15
Functional Analytic Methods in Spacetime

When constructing a causal fermion system in Minkowski space in Section 5.5,
we chose H as a subspace of the solution space H,, of the Dirac equation. In
principle, one can choose H as one likes, and different choices give rise to different
causal fermion systems. However, if one wants to describe a given physical system,
one must specify the subspace H C H,,, and it important to do it right. It is
not obvious what “right” and “wrong” should be. Generally speaking, H can be
thought of as the “occupied states” of the physical system under consideration.
If we want to describe the vacuum in Minkowski space (i.e., no particles and no
interaction is present), then the natural and only physically reasonable choice is
to let H be the subspace of all negative-frequency solutions of the Dirac equation.
As already explained in Section 1.5 in the preliminaries, this choice corresponds to
the physical concept of the Dirac sea as introduced by Dirac in 1930, which led to
the prediction of antimatter (discovered shortly afterward in 1932, earning Dirac
the Nobel prize in 1933). Following these physical concepts, it is also clear that if
particles and/or antiparticles (but no interaction of the matter) is present, then H
is obtained from the subspace of all negative-frequency solutions by occupying
additional particle states and by creating “holes” in the sea corresponding to the
antiparticle states. Once an interaction (e.g., an electromagnetic field) is present,
it is no longer clear how J is to be chosen. The reason is that, as soon as the
fields are time-dependent, the notion of positive and negative frequency solutions
breaks down, so that there is no obvious decomposition of the solution space into
two subspaces. But for the description of the physical system, a decomposition
of the solution space is needed, and taking the “wrong” decomposition leads to
artificial mathematical and physical difficulties.

We now explain a functional analytic method which gives rise to a canonical
decomposition of the solution space into two subspaces, even in the time-dependent
situation. In the static situation, this decomposition reduces to the canonical
frequency splitting. This splitting is “right” in the sense that it gives rise to a
physically sensible ground state of the system (a so-called Hadamard state, as we
will learn in Chapter 19). Moreover, when performing our construction perturba-
tively, one can compute the singularities of P(x,y) explicitly working exclusively
with bounded line integrals. These explicit computations are the backbone of the
analysis of the continuum limit in [45]. Before outlining the perturbative treatment
(see Chapter 18), we now explain the general functional analytic construction.
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280 15 Functional Analytic Methods in Spacetime

15.1 General Setting and Basic Ideas

In preparation, we summarize the structures of Chapter 1 using a more gen-
eral notation, which has the advantage that our setting applies just as well if
Minkowski space is replaced by a globally hyperbolic spacetime. Thus the reader
who is familiar with general relativity and Lorentzian geometry, in what follows
may consider (/,g) as a globally hyperbolic Lorentzian manifold with spinor
bundle (SAL,<.|.>). The Dirac equation is written as

(D —m)pm =0, (15.1)

here the subscript m indicates the mass of the solution; this is of advantage because
later on, we shall consider families of solutions with a varying mass parameter.
In Minkowski space, one chooses D = i@ + B such as to get back to (1.39),
where B is an arbitrary multiplication operator satisfying the symmetry condi-
tion (1.38). More generally, in a globally hyperbolic spacetime, the Dirac operator
is a first-order differential operator, but the coefficients depend on the metric (for
details, see Chapter 4). Next, we let N be any Cauchy surface. Then the scalar
product (1.37) on the solutions can be written more generally as

(wm‘qf)m)m = 2”//\( '<¢m|¢¢m>':r dﬂﬂ(x) > (15'2)

where v is the future-directed normal and dp y the volume measure given by
the induced Riemannian metric on & (in Minkowski space and N = {t =
const}, the normal has the components v* = (1,0,0,0) and duy = d3z, giving
back (1.37)). Similar to the computation (1.35), the vector field <, [y ¢ =z is
again divergence-free, implying that the abovementioned scalar product is indepen-
dent of the choice of the Cauchy surface (for details, see [70, Section 2]). Forming
the completion gives a Hilbert space denoted by (H, (-]-)m)-

For the following constructions, we again need the spacetime inner prod-
uct (13.82). In order to explain the basic idea of the construction as first given
in [70], let us assume for simplicity that the integral in (13.82) exists for all solu-
tions ¥, ¢m € H,y. This condition is not satisfied in Minkowski space because
the time integral in (13.82) in general diverges. But it is indeed satisfied in space-
times of finite lifetime (for details, see [70, Section 3.2]). Under this assumption,
the spacetime inner product can be extended by continuity to a sesquilinear form

<|>:HpxH, >C, (15.3)
which is bounded, that is,
|[<tm|bm>] < ¢ l|omlm 1¥mlm (15.4)

where ||| = (|)§n is the norm on H,,. Then, applying the Fréchet-Riesz the-
orem (as explained in the construction of the local correlation operator (5.32) in
Section 5.5), we can uniquely represent this inner product on the Hilbert space 3,,
with a signature operator 8,

