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ABSTRACT. If an ice sheet is frozen to its bed, deep ice directly under a divide experi-
ences low deviatoric stress and is relatively hard, because the rheology of polar ice is
described by a power-law constitutive relation. In steady state, stratigraphic layers tend
to form an arch (`̀ Raymond bump’’) in this region. However, when the basal ice can slide,
the stresses are redistributed, and longitudinal extension due to sliding is associated with
increased deviatoric stress in the deep ice under the divide.This increased deviatoric stress
weakens the tendency to form a Raymond bump.To find a realistic spatial distribution of
sliding under an ice divide, we incorporate a thin layer of viscous till in a finite-element
plane-strain flow model. The resulting basal `̀ sliding’’ velocity varies approximately lin-
early with distance from the ice divide. By varying the till viscosity, we can adjust the
amount of basal motion.We find that the Raymond bump decays exponentially with the
fraction of total ice flux carried by sliding: the arch is 50% smaller when the sliding flux is
only 7% of the total ice flux.This implies that the possibility of a wet bed must be consid-
ered when inferring past ice-divide locations from radar internal layering.

INTRODUCTION

Ice-penetrating-radar images, ice-core records and ice
deformation measurements hold clues to past and future
behavior of ice sheets. The challenge is to infer paleoclimate
and ice-flow history from these data. Rigorous solution of
these inverse problems requires an understanding of the
subtleties of ice deformation and flow.

Ice cores are often drilled near ice divides, in order to mini-
mize stratigraphic disturbance due to horizontal shearing of
ice (e.g. Waddington and others, 2001). Therefore, a rigorous
ice-flow model for the ice-divide region is required, particu-
larly since, at ice divides, longitudinal stress gradients cannot
be ignored (Nye,1959; Morland andJohnson,1980; Raymond,
1983). Furthermore, at the low deviatoric-stress levels found
under ice divides, the ice rheology may be near-linear, chang-
ing the pattern of ice flow (Waddingtonand others,1996; Pettit
and Waddington, in press). Ice flow can also be influenced by
changing boundary conditions. For example, there is a signifi-
cant feedback between the near-divide flow field and the sur-
face temperature (Hvidberg, 1996). Elevation changes of
bounding ice streams (Nereson and others,1998b), or transient
and spatially asymmetric accumulation-rate patterns (Nereson
and others,1998a) can cause an ice divide to migrate.

Here, we explore the effects of basal motion on the ice-flow
pattern and the internal stratigraphy under an ice divide.
Some ice divides are presently frozen to their beds (e.g. Green-
land Summit (Johnsen and others, 1995); Devon Island,
Canada (Paterson and Clarke, 1978); and Siple Dome, West
Antarctica (personal communication from G. Clow, 2001)),
while others such as Law Dome, Antarctica (Budd and others,
1976), and parts of the West Antarctic Ross^Amundsen ice
divide (Morse and others, in press) are at or near the pres-
sure-melting temperature at the bed. At these divides, basal
sliding, a deforming-till layer, or both, may be present.

Because polar ice is described by a power-lawconstitutive
relation, (e.g. Paterson, 1994, ch. 5, `̀ Glen’s Law’’), its
`̀effective viscosity’’ increases with decreasing effective de-
viatoric stress. Where an ice sheet is frozen to its bed, the
deep ice directly under a divide experiences low deviatoric
stress, has a relatively high effective viscosity, and is relative-
ly resistant to deformation. As a result, stratigraphic layers
tend to move downward more slowly within a distance of
one ice thickness of the ice divide, when compared to flank
regions (at distances greater than about five ice thicknesses
from the divide). In a steady state, these layers tend to form
an arch (`̀ Raymondbump’’) in the divide region (Raymond,
1983). However, when the basal ice can slide, or when a de-
formable-till layer exists, stresses are redistributed, and the
deep ice undergoes more longitudinal extension.This exten-
sion increases longitudinal deviatoric stress in the deep ice
under the divide, resulting in a lower effective viscosity there
and a weakened tendency to form a Raymond bump.

