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Abstract 

One of the major fields of application of speckle-interferometric and speckle-

imaging techniques is the photometry of astronomical objects exhibiting struc­

ture smaller than the seeing limit. The accuracy of the photometry depends criti­

cally on the accuracy to which the modulation transfer function (MTF), that 

describes the atmospheric-telescopic attenuation of the Fourier amplitudes of 

the object under consideration, is known. The estimation of the effective MTF 

is especially difficult when no known reference object is within the field of 

view. 

A method is presented that allows to estimate the effective MTF from the obser­

vation of arbitrary structure with the use of FRIED-KORFF theory. The ratio of 

the squared modulus of the average Fourier transform and the average power spec­

trum serves as an estimator for the FRIED parameter r . To a first approximation, 

this ratio is independent from the observed object. Additionally, the behaviour 

of the ratio in regions beyond the seeing limit in the Fourier plane may be ana­

lyzed to obtain an estimate of the speckle interferometry signal-to-noise ratio. 

The basic concept of the ratio method will be described, its accuracy will be 

discussed. First results on the application of the ratio method to observations 

of solar granulation will be presented. 

I. Introduction 

When applying speckle interferometric and speckle imaging techniques to astrono­

mical observations, it is important to know the effective modulation transfer 

function (MTF) of the combined system of the atmosphere and the telescope. In 

nighttime speckle interferometry, the usual procedure is to observe a near-by 

unresolvable star as a reference simultaneously with the object under considera­

tion, so the MTF can be estimated from the average power spectrum of the refer­

ence object. 

The situation becomes more complicated when no suitable reference object exists 

within the field of view. In particular, this is the case when small scale 
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structure on the solar surface is observed. The shape of the structure is in­

herently unknown and typical lifetimes of small scale intensity fluctuations in 

the solar photosphere range from a few minutes to the order of half an hour. 

Here general assumptions on the shape of the average MTF are necessary. In speck­

le imaging (NOYES et al., 1981) for example, advantage was taken of the con­

ception that the averaged squared modulus of the optical transfer function (OTF) 

consists of a strong low frequency term that describes the average MTF and a 

weak term proportional to the OTF of a diffraction limited telescope (DAINTY, 

1974). 

Another method, devoted to solar observations, has been discussed by AIME et al. 

(1978). Here, the power spectra of two observations of the same structure are 

compared, their ratio being independent from the object spectrum. From the shape 

of the observed ratio, the corresponding values of FRIED's (1966) seeing para­

meter r are derived by comparison with theoretical ratios obtained with 

KORFF's (1973) theory. However, r estimates thus obtained would be very un­

certain when the difference between the two r values were small. 
o 

Here, a different method to obtain r from a time series of observations is pre-
o 

sented (sect. II). The method takes advantage of the differences between the 

average observed Fourier transform and the average power spectrum. The object 

spectrum is eliminated by computing the ratio of the squared modulus of the 

average Fourier transform and the average power spectrum. From the quantity thus 

obtained, the corresponding r is inferred and used to construct the appropriate 

KORFF modulation transfer function. Additionally, closer examination of the ratio 

allows to estimate the signal-to-noise ratio of the speckle interferometry 

signal in the average power spectrum. The results of test experiments are pre­

sented in sect. III. 

II. Theory 

II. 1. The basis of the spectral ratio method 

Consider a time series of N short-exposure-time pictures I.(x)...., IM(x) of a 

temporarily stable, but otherwise arbitrary, small scale structure imaged through 

the atmosphere, x is the spatial coordinate in the telescope focal plane. The 

term "small scale" refers to the property of the observed object I (x) to actu­

ally contain structure with scales smaller than the seeing limit. When imaging 

occurs under isoplanatic conditions, the Fourier transform F.(s) of the i-th 

observation can be written as: 
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F;CS) « F0CS) . S^CS) (1) 

Here, s is the spatial wave number coordinate, F (§") is the object Fourier trans­

form and S.(s) is the effective Optical transfer function (OTF) of atmosphere 

and telescope, when picture I. was taken. 

It is convenient to express quantities in the Fourier domain as functions of the 

"relative wave number" coordinate q, which is defined by: 

Here, S is the theoretical cutoff of a telescope with entrance pupil diameter D 

and effective focal length f, when observations were taken at light wavelength A. 