St Hpy — Hy  with  <dm|tm> = (dm | S Vm)m - (15.5)
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15.1 General Setting and Basic Ideas 281

We refer to 8 as the fermionic signature operator. It is obviously a symmetric
operator. Moreover, it is bounded according to (15.4). Therefore, the spectral
theorem for selfadjoint operators gives the spectral decomposition

S:/ XdEy , (15.6)
o(5)

where E) is the spectral measure (see Section 3.2 or, e.g., [131]). The spectral
measure gives rise to the spectral calculus

f(8) = fN) dEy @ Hp — Hop (15.7)
a(8)
where f is a bounded Borel function on ¢(8) C R. Choosing f as a characteristic
function, one obtains the operators X (9,5)(8) and X(—sc,0y(8). Their images are
referred to as the positive and negative spectral subspace of H,,, respectively. In
this way, one obtains the desired decomposition of the solution space into two
subspaces. We remark that the fermionic signature operator also gives a setting
for doing spectral geometry and index theory with Lorentzian signature. We will
not enter these topics here but refer the interested reader to the papers [69, 46].
The basic shortcoming of the abovementioned construction is that in many
physically interesting spacetimes (like Minkowski space) the inequality (15.4) fails
to be true. The idea to bypass this problem is to make use of the fact that a typical
solution ¢ € C2 (M, SAM) N H,, of the Dirac equation oscillates for large times.
If, instead of a single solution, we consider a family of solutions with a varying
mass parameter m, then the wave functions for different values of m typically have
different phases. Therefore, integrating over the mass parameter leads to dephasing
(in the physics literature also referred to as destructive interference), giving rise
to decay in time. In order to make this idea mathematically precise, one considers
families of solutions (¢, )mer of the family of Dirac equations (15.1) with the mass
parameter m varying in an open interval I. We need to assume that I does not
contain the origin, because our methods for dealing with infinite lifetime do not
apply in the massless case m = 0 (this seems no physical restriction because all
known fermions in nature have a nonzero rest mass). By symmetry, it suffices to
consider positive masses. Thus we choose I as the interval

I:=(mg,mr) CR with parameters mp,mpg > 0. (15.8)

The masses of the Dirac particles of our physical system should be contained in I.
Apart from that, the choice of I is arbitrary and, as we shall see, all our results
will be independent of the choice of m; and mp. We always choose the family of
solutions (¢ )mer in the class C5o (M x I, SAL) of smooth solutions with spatially
compact support in Minkowski space # which depend smoothly on m and vanish
identically for m outside a compact subset of I. Then the “decay due to destructive
interference” can be made precise by demanding that there is a constant ¢ > 0

such that

‘</I O dm | /Iwm/ dm’>‘ < c/I | | o P} (15.9)
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282 15 Functional Analytic Methods in Spacetime

for all families of solutions (Y )mer; (Pm)mer € Cso(AM x I, SAM). The point
is that we integrate over the mass parameter before taking the spacetime inner
product. Intuitively speaking, integrating over the mass parameter generates a
decay of the wave function, making sure that the time integral converges. The
inequality (15.9) is one variant of the so-called mass oscillation property. If (15.9)

holds, we shall prove that there is a representation
<[ ém dm| [ s dm'> = [(0n |8t dm, (15.10)
I I I

which for every m € I uniquely defines the fermionic signature operator 8,,. This
operator is bounded and symmetric with respect to the scalar product (15.2).
Moreover, it does not depend on the choice of the interval I. Then the positive
and negative spectral subspaces of the operator Sim again yield the desired splitting
of the solution space into two subspaces.

Before entering the detailed constructions, we explain how the abovementioned
integrals over the mass parameters are to be understood. At first sight, integrating
over a varying mass parameter m € I may look like “smearing out” the physical
mass in the Dirac equation. However, this picture is misleading. Instead, one should
consider the mass integrals merely as a technical tool in order to generate decay
for large times. The resulting operators S, in (15.10) act on v, with the corre-
sponding mass m € I. Choosing m again as the physical mass, the operator Sim
acts on standard Dirac wave functions describing physical particles, without any
smearing in the mass parameter.

15.2 The Mass Oscillation Properties

In a spacetime of infinite lifetime, the spacetime inner product <t,,|¢,> of two
solutions ¥, ¢ € H,p, is in general ill defined, because the time integral in (13.82)
may diverge. In order to avoid this difficulty, we shall consider families of solutions
with a variable mass parameter. The so-called mass oscillation property will make
sense of the spacetime integral in (13.82) after integrating over the mass parameter.