In order to explore the effects of various levels of basal
sliding on the flow pattern and the stratigraphy, we must
first formulate a realistic spatial pattern of basal motion that
might be expected under and near ice divides. This is not a
trivial matter, because there is still no general agreement on
the detailed form of a basal sliding relationship for ice
sheets. Conventional sliding boundary conditions incorpo-
rate simplifications and assumptions that break down in
the divide region. Many models incorporate a sliding law
based on the theory by Weertman (1957), for which sliding
velocity, ub, is a function of local basal-shear stress (Nye,
1959; Morland and Johnson, 1980; Payne, 1995; Marshall
and others, 2000;Tarasov and Peltier, 2000):

ub ˆ k½m ; …1†

where ½ is the local shear stress, and k is a function of several
ice-flow and geometric parameters, potentially including
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effective water pressure (the difference between ice over-
burden pressure and basal water pressure). As Weertman
(1961) noted, this law includes the implicit assumption that lon-
gitudinal stresses are insignificant. Near an ice divide, how-
ever, longitudinal stresses cannot be neglected, because shear
stresses approach zero. Because the driving shear stresses are
small, we expect that longitudinal strain rates in the ice will
control the allowablegradients in basal sliding velocity.

Here we use a two-dimensional plane-strain finite-
element flow model, which automatically incorporates
longitudinal-coupling effects. To parameterize sliding at the
ice^bedrock interface, we use a layer of deformable, linearly
viscous till and allow the model to determine the pattern of
basal motion under and near a divide.We then vary the till
viscosity to examine the sensitivity of isochrone shape and
the velocity field to varying amounts of basal `̀ sliding’’. From
the perspective of the ice, varying the till-layer thickness has
the same effect as varying the till viscosity. Using a linearly
viscous till, rather than a power-law till, will affect subtle
details of the model results, but not the general features that
we present here.

FINITE-ELEMENT ICE-FLOW MODEL

To calculate the velocity field and find the steady-state iso-
chrone pattern, we use a thermomechanically coupled finite-
element model (FEM). This model is similar to ice-divide
models by Raymond (1983) and Hvidberg (1996). Figure 1
shows the model geometry.

The model is structured around the following assump-
tions:

1. The ice deforms in plane strain; thus, the model best
represents a ridge ice divide, such as Siple Dome (Nereson

and others, 1996) or Roosevelt Island, West Antarctica
(Conway and others,1999).

2. Strain rate is a power-law function of deviatoric stress
according to Glen’s flow law:

_°ij ˆ A…½ 2
eff †

n¡1
2 ½ij ; …2†

where _°ij and ½ij are the strain-rate and deviatoric-stress
tensors, respectively, ½eff is the effective deviatoric stress
(Paterson, 1994, p.91) and we assume that A depends
only on temperature through the Arrhenius relation
A ˆ A0 exp…¡Q=RT †.

3. The ice is underlain by a layer of till of uniform thick-
ness. There is no slip between the ice and the top of the
till layer, and no slip between the bottom of the till and
the bedrock. The viscosity of the till layer is a model
input parameter which can be adjusted to model various
levels of basal resistance.

4. The temperature calculation is based on the surface tem-
perature and the geothermal gradient at the bottom of a
thick layer of bedrock (Waddington,1987). In addition to
conduction and advection, strain heating is included in
the thermal model.The thermal conductivities and diffu-
sivities of the ice, rock andtill are assumed to be equal and
uniform (the values for ice fall within the range typical
for sedimentary rocks (Stein,1995)).

5. The upper surface is stress-free and is allowed to evolve
until a steady state is reached with a specified uniform
accumulation rate.We define steady state as a maximum
change in the surface elevation (excluding the five nodes
nearest the flank boundary) over 1year of less than a
specified tolerance ° (typically 55 mm a^1 for a 1000 m
thick ice sheet).

6. The divide is a line of symmetry where ice is constrained
to move only vertically.

7. The horizontal-velocity profile on the flank boundary
(at 30 ice thicknesses from the divide) carries away the
integrated mass balance from the divide to the bound-
ary, in order to satisfy mass conservation for a steady-
state ice sheet. Because our boundary is 420 ice thick-
nesses from the divide, the results for the region within
10 ice thicknesses of the divide are insensitive to the
details of the horizontal-velocity profile on the flank
boundary (Raymond,1983; SchÖtt and others,1992).

8. Because our goal was to isolate the effect of sliding, the
layer of till does not undergo the thinning that one
would expect, given the export of till by shearing flow
through the flank boundaries. We also do not allow for
mass loss due to melting from the base of the ice sheet
or mass gain due to freeze-on of basal water.

Table 1 shows values of constants used in the model. We
chose the surface temperature, geothermal flux, ice thick-
ness and accumulation rate characteristic of Siple Dome.

As shown in Figure 1, we model an idealized symmetri-
cal divide with a flat bed. We use a 39631-node grid of
quadratic elements. Since we are most interested in the
solution near the divide, the nodes are more closely spaced
within the divide region. Horizontal ice velocity and hori-
zontal temperature gradient are zero at the ice divide. The
model solves for temperature, pressure and velocity fields.