Thus, within the resolution limit of the telescope, the modulus of q varies bet­

ween 0 and 1. 

In Speckle Interferometry, averages of Fourier quantities are evaluated, and the 

objective here is to obtain an expression from eqn. (1) that is as independent as 

possible from the object spectrum F . Let < • > denote arithmetic averaging and 

define 

The numerator of the left-hand side of eqn. (2)is the squared modulus of the 

average observed Fourier transform, while the denominator is the average observed 

power spectrum. If F (q) is nonzero for all q, i.e. j really is a "small scale" 

object, eqn. (2) turns to: 

The use of the expression (3) was motivated by the following consideration: in 

classical speckle interferometry, the averaged squared modulus of the OTF is be­

lieved to be finite in the whole range o < q < 1 while <S.(q)> quickly tends to­

wards zero for q larger than the atmospheric cutoff q . Within FRIED's and KORFF's 
a 

theories, q is approximately related to FRIED's parameter r by q ~ -°- . Thus, 

the evaluation of £(q) may allow the estimation of r . In the following, C(q) 

will be referred to as "Spectral ratio". 

The results of FRIED (1966) and KORFF (1973) were taken to calculate the expected 

profile of £(q). Under ergodic conditions, both <S.(q)> and |<S.(q)>l2 should be 

isotropic and thus they should be merely functions of the wave number modulus q. 
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Fig.l. Spectral ratio profiles as expected from the ratio of FRIED's and 

KORFF's average modulation transfer functions (solid curves) amd the 

corresponding KORFF MTF2 curves (dashed). Each curve is displayed as 

a function of the spatial relative wave number q = s / s , where s = 
c c 

A/D is the cutoff wave number of the telescope with entrance pupil 

diameter D. The curve parameter is the modified FRIED seeing parameter 

a = r /D. The increase of the spectral ratios close to q = 1 is an arti­

fact and is caused by a possible deficiency in FRIED's theory of an 

average short-exposure-time MTF. 
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In the theoretical calculations, the "near-field" case, short exposure times and 

an unobscured, circular entrance pupil were assumed. Defining the "modified FRIED 

parameter" a = _o_ , theoretical spectral ratio profiles were calculated from 

different a values ranging from o.o4 to o.3o. The results are presented in Fig.1. 

The solid curves represent the expected profile of £ as a function of q and a, 

while the dashed curves represent the corresponding KORFF modulation transfer func­

tions. 

II.2. The influence of noise 

In all practical cases, the Fourier quantities in eq. (2) are affected by noise. 

Some additional considerations allow to use the spectral ratio as an estimator 

for the speckle interferometry signal-to-noise ratio. 

Consider an additive noise term R.(q) in the Fourier plane; eqn. (1) changes to 

If the frame number N is high enough to ensure that averages of S^q) and 

\S.(q)l 2 are well represented by their ensemble averages, then the spectral ratio 

£. (q) can be represented by 

£<1>/ = , , . 7-zr-r-rr- c5> 
' / , > 

* lR>cq> l l < iS i c ^ l 2 -> •«-< n2;tq)i*> 

in the region beyond the seeing limit, i.e. the region where <Si(q)> is essen­

tially zero. 

In order to evaluate eqn. (5), one has to make assumptions on the statistical 

properties of R.(q). If we assume that R.(q) is a random, normally distributed 

complex variable with zero mean and variance & = &Re/H> •*• & iMAd ' then,. 

l<R.(q)>l 2 is exponentially distributed with mean ^%/^ and variance 2. / N * 
I , * v 

while < I R.(q) l2> follows a Jg -distribution with mean £ and variance /^,A • 

With this model, it is possible to obtain an estimate of the signal-to-noise 

ratio in the classical speckle regions in the Fourier domain. All that is 

needed is an estimate of & , which can be obtained by analysing flat field 

frames or uniformly exposed photographs. If G;jC^>represent the Fourier trans­

forms of such a series, preferably having the same amount of frames N, then we 

expect < | G. (q) | 2> to be an estimate of Z,Z . Now, eqn (2) is slightly modified 
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£*CQ) •- K ^ C q ) ^ (6) 