We consider the mass parameter in a bounded open interval I (15.8). For a
given Cauchy surface ¥, we consider a function ¢ y(x,m) € S, M with z € N
and m € I. We assume that this wave function is smooth and has compact support
in both variables, ¥y € C§°(N x I, SAM). For every m € I, we let ¢(.,m) be the
solution of the Cauchy problem for initial data ¢ (., m),

(D —m)yp(z,m)=0, Y(x,m) =yYy(x,m) Ve eN. (15.11)

Since the solution of the Cauchy problem is smooth and depends smoothly on
parameters, we know that ¢» € C*° (M x I, SA). Moreover, due to finite propaga-
tion speed, 1 (.,m) has spatially compact support. Finally, the solution is clearly
compactly supported in the mass parameter m. We summarize these properties
by writing

b e O (M x T,5L) (15.12)
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15.2 The Mass Oscillation Properties 283
oo (M X1, SA) denotes the smooth wave functions with spatially compact
support which are also compactly supported in I. We often denote the dependence
on m by a subscript, ¥, (z) := (2, m). Then for any fixed m, we can take the
scalar product (15.2). On families of solutions 1, ¢ € C5o (M x I, S ) of (15.11),
we introduce a scalar product by integrating over the mass parameter,

where

(Plo)r = /I(wmwm)m dm, (15.13)

where dm is the Lebesgue measure. Forming the completion, we obtain the Hilbert
space (H, (.].)r). It consists of measurable functions ¥ (x, m) such that for almost
all m € I, the function v¥(.,m) is a weak solution of the Dirac equation which
is square integrable over any Cauchy surface. Moreover, this spatial integral is
integrable over m € I, so that the scalar product (15.13) is well defined. We
denote the norm on K by ||.||;-

For the applications, it is useful to introduce a subspace of the solutions of the
form (15.12):

Definition 15.2.1 We let H>® C CZo(M x I,SAM) N FH be a subspace of the

sc,0
smooth solutions with the following properties:

(i) H>® s invariant under multiplication by smooth functions in the mass
parameter,

n(m) (z,m) € H® Ve H®, neC™(). (15.14)

(ii) For every m € I, the set H = {p(.,m)| ¢ € H>®} is a dense subspace
of Hpm,

Fotm — 9, wmel. (15.15)

We refer to H* as the domain for the mass oscillation property.

The simplest choice is to set H>® = C2 (M x I, S )NFH, but in some applications

sc,0
it is preferable to choose > as a proper subspace of C5 (M x I, SMYNKH. (e.g.,
in [71, Section 6], the space H> was chosen as being spanned by a finite number of
angular modes, making it unnecessary to prove estimates uniform in the angular
mode).

Our motivation for considering a variable mass parameter is that integrating
over the mass parameter should improve the decay properties of the wave function
for large times (as explained in the introduction in the vacuum Minkowski space).
This decay for large times should also make it possible to integrate the Dirac

operator in the inner product (13.82) by parts without boundary terms,

<Dypy|pp> = <p1p|Dpo> , (15.16)

implying that the solutions for different mass parameters should be orthogonal
with respect to this inner product. Instead of acting with the Dirac operator, it
is technically easier to work with the operator of multiplication by m, which we
denote by
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284 15 Functional Analytic Methods in Spacetime

T: H—-XH, (TY)m = My, . (15.17)

In view of property (i) in Definition 15.2.1, this operator leaves H*° invariant,
Ty @ H™ — H™. (15.18)
Moreover, T is a symmetric operator, and it is bounded because the interval I is,
T*=T e L(K). (15.19)

Finally, integrating over m gives the operation
pH® = Co(M,SAM), Py = /wm dm . (15.20)
I

We point out for clarity that py no longer satisfies a Dirac equation. The following
notions were introduced in [71], and we refer the reader to this paper for more
details.

Definition 15.2.2 The Dirac operator D = id + B on Minkowski space M
has the weak mass oscillation property in the interval I = (mp, mg) with
domain H> if the following conditions hold:

(a) For every v, ¢ € H™, the function <po|py = is integrable on M . Moreover,
there is a constant ¢ = ¢(v¢) such that

|<py|po>| < c|lélr for all ¢ € H*> . (15.21)
(b) For all v, ¢ € H>,
<pTYlpdp> = <pyp|pT> . (15.22)

Definition 15.2.3 The Dirac operator D = i + B on Minkowski space M
has the strong mass oscillation property in the interval I = (mp, mg) with
domain H> if there is a constant ¢ > 0 such that

|<pilpo>| < c /I |Gmllon [l A for allh,p € 3. (15.23)

15.3 The Fermionic Signature Operator

In this section we give abstract constructions based on the mass oscillation prop-
erty. We first assume that the weak mass oscillation property of Definition 15.2.2
holds. Then, in view of the inequality (15.21), every ¥ € H™ gives rise to a
bounded linear functional on H°°. By continuity, this linear functional can be
uniquely extended to J. The Fréchet—Riesz theorem allows us to represent this
linear functional by a vector u € H, that is,

