geometry.
Since the circuit matroids of K5 and K3,3 are graphical, hence regular (representable
over any field), unimodular (represented by a rational matrix with all subdeterminants
0 or ±1) and binary (embeddable in space over GF(2)), it follows that when they are
embedded into three-dimensional and four-dimensional space (as the 103 configuration
and 94 configuration, respectively), the embeddings are essentially unique. (In the
same papers it is shown that any representation of any matroid over GF(3) is unique
up to collineations.)

REMARK. If we have two tetrahedra in perspective from a point in three-dimensional
space, then the corresponding sides of the tetrahedra intersect in six further points. In
total there are

1+ 4+ 4+ 6= 15=
(

6
2

)
points in the resulting configuration and, by using Desargues theorem six times, it has

4+ 6+ 6+ 4= 20=
(

6
3

)
lines of three points each. It may be seen that it is obtained from a projection of
the chords of the six points in five-dimensional space intersecting a four-dimensional
space. Thus, the 94 configuration is a subconfiguration of the well-known ‘two
tetrahedra in perspective’ configuration. In matroid theory this latter rank-five
configuration of 15 points, 20 lines and 15 planes, represents the circuit matroid of K6.
Cayley and Veronese can be considered to be the originators of the study of
configurations such as these. See Baker [1], Carver [5], Cayley [6], Hilbert and Cohn-
Vossen [12] and Veronese [19] for some of the history.

8. Geometrical models

It is possible to make nice models of the 84 and 94 configurations. We can
make a model of the 94 configuration in Euclidean space as follows. Consider two
regular triangular prisms: such a prism has three faces that are perfect squares, joined
edgewise, and at the two ends there are equilateral triangles. Now glue the two prisms
together at a pair of square faces so that one is twisted by 90◦ with respect to the other.
This gives a figure in space with 6+ 6− 4= 8 vertices. Then the final point of the
94 configuration is the centre point (centroid) with respect to the whole. The centroid
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will be in the plane common to both prisms. Join it to the remaining four vertices not
in the common plane by lines of different colours. Each coloured line will be parallel
to two other edges on the faces of the external figure. Colour these edges the same.
Now we have the graph having 9 vertices and 18 edges, which is the Cartesian product
of K3 with itself, embedded in space. The nine planes of the 94 configuration contain
two edges from two parallel classes; that is, colours.

For a model of the 84 configuration consider a (regular) tetrahedron. Colour two
opposite edges of the tetrahedron with the colour green. The remaining four edges we
colour orange (they form a 4-cycle.) Now draw two lines between points on opposite
sides of this orange 4-cycle. Colour these yellow. We have to construct a further four
(red) lines (and eight points on them). Take any point on a green line. It is on a
unique line that intersects both yellow lines. Colour this new line red. The red line
intersects one of the yellow lines (the ‘first’) in a point which is on a further red line
that intersects both yellow lines and the other green line. This further (second) red
line contains an additional point on the second yellow line and this additional point
is on a unique (third) red line that intersects the first yellow line and the first green
line. The point on the first yellow line on this red line is on the unique (fourth) red line
intersecting the second green line and the second yellow line. From the 84 ‘theorem’
the fourth red line is concurrent with the second yellow and first red lines.

The eight points of the 84 configuration are the vertices of the original tetrahedron,
together with the points of intersection of the i th and (i + 1)th red lines, where i
is taken modulo four. The eight planes are in bijective correspondence with the
remaining eight points of intersection between the two green, two yellow, four orange
and four red lines. Each of these points is either on a pair of orange and yellow lines,
or on a pair of red and green lines. Thus, the points of the 84 configuration are on
precisely three of the lines, while the planes correspond to points that are on precisely
two of the lines.

9. Summary

At present we know of ‘standard’ nk ‘theorems’ that have parameters 73, 74, 84
(twice), 93, 94, 96 and 103. The complementary 95 and 107 configurations are not
embedded into their spaces in a standard way, in that either all of the points lie in
a hyperplane, or all of the hyperplanes pass through a point. Also, the 73 and its
complementary 74 configurations are only ‘theorems’ for fields of characteristic two.
The genesis of such ‘theorems’ may be considered to be the ‘Ursatz’ m2 ‘theorems’
where m ≥ 2. These have a Levi graph that is a 2m-cycle. However, these are not
‘standard theorems’ in that any embedding will have repeated points.

The searches we have made have been with a small computer and for the rational
number field. It is possible that by searching over fields of positive characteristic and
with a more powerful computer more nk ‘theorems’ could be found.

‘Theorems’ that are valid in all projective spaces (over a general skew field) have a
different character to those that are only valid for just fields (or even fields of a certain
characteristic). ‘Theorems’ valid for all projective spaces must be able to be proved
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using just synthetic methods and Desargues theorem, whereas ‘theorems’ for spaces
over fields must use Pappus (or algebraic methods involving objects such as quadrics
or determinants). See Hilbert [11].

Then there is still the aim to classify all nk ‘theorems’. We speculate that it can be
done using generalizations of von Staudt’s projectivity groups to sequences of lines
and secunda in higher-dimensional space.

The known nk ‘theorems’ that are also valid for skew fields (those that are provable
by purely synthetic methods), that is, the 103 and 94 ‘theorems’, also have the property
that they come by projection from a point of unique higher-dimensional (graphical)
models in three and four dimensions, respectively. This leads us to speculate that there
is a general connection between configurations that come by projection from unique
higher-dimensional models, and ‘theorems’ of this kind. We have already noted at
the end of Section 1 that the reason that the complementary 107 and 95 configurations
degenerate is that they have this property.
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