We varied the till viscosity from 106 to 1015 Pa s, to cap-

Fig. 1. FEM geometry. Solid lines are element (nine-node
quadrilaterals) boundaries. Plus signs mark nodes in the ice.
Solid dots mark bedrock nodes.The ice is initially 1000 m thick
at the divide, with an initial surface profile calculated using the
shallow-ice approximation.The ice at the divide can move only
vertically. The velocity profile on the flank boundary
(¹30Hdiv) exports ice flux equal to the surface accumulation
integrated over the surface. The till layer is 10 m thick (one
element thick).The ice^till and the till^rock contact are no-slip
boundaries. In each model run, the surface evolves until it
reaches steady state with the uniform accumulation rate.
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ture the range of possible behaviors. For each till viscosity,
the model reaches a steady state in which the accumulation
rate and the flow due to gravity (a function of the model
geometry) are balanced. In order to compare different
model runs, we chose to keep the accumulation rate con-
stant and to allow for differences in the final steady-state
geometry. The alternative is to maintain constant ice-sheet
thickness at the divide, but adjust the accumulation rate for
each set of boundary conditions. Our conclusions do not
depend on this choice.

We present our results in non-dimensional form, indi-
cated by a hat (^) over the variable.We use ice thickness at
the divide, Hdiv, as the characteristic distance. The charac-
teristic viscosity, ²ice, is defined by rearranging Equation (2)
for n ˆ 3 such that ½ ˆ 2² _° (the standard form for a linear
fluid). This yields (Pettit andWaddington, in press):

²ice ˆ …2A†¡1=3… _°char†¡2=3: …3†

We use the value of A appropriate for average ice tempera-
ture. _°char ˆ _b=Hdiv, where _b is the accumulation rate. The
characteristic time is tchar ˆ 1= _°char ˆ Hdiv= _b. For Siple
Dome, the characteristic viscosity is ²ice ˆ 1010 Pa s (²̂ice ˆ1)
and the characteristic time is tchar ˆ104 years.

RESULTS

Our first goal was to determine a realistic spatial distribution
of basal-ice motion under an ice divide. To do this we used a
layer of till with an adjustable but spatially uniform viscosity
and thickness.When ice is frozen to its bed, the entire ice flux
has to be transported through internal deformation in the ice.
A very stiff till layer produces the same results. But as the
viscosity of the till layer decreases, shear deformation in
the till increases, decreasing the shear deformation required
within the ice sheet to achieve equilibrium with the speci-
fied accumulation rate at the surface. Ultimately, when the
till viscosity is low enough, virtually all of the shear deform-
ation is concentrated in the till layer, shear stress at the base
of the ice goes to zero, and the ice deforms only through
longitudinal stretching (similar to an ice shelf). This trend
is shown in Figures 2 and 3.

`̀ Sliding velocity’’ is represented by thebasal ice motion at
the ice^till contact. Figure 2a shows the longitudinal profile
of this basal ice motion for model runs with a range of
non-dimensional till viscosities ²̂till from 10^4 to 105. In the
low-viscosity-till model run, the basal-ice motion increases
linearly with distance from the divide.This result is notunex-
pected, since nearly all of the motionoccurs through shearing
of the till layer. In this case, longitudinal stress ¼xx in the
overlying ice, which varies slowly with distance from the
divide, controls the basal-velocity gradient. The ice near the
divide moves away from the divide as `̀ plug flow’’ (Fig. 3a):
the basalvelocity in this region is equal to the surface velocity,
which, from steady-state mass continuity, is

us ˆ ub ˆ
_b

H
x; …4†

Table 1. Model parameters

Parameter Value

n Flow-law exponent 3
A0 Flow-law constant (T µ ^10³C) 1.3610^5 Pa^3 a^1

A0 Flow-law constant (T 4 ^10³C) 6.2661010 Pa^3 a^1

Q Activation energy (T µ ^10³C) 60 kJ mol^1

Q Activation energy (T 4 ^10³C) 139 kJ mol^1

R Gas constant 8.314 J mol^1 K^1

k Thermal conductivity 2.1W m^1 K^1

c Heat capacity 2.11kJ K^1 kg^1

» Density 910 kg m^3

Tsurf Surface temperature ^25³C
Qgeo Geothermal flux 65 W m^2

H Ice thickness 1000m
_b Accumulation