(ulg)r = <pylpg>  Voe . (15.24)

Varying 1, we obtain the linear mapping

8§ H® = H, (Sv|p);r = <py|pp> Ve XH. (15.25)
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15.8 The Fermionic Signature Operator 285

This operator is symmetric because
(8Ylo)r = <piblpd> = (Y[8d)r V¢, € H>™. (15.26)
Moreover, (15.22) implies that the operators § and T' commute,
ST =T8 : H* - H. (15.27)

Thus the weak mass oscillation property makes it possible to introduce 8 as a
densely defined symmetric operator on H. It is indeed possible to construct a
selfadjoint extension of the operator 82 (using the Friedrich’s extension), giving rise
to a functional calculus with corresponding spectral measure (for details, see [71,
Section 3]). In this setting the operator 8§ and the spectral measure are operators
on the Hilbert space 3 which involves an integration over the mass parameter. In
simple terms, this implies that all objects are defined only for almost all values
of m (with respect to the Lebesgue measure on I C R), and they can be modified
arbitrarily on subsets of I of measure zero. But it does not seem possible to
“evaluate pointwise in the mass” by constructing operators 8,, which act on the
Hilbert space I, for fixed mass.

In view of this shortcoming, we shall not enter the spectral calculus based
on the weak mass oscillation operator. Instead, we move on to the strong mass
oscillation property, which makes life much easier because it implies that S is a
bounded operator.

Theorem 15.3.1 The following statements are equivalent:

(i) The strong mass oscillation property holds.
(ii) There is a constant ¢ > 0 such that for all ¥, € H*>, the following two
relations hold:

[<pilpe>| < c[¥llr ol (15.28)
<pTY|pd> = <py|pTo> . (15.29)
(iii) There is a family of linear operators 8,, € L(H,,) which are uniformly
bounded,
sup |8, ]| < oo, (15.30)
mel
such that
<pylpo> = /I(wm |8m Gm)m dm Vb, ¢ € H™. (15.31)

Proof The implication (iii)=-(i) follows immediately from the estimate

|<py[po>| s/\(wm|sm¢m)m| dm
! (15.32)

< sup S / e [l dm
mel I
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286 15 Functional Analytic Methods in Spacetime

In order to prove the implication (i)=-(ii), we first apply the Schwarz inequality
to (15.23) to obtain

<pulpd>| < c / 16wl ol A

e (/, [l dmf(/l ml, dm)’ = cligll fl, (1533

proving (15.28). Next, given N € N we subdivide the interval I = (mp, mpg) by
choosing the intermediate points

L
mg:N(mR—mL)—i—mL, {=0,...,N. (15.34)
Moreover, we choose nonnegative test functions nq,...,ny € C§°(R) which form

a partition of unity and are supported in small sub-intervals, meaning that

N
ZW|1 =1, and supp e C (me—1,Me11) , (15.35)
=1

where we set m—_; = my — 1 and my41 = mpg + 1. For any smooth function n €
C§°(R) we define the bounded linear operator n(T) : H*> — H> by

(n(T)),, = n(m) b, . (15.36)
Then by linearity,
<pTY|pd> — <p[pT o>
N
= (<me(T)w [P e (T) 9> = <pne(T) ¢ [ p T ner(T) ¢>)
0,00=1

=Y (<P (T—mg) ne(T) [ pne (T) ¢> — <pne(T) ¢ | p (T — me) ne (T)) ¢>).

0e=1
(15.37)
Taking the absolute value and applying (15.23), we obtain
|<pTlpp> — <p|pTo>|
N
<e 30 [ im—milntm)nem) ol ol dm. - (1538)

0,00=1

In view of the second property in (15.35), we only get a contribution if [¢—¢'| < 1.
Moreover, we know that |m — my| < 2|I|/N on the support of ny. Thus

6|1
|<pTlpd> — <pyp|pTh>| < CA', | Z/Im(m) [ Gmllm [[¢mllm dm
=1

A

6c|I
= S ol Wl . (15.39)
1

Since N is arbitrary, we obtain (15.29).
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15.8 The Fermionic Signature Operator 287

It remains to prove the implication (ii)=-(iii). Combining (15.28) with the
Fréchet—Riesz theorem, there is a bounded operator § € L(H) with

<pYlpo> = (Y[8P)r  Vip, € H®. (15.40)

The relation (15.29) implies that the operators 8 and 7' commute. Moreover, these
two operators are obviously symmetric. Hence the spectral theorem for commuting
selfadjoint operators implies that there is a spectral measure F' on o(8) x I such
that