When the noise b i a s in the average power spectrum i s s u b t r a c t e d , a r e s i d u a l e r r o r 

remains t h a t has a s tandard dev ia t ion of O/Qw-i)2 wi thin the Gaussian noise 

model. Defining the s i g n a l - t o - n o i s e r a t i o SNR 

SNR. - _ _ _ (7) 

and assuming that SNR is high, we obtain for the expectation of £ in the region 

beyond the seeing limit (E <•> denotes the expected value): 

E [ * * » / „ . . ] •• (8) 

or, inserting eqn. (8) into eqn. (7): 

-/N -/I ' A 
SNR. = • „ . — o) 

Equation (9) has to be understood as follows: If we observe a typical value for 

the modified spectral ratio t in a region beyond the seeing limit (q > a), we 

would expect the SNR to be as large as the result of eqn. (9). The significance 

of this statement will be discussed in the next section. 

For the regions in the Fourier plane where SNR is small, we can neglect the 

signal I F© Cq) \Z ^ \ Si Cq ) \ z > . Thus, eqn. (6) turns to 

<*,:r» U^;cq)>iL 

ETc^)/ = L 2 i : : i : : 2 w : ( lo ) 

Within the gaussian noise model, a random variable with mean /j^ is divided by a 

random variable with zero mean, which approximately follows a gaussian distribu­

tion when N is fairly large. The numerator is always positive while the denomina-

tor might be positive or negative, so observed values of c(q) might be negative 

in this region. Moreover, values of £. that have moduli considerably larger than 

unity are very likely. Thus domains with a small SNR in the Fourier plane would 

exhibit a conspicuous, chaotic appearance. 

Another practically relevant case is the presence of a deterministic noise term in 

the Fourier transforms. Terms like these occur frequently when modern diode matrix 

arrays are used as detectors; they are often called "fixed-pattern" noise. Consi-
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der an additive, systematic component R (q) in the observed Fourier transform 

that is independent from S.(q) and is identical for all frames i = 1,...,N: 

ViCc{) = "F0Cc^ 'St C<f> + ^ S < ^ ) ( 1 1 ) 

Inserting eqn. (11) into eqn. (2) yields for the region beyond the seeing limit: 

W><*u
 (12) 

In this case, the SNR is defined by: 

lFocq>f • <IS;C«f)ll> 
SNR. 

From eqn. (12), we get: 

(13) 

11*5 ̂ ) |* 

SNR. » - 1 (14) 

Let us summarize the essence of this section: 

- The spectral ratio as defined in eqns. (3) and (6) may serve as an estimator 

for the FRIED parameter a = _°_ , that is independent from the object being ob-
D 

served. The only requirement posed upon the observed structure is that there 

exists a signal beyond the seeing limit q > a. The parameter a may be estimated 

by analysing the decrease of the spectral ratio at small spatial wave numbers; 

a, in turn, may be used to calculate a theoretical MTF in order to recalibrate 

Fourier amplitudes. 

In the region beyond the seeing limit, the spectral ratio may be used as an 

estimator of the speckle interferometry signal-to-noise ratio in the average 

power spectrum. The presence of a region where the spectral ratio is small and 

decreases when the frame number N is increased, indicates the presence of a 

random noise component and eqn. (9) may be used to estimate the signal-to-noise 

ratio. A region where the spectral ratio exhibits chaotic behaviour indicates 

the absence of signal. When the ratio is independent from the frame number it 

can be assumed that a systematic noise component is present in the Fourier 

data. 
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Fig.2. A sample frame from the data analysed in experiment 1. The field of 

view covers 6".23x6".23 of solar granulation near the disk center. 

The elongation of this picture is artificial. 

»H>* 

Fig.3. The 2D spectral ratio obtained from the first data set in experiment 1, 

displayed as a surface plot. The horizontal units are relative wave 

numbers, the vertical scale ranges from o.oo to o.98. 
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III. Experiments 

The spectral ratio method has been developed with regard to Speckle interfero-

metry of solar small scale structure. Here, we report on some observations and 

their analysis, in order to demonstrate the performance of the method. 

Firstly, granulation near to the center of the solar disk was observed with a 

32 by 32 diode matrix array at Sacramento Peak Observatory tower telescope. A 

technical description of the data is given in table I. Five consecutive time 

series, 255 frames each, covering 75 seconds of time altogether, were analyzed. 