8PTI = / vPm dF, ., Vp,qg€eN. (15.41)
o(8)x1

For given 1, ¢ € H*°, we introduce the Borel measure f, 4 on I by
1,6 () =/ v d(¥|Fyme)r - (15.42)
o(8)xQ
Then py,4(I) = (¢|8¢); and

() = / o 0| Funxa() ),

(15.43)
= xa(M v [8xa(T)d)r .
Since the operator 8 is bounded, we conclude that
1,0 (Q)] < clixa(T) ¢l|r [xa(T) oIz
(15.13) H
([ 1ol am [ 1otz an)
Q Q
<@l (s [9mln) (50D Imlm) - (15.44)
meQ m/ e}

This shows that the measure p is absolutely continuous with respect to the
Lebesgue measure. The Radon-Nikodym theorem (see Theorem 12.5.2) implies
that there is a unique function f, » € L'(I, dm) such that

(€)= / fos(m) dm. (15.45)

Using this representation in (15.44), we conclude that for any ¢ € R,

Re <ei‘f°/9f¢,¢(m) dm) < |0 ()]
< c[9] (sup [l ) ( sup [ lln) - (15.46)
meQ m’'eQ
As a consequence, for almost all m € I (with respect to the Lebesgue measure dm),

Re (' fy,6(m)) < cl[tomllm l|dmllm - (15.47)

Since the phase factor is arbitrary, we obtain the pointwise bound

[ f,0 (M) < cl|Ymlm || Omllm for almost all me I . (15.48)
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288 15 Functional Analytic Methods in Spacetime

Using this inequality, we can apply the Fréchet—Riesz theorem to obtain a unique
operator 8,, € L(H,,) such that

f¢;¢(m) = (wmlsm(bm)m and ”Sm” <c. (1549)

Combining the abovementioned results, for any ¥, ¢ € H> we obtain

(15.40)

<pilpg> EV (pisg) (Y / v d($| Fym 6):1
o(8)xI

(15.42) (15.45) (15.49)
= /duw,¢ = /fw,¢(m) dm = = /(¢m|8m¢m)m dm.  (15.50)
I I I

This concludes the proof. O

Comparing the statement of Theorem 15.3.1 (ii) with Definition 15.2.2, we
immediately obtain the following result.

Corollary 15.3.2 The strong mass oscillation property implies the weak mass
oscillation property.

We next show uniqueness as well as the independence of the choice of the
interval I.

Proposition 15.3.3 (uniqueness of 8,,,) The family (S,,)mer in the statement
of Theorem 15.3.1 can be chosen such that for all 1,¢ € H™, the expectation
value fy,6(Mm) .= (Vi |Sm®m)m s continuous in m,

fo.o €CII). (15.51)

The family (S8;m)mer with the properties (15.31) and (15.51) is unique. Moreover,
choosing two intervals I and I with m € I C I and 0 & I, and denoting all the
objects constructed in I with an additional check, we have

Sm = Sm . (15.52)

Proof Let us show that the function fy 4 is continuous. To this end, we choose a
function n € C5°(I). Then for any ¢ > 0 which is so small that B.(suppn) C I,
we obtain

/(fw,¢>(m +e) - fw,dn(m)) n(m) dm

1
= [ Footm) (ntm =) = n(m) m
2 <[ (ntm =) = n(m) ) 0>

= </In(m) (wm+s - wm) dm | po>, (15.53)

where in (%) we used (15.41) and (15.42). Applying (15.28), we obtain

| (Forstm ) = Footrm)) ntm) dm] < e = wlr 9l suplnl . (15.54)
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15.4 The Unregularized Kernel of the Fermionic Projector 289

where the vector ¥y, € H>® is defined by (V1¢)m := PYmiye. Since
li — = 15.
lim Jlgo4e — 9llr =0 (15.55)

and 7 is arbitrary, we conclude that fy 4 is continuous (15.51). This continuity is
important because it implies that the function fy ¢4 is uniquely defined pointwise
(whereas in (15.45) this function could be modified arbitrarily on sets of measure
Z€ero).

In order to prove (15.52), we note that the representation (15.40) implies that

(¥18¢); = (¥18¢);  for all 1, ¢ € F>. (15.56)
Using (15.42) and (15.45), it follows that

/ Foo(m) dm = / fog(m)dm  forallQcT. (15.57)
Q Q

Choosing fy.¢(m) and f, 4(m) as continuous functions, we conclude that they
coincide for every m € I. It follows from (15.31) that the operators S,, and 8,,
coincide. This concludes the proof. O

15.4 The Unregularized Kernel of the Fermionic Projector

We now explain how the fermionic signature operator can be used for the con-
struction of the so-called fermionic projector. This will give a direct connection
to the kernel of the fermionic projector introduced abstractly for causal fermion
systems in Chapter 5 (see (5.45)). We will explain this connection, which will be
elaborated on further in Section 21.

It follows directly from by its defining equation (15.31) that the operator 8, is
symmetric. Thus the spectral theorem gives rise to the spectral decomposition

S :/ v dE, (15.58)
U(S'rn)

where F, is the spectral measure (see, e.g., [131]). The spectral measure gives rise
to the spectral calculus

f(Sm) —/(S )f(v) dE, , (15.59)

where f is a bounded Borel function.

Definition 15.4.1 Assume that the Dirac operator D on (M,g) satisfies the
strong mass oscillation property (see Definition 15.2.3). We define the operators

Py @ CO(M, SM) = Ho (15.60)

by
P, = X[O,oo)(sm) Em and p_ = _X(foo,O)(Sm) Em (15.61)

(where x denotes the characteristic function). The fermionic projector P is
defined by P = P_.
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290 15 Functional Analytic Methods in Spacetime

Proposition 15.4.2  For all ¢, € CF(M,SM), the operators Py are
symmetric,
<Ppo|p> = <¢|Pry>. (15.62)

Moreover, the image of Py is the positive respectively negative spectral subspace
of 8, that is,

P—‘r(cgo(‘/%a S‘/%)) = E(O,oo) (j{m) ;

(15.63)
Proof According to Proposition 13.4.4,
<P—¢|¢> = (P—¢|km¢)m = _(X( ooO) m¢|k’m¢)
= — (ki & | X(—00,0)(8m) km¥),, —<¢|P—1/J>- (15.64)
The proof for P, is similar. The relations (15.63) follow immediately from the fact
that k,, (C3°(AM,SA)) is dense in Fp,. O

As in [70, Theorem 3.12], the fermionic projector can be represented by a two-
point distribution on . As usual, we denote the space of test functions (with the
Fréchet topology) by D and define the space of distributions D’ as its dual space.

Theorem 15.4.3 Assume that the strong mass oscillation property holds.
Then there is a unique distribution P € D'(M x M) such that for all ¢, €

Coe (A, S ),
<P|PYp>=P(p 7). (15.65)
Proof According to Proposition 13.4.4 and Definition 15.4.1,
<QIPY> = (kmo | PY)m = —(km® | X(=00,0) (81m) kmt)m (15.66)
Since the norm of the operator X(—oc,0)(8) is bounded by one, we conclude that
|<@1PY>| < [kmllm Wem®llm = (<Pllmd> <tplkmp>)7 , (15.67)

where in the last step we again applied Proposition 13.4.4. As k,, € D'(M X
M), the right-hand side is continuous on D(AM x ). We conclude that also the
functional <¢|Py> is continuous on D(M x ). The result now follows from
the Schwartz kernel theorem (see [105, Theorem 5.2.1], keeping in mind that this
theorem applies just as well to bundle-valued distributions on a manifold simply by
working with the components in local coordinates and a local trivialization). [

Exactly as explained in [70, Section 3.5], it is convenient to use the standard
notation with an integral kernel P(z,y),

<H|Py> = //M | <0@) | P) ) @) dpaly) (1569

(Py)(x) = /M P2, ) () dua () (15.69)

(where P(.,.) coincides with the distribution P above). In view of Proposi-
tion 15.4.2, we know that the last integral is not only a distribution, but a function
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15.4 The Unregularized Kernel of the Fermionic Projector 291

which is square integrable over every Cauchy surface. Moreover, the symmetry of P
shown in Proposition 15.4.2 implies that

where the star denotes the adjoint with respect to the spin inner product.
We next specify the normalization of the fermionic projector. We introduce an
operator II by

II: H,, = H,,,

(15.71)
(I ) () = —2r /Jv P(,y) § () () A ()

where N is any Cauchy surface.

Proposition 15.4.4 (spatial normalization) The operator II is a projection
operator on H,,.

Proof According to Theorem 13.4.2, the spatial integral in (15.71) can be combined
with the factor k,, in (15.61) to give the solution of the corresponding Cauchy
problem. Thus

I Hom = Hn s (I pm ) (z) = X(—oo,O)(Sm) Vrm 5 (15.72)

showing that II is a projection operator. O

Instead of the spatial normalization, one could also consider the mass normaliza-
tion (for details on the different normalization methods see [75]). To this end, one
needs to consider families of fermionic projectors P, indexed by the mass param-
eter. Then for all ¢,¢ € C§°(AM,SAM), we can use (15.31) and Proposition 13.4.4
to obtain

<P(Pond) | p(Prrit)> = / (P | S Pt dm

I

- /1 (| SmaX(oe.0) (Srm) K)o A

= /<¢ | SmX(—00,0)(8m) km¥> dm = —<¢ | p(8:m Prutp)> (15.73)
I
which can be written in a compact formal notation as
Py, Py =8(m —m') (=8m) P, - (15.74)

Due to the factor (—8,,,) on the right, in general the fermionic projector does not
satisfy the mass normalization condition. The mass normalization condition could
be arranged by modifying the definition (15.61) to

S;Ll X(*OO,O)(SW) km . (1575)

Here we prefer to work with the spatial normalization. For a detailed discussion
of the different normalization methods we refer to [75, Section 2].