After compensation of dark current and gain table, the average intensity and the 

average gradient was removed from each individual frame by means of a bi-linear 

least-squares fit. After applying a cosine apodisation bell, the frames were 

Fourier transformed and the spectral ratio was calculated. An analysis of the 

random noise contributions was performed by treating a run on defocused sunlight 

in exactly the same way. 

Fig.2 shows a sample frame from the first time series. Fig. 3 shows the two-

dimensional spectral ratio obtained from the first time series. It is observed 

that all two-dimensional spectral ratios are radially symmetric, so azimuthal 

averages about zero spatial wave number may be calculated. Turning from cartesian 

coordinates (q., q„) to polar coordinates (q, in the Fourier plane, the 

"radial spectral ratio" £, (q) is defined by: 

1 ZTT Q i l (15) 

Fig.4 presents the radial spectral ratios for all five time series. In Fig.5, 

the observed radial spectral ratios are compared with the theoretical radial 

spectral ratio profiles as expected from FRIED's and KORFF's theoretical modula­

tion transfer functions. From this comparison, the appropriate a values for each 

set was derived. In Table II, the values for a thus found are listed together 

with the corresponding FRIED parameter r , the rms image motion and the observed 

("raw") rms contrast obtained from the average power spectra. It was observed that 

the noise level in the high frequency region of approx. o.o7 is independent from 

the number N of the frames analysed. Therefore, we assume that this level origi­

nates from a systematic noise component in the Fourier transforms. The a infer­

ences were used to construct the appropriate KORFF MTF in order to recalibrate 

the average power spectra. The raw and compensated radial power spectra are pre­

sented in Fig.6. If P (q, <£) is the two-dimensional power spectrum, the radial 

power spectrum is defined by 
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OBSERVED RADIAL SPECTRAL RATIOS 

O.I 0.3 

RELATIVE HOVE NUMBER 

' I i M I | 

10"' 
RELATIVE HAVE NUMBER 

Fig.4. (left) 

The azimuthal average of the spectral 

ratios obtained from all five data 

sets in experiment 1. The differences 

in the decay of the curves reflect 

the differences in seeing conditions 

during observation. 

RAW AND COMPENSATED POWER SPECTRA 

Fig.5. (above) 

The same spectral ratio profiles as 

in fig.4 (solid lines), in comparison 

with the spectral ratio as expected 

from FRIED/KORFF theorv (see also 

Fig.l; dashed lines). The dashed 

lines correspond to a values of (from 

left to right): o.o4, 0.08, o.l2, 

o . 16 , o.2o. 

Fig.6. (left) 

Observed average radial power spectra 

(dashed lines) and seeing corrected 

power spectra (solid lines) of the 

five data sets from experiment 1. 

0.12 0.10 0.24 

RELATIVE WRVE NUMBER 
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in experiment 1 displayed as a 

function of the modified FRIED 

parameter a found with the spec­

tral ratio method. 
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TABLE I 
experiment 1 

data taken at SPO vacuum 
tower tel. on Sept. 10th, 81 

32a:32 pixel diode array 
field of view: 6".23 
resolution: Q"19Q/pix 
exposure time: 5 7ns 
frame rate: 18/s 
uiave length: 444 nm 

TABLE II 

Seeing parameters and contrast values for the five sets of data 

S e t 

1 

2 

3 

4 

5 

N o . a 

o .o963 

o .o873 

o.o869 

O.o9o7 

o .o737 

rQ(cm) 

6 .74 

6.11 

6 .08 

6.35 

5.16 

Ar rms 

( a r c s e c ) 

o .115 

0 .111 

o .117 

o .134 

0 .214 

observed 
C 

rms 

o .o747 

o .o61o 

o.o558 
o.o591 

o.o442 

compensated 
C rms 

o .291 

o .275 

o .252 

o.262 

o .285 

Ar is the rms radial image displacement from average image 

position 
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^ r r 

TV L\\ - \ "P"^ ^^ (16) 
o 

The convergence of the compensated spectra (differing by a factor of 1.4 at most; 

solid lines) as compared to the raw spectra (dashed lines) is noticeable. In Fig. 

7, a comparison between the conventional seeing indicators, the observed rms imaae 

contrast and rms image motion, is presented. These results are discussed in a 

greater depth in VON DER LUHE (1984). 

The second experiment was carried out with a larger pixel number and a better re­

solution (cf. Table III). Again, solar granulation at the center of the solar 

disk was the observed structure. In Fig. 8 a-d, four sample frames are shown to 

give an impression of the quality of the data set. Each frame became Fourier 

transformed; the average power spectrum (Fig. 9) and the average Fourier trans­

forms from 3o and 6o frames were calculated. Again, a flat field run was used to 

estimate the noise bias in the average power spectrum and eqn. (6) was used to 

compute the spectral ratio (Fig.lo). The ratio exhibits excellent radial symmetry, 

which is caused by the isotropic statistics of both seeing (center part) and the 

granulatory intensity distribution (broad, dark ring). Eqn. (15) was used to 

calculate the average radial profile of the spectral ratio. The result is shown 

in Fig.s 11 a and b, for averages of 3o and 6o frames, respectively. 

Here, the decrease of the curve about q = o.l marks the radius of the central, 

bright region in Fig. lo and, thus, the relative decay of the average Fourier 

transforms when compared with the average power spectrum. This decay is consistent 

with r equal to 6 cm. The decrease is followed by a section, where the spectral 

ratio has a typical value of o,o4 (averages of 3o frames) or o.o26 (averages of 

6o frames). This section corresponds to the "dark ring" in Fig.lo and identifies 

the regions, where speckle interferometry signal is present in the average power 

spectra. If we assume the gaussian noise model and apply eqn. (9), we would end 

up with SNR values of 4.5 (3o frames) and 4.9 (6o frames). The improvement in 

SNR thus may be only marginal. Beyond q= o.4, Fig.s 11 a and b reflect the 

"chaotic" behaviour of the spectral ratio when SNR is small. In Fig.s lo and 11, 

negative values are suppressed. 

In Fig. 12, the observed radial spectral ratio is plotted together with the 

corresponding KORFF modulation transfer function. The latter was used to restore 

the observed average power spectrum using 3o frames (solid line in Fig.13, the 

dashed line represents the radial noise spectrum as obtained from a flat field 

test set). The result of the restoration is shown in Fig.14. 

https://doi.org/10.1017/S0252921100108401 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100108401


A Method to Estimate Fried's Seeing Parameter 215 

Fig.8. Four sample frames from the data analysed in experiment 2 (see 

text and TABLE III). The frames have 14" side length. 

https://doi.org/10.1017/S0252921100108401 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100108401


216 O. von der Luhe 

Fig.9. The average power spectrum 

obtained from the Fourier transforms 

of 3o frames. Zero spatial frequency 

is at the center. Logarithmic inten­

sity scale. 

Fig.lo. The spectral ratio calculated 

from the average Fourier transform 

and the average power spectrum of 

3o frames of solar granulation. Zero 

spatial frequency is at the center. 

The intensity scale ranges from o.o 

(dark) to l.o (bright). 

TABLE III 
experiment 2 

data taken at SPO vacuum 
tower tel. on June Y?th, 83 

MBA 128*128 pixel 
field of view: 
resolution: 
exposure time: 
frame rate: 
u>ai>e length: 

14".3 
0"-107/pix 
4 ?ns 
0.55 s/fr 
517 nm 
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Observed Spectral ratio 

r 
as p.o as to L5 ao as ao as 4.0 a 

Line pairs per arc second 

0.0 01 02 03 0.4 0.5 0.8 

Relative wave number 

a 

0.7 

Observed Spectral ratio 

).o os, to LS ao as ao 3.5 4.0 
Line pairs per arc second 

- i — 
OJ 

— 1 — 
03 0.4 0.0 Ol 02 03 0.4 0.5 0.6 

Relative wave number 
0.7 

Korff M T F & Spectral Ratio 

E-"L 

•a 

t. 

a : 0.1070 

• i i i 1 1 1 1 — i — i i i i 1 1 n r 

10"' 10° 
Line pairs /arc second 

T T I 1 1 — i i i i i 11 1 r 

10* lO"1 
Relative wave number 

Figs. 11a and b. 