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.184, on 18 Nov 2025 at 06:08:00, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.020


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.020
https://www.cambridge.org/core

292 15 Functional Analytic Methods in Spacetime

Finally, the spatial normalization property of Proposition 15.4.4 makes it
possible to obtain a representation of the fermionic projector in terms of one-
particle states. To this end, one chooses an orthonormal basis (1;)jen of the
subspace X(—oo,0)(8m) C H,. Then

P(z,y) == [1hi(x)==1;(y)] (15.76)
j=1

with convergence in D'(M x M) (for details, see [70, Proposition 3.13]).

This formulas is reminiscent of the decomposition of the kernel of the fermionic
projector into physical wave functions in (5.58). Indeed, these formulas can be
understood as being completely analogous, with the only difference that (15.76)
is formed of wave functions in Minkowski space, whereas in (5.58) one works
abstractly with the physical wave functions of a general causal fermion system.
The connection can be made more precise if one identifies the structures of the
causal fermion system with corresponding structures in Minkowski space. In order
to avoid technicalities and too much overlap with [45], here we shall not enter
the details of these identifications (which are worked out in [45, Section 1.2]).
Instead, we identify (15.76) with (5.58) as describing the same object, on one side
in Minkowski space, and on the other side as abstract object of the corresponding
causal fermion system. With this identification, the Hilbert space J of the causal
fermion system corresponds to the negative spectral subspace of the fermionic sig-
nature operator 8,,. In the vacuum, this gives us back the subspace of all negative
frequency solutions as considered in the example of Exercise 5.14. However, the
above identification has one shortcoming: the wave functions in (15.76) have not
yet been regularized. This is why we refer to P(x,y) as the unregularized ker-
nel. In order to get complete agreement between (15.76) and (5.14), one needs
to introduce an ultraviolet regularization. To this end, one proceeds as explained
in the example in Section 5.5: One introduces regularization operators (R:)c0,
computes the local correlation operators F¢(x) and defines the measure p as the
push-forwards dp = F:du. 4. We will come back to this construction in Chapter 21.

15.5 Exercises
Exercise 15.1 Let A4 be the “spacetime strip”
M= {(t,7) e R*" with0 <t <T}. (15.77)

Show that for any solution ¢ € C (M, SAM) N H,, of the Dirac equation, the
following inequality holds,

|<t1¢>] < T 9l [ llm - (15.78)

This estimate illustrates why in spacetimes of finite lifetime, the spacetime inner
product is a bounded sesquilinear form on J,,.

Exercise 15.2 Let # again be the “spacetime strip” of the previous exercise.
Let ¥, € H® :=HNCL (M x I,SA) be families of smooth Dirac solutions of

sc,0
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15.5 Ezxercises 293

spatially compact support, with compact support in the mass parameter. More-
over, we again define the operators p and 7" as in (15.17) and (15.20). Does the
equation

<pTY[pd> = <py|pTd> (15.79)
(which appears in the weak mass oscillation property) in general hold? Justify
your answer by a proof or a counter example.

Exercise 15.3 Let A again be the “spacetime strip” of the previous exercises.
Moreover, as in Exercise 5.10 we again let H C H,, be a finite-dimensional sub-
space of the Dirac solution space H,,, consisting of smooth wave functions of
spatially compact support, that is,

HcCg(M,SHM)N Hy, finite-dimensional . (15.80)
Show that the fermionic signature operator 8 € L(JH) defined by
<|p> = (V¥|8¢)m for all ¥, ¢ € H (15.81)

can be expressed within the causal fermion system by

S = —/ x dp(x) (15.82)
M
(where p is again the push-forward of du ¢ ).

Exercise 15.4 Let E be the Banach space E = C%([0,1],C) and A : Ex E — C
be sesquilinear, bounded and positive semi-definite.

(a) Assume that A satisfies for a suitable constant ¢ > 0 and all f,g € E the
inequality
|A(f,9)] < ¢ sup |f(z) g()] . (15.83)
z€[0,1]
Show that there is a regular bounded Borel measure p such that

Afrg) = / F@) o) du(z) - (15.84)

(b) Now make the stronger assumption that A satisfies for a suitable constant ¢ >
0 and all f, g € F the inequality

Aol <e [ |f@ o) . (15.85)

Show that pu is absolutely continuous w.r.to the Lebesgue measure. Show that
there is a nonnegative function h € L'([0,1], dz) such that

A, g) = / F@) gla) hz) d (15.86)

Show that h is pointwise bounded by c.