The azimuthal average of the 2D 

spectral ratio. Fig.11a: spectral 

ratio calculated from averages 

of 3o frames. Fig.lib: averages 

of 6o frames. Negative values 

were set to zero in the plots. 

Fig.12. The spectral ratio from 

Fig.lo (solid line) plotted 

together with the corresponding KORFF 

KORFF average MTF2 (dashed line) 

in a double log scale. 
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IV. Experiences and Conclusions 

In sect. II, it was explained that in order to obtain theoretical spectral ratios 

from FRIED's and KORFF's theories, the so-called "short-exposure time" average 

modulation transfer function (FRIED, 1966) was used. This is justified only, when 

care has been taken to remove the relative image displacement of each frame of a 

given data set, i.e. to bring all frames of a time series into registration. Each 

image shift, described by a vector a in image space, causes a factor of exp(iSq-a) 

in the corresponding Fourier transform (8 is a constant). When image 

shifts are caused by image motion due to seeing, a will be a random quantity. 

The corresponding average Fourier transform would have smaller moduli in compari­

son with an average Fourier transform that is not affected by image motion. 

Thus, the frames were brought into registration by a technique that has been 

described earlier (VON DER LUHE, 1983). However, image displacements could only 

be considered in integer units of pixel lengths in order to avoid loss of high 

spatial frequency information, so image displacements of fractions of a pixel 

length remain. The effect is a slightly attenuated average Fourier transform 

which causes a tendency to underestimate the seeing parameter a and thus to over­

estimate the effect of seeing in the powerspectrum. A simple model calculation 

reveals, however, that this effect would be very small at small wave numbers, 

and can be neglected. 

The alternative would have been to use FRIED's 'long-exposure-time" average MTF 

instead of correcting image motion. But, practically, image motion may be caused 

by telescope movements as well as seeing, which would change the statistics of 

the image displacements, so we feel that the procedure described previously is 

better. 

Anisoplanatism may have a similar effect on the average Fourier transform, which 

we couldn't account for. Qualitatively, anisoplanatism can be separated into 

image distortion and a spatially variable diameter of the seeing disk. In a simp­

le model, both effects would lead to "crosstalk" between neighouring frequency 

bins in the Fourier transform of a single frame and thus may attenuate the 

average transform. We know that, at least, noticeable image distortion is pre­

sent in the material used for the second experiment. However, reducing the 

effective size of the field of view by a factor of o. 78 when applying a 

different apodisation bell did not change the seeing parameter obtained from 

our analysis at all. 
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We have presented the theory of a method that allows to obtain an estimate of 

FRIED's seeing parameter r from a set of observations of an arbitrarily struc­

tured, astronomical object. Additionally, the method allows to estimate the 

signal-to-noise ratio of the speckle interferometry signal in the Fourier domain. 

We comment on the effect of image motion and anisoplanatism to the spectral ratio. 

From the experiments, we draw the following conclusions: 

- The observed spectral ratios are reasonably explained with spectral ratios 

modeled with the use of FRIED's (1966) and KORFF's (1973) theories. 

- The power spectra, obtained from averages of time series under changing seeing 

conditions, and restored with a KORFF modulation function using the r -esti­

mates from the spectral ratio method, converge (first experiment). 

- The noise bias in the spectral ratio in the first experiment can be consistent­

ly explained with the presence of a systematic noise component of the Fourier 

transforms (fixed pattern noise). 

- The noise bias in the second experiment can be explained with the presence of 

a random component in the Fourier transforms. 

- When observing solar granulation, we observe signal with a reasonable SNR up 
-1 

to a spatial frequency of 2.7 line pairs/arc second (approx. 2o Mm ) under 

good seeing conditions (r = 6 cm) with data covering 15..3o seconds of time. 

As a consequence for image restoration, it should be possible to reconstruct 

structure with a scale of roughly 1/3 arc seconds in a reasonable time with 

a 6o cm telescope under these seeing conditions. 
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Fig.13. The radial average power spectrum 

(solid line) and the average noise bias 

as obtained from a flat field run (dashed 

line). 

Fig.14. The average power spectrum of 

Fig. corrected with the KORFF MTF2 

from Fig.12. 
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