(¢) In order to clarify the different assumptions in this exercise, give an exam-
ple for a sesquilinear, bounded and positive semi-definite functional A which
violates (15.83). Give an example which satisfies (15.83) but violates (15.85).
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294 15 Functional Analytic Methods in Spacetime

Exercise 15.5 (Toward the mass oscillation property - part 1) This exer-
cise illustrates the mass oscillation property. Let 0 < my < mp and n €
C§°((mp,mp)). Show that the function f given by

£(t) = / ) e VIR gy (15.87)

my,

has rapid decay. Does this result remain valid if my and mpg are chosen to have
opposite signs? Justify your finding by a proof or a counter example.
Exercise 15.6 (Toward the mass oscillation property - part 2) Let Rr be the
“spacetime strip”

Ry ={(t,7) e R" with0 <t < T} . (15.88)
Show that for any solutions 1, ¢ € C°(R*, C*) N 3, of the Dirac equation, the
following inequality holds,

|<¥lo>7| ST [[Wllm 9]l ,  where

<tlozr = [ <w@lole)-dte. (15.59)

This estimate illustrates how in spacetimes of finite lifetime, the spacetime inner
product is a bounded sesquilinear form on J,,.

Exercise 15.7 (Toward the mass oscillation property - part 8) Let Rr again be
the “spacetime strip” of the previous exercises. Moreover, we again let H C H,,
be a finite-dimensional subspace of the Dirac solution space H,,, consisting of
smooth wave functions of spatially compact support, that is,

HcCCXRY,CHNIH,  finite-dimensional . (15.90)

Show that the fermionic signature operator 8§ € L(J) defined by

<Y|lp>1 = (Y|8P)m for all ¢, € H (15.91)
can be expressed within the causal fermion system by
S = —/ x dp(z) (15.92)
Rt

(where p is again the push-forward of d*z).

Exercise 15.8 (The external field problem) In physics, the notion of “particle”
and “antiparticle” is often introduced as follows: Solutions of the Dirac equation
with positive frequency are called “particles” and solutions with negative frequency
“antiparticles.” In this exercise, we will check in how far this makes sense.

To this end, take a look at the Dirac equation in an external field:

(i@ + B —m)y = 0. (15.93)
Assume that B is time-dependent and has the following form:

B(t,z) =V O(t — t0)O(t; —t), (15.94)
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where V € R, © denotes the Heaviside step function and tg = 0, ¢t; = 1. In order to
construct a solution thereof, for a given momentum k, we use plane wave solutions
of the Dirac equation,

Y(t, T) = e HREy (15.95)
where xj is a spinor € C*, and patch them together suitably. (The quantity w

is called the “frequency” or “energy,” and k the “momentum.”) To simplify the
calculation, we set k = (k1,0,0)%. Proceed as follows:

(a) First, take a look at the region ¢ < ty. Reformulate (15.93) such that there is
only the time derivative on the left-hand side. (Hint: Multiply by ~.)

(b) Insert the plane wave ansatz with k& = (k1,0,0)7 into the equation. Your
equation now has the form wiy = H(k;)1. Show that the eigenvalues of H (k)

are +wy with wo := /(k1)? + m2.
(c) Show that one eigenvector belonging to +wp is g := (mte0 0,0,1)7 and that
one eigenvector belonging to —wp is x, = ("7™,0,0, 1)T. (Both eigenvalues

have multiplicity two, but we do not need the other two eigenvectors here.)
(d) With this, you have constructed plane wave solutions e’i(ﬂt‘*’“)””ﬁ){a—L for
t < to and also for ¢t > t¢;. By transforming m — (m — V), you immedi-
ately obtain plane wave solutions also for tg < ¢t < t;. Denote the respective
quantities by w; and X%-
(e) Assume that for t < tg there is one “particle” present, that is, set

h(t, 7) = e WOtHRENE for ¢ < . (15.96)
Assume that the solution for ¢y < ¢ < t; takes the form
Ae_i“’lt"’igfxf + Be_i(_“’l)t'*'”zfxl_ with A, B € R. (15.97)

Calculate A and B for the case k1 = 1 and V = m by demanding continuity
of the solution at ¢t = ¢g.
(f) Assume that for ¢ > ¢; the solution takes the form

Cefi“’ot“]gfxa' + Defi(f“’O)HiEfxo_ with C,D € C. (15.98)

Calculate C' and D for m = 2 by demanding continuity of the solution at t = ¢;
(here you may want to use computer algebra).

(g) Interpret what you have found. Why could this be called the “external field
problem”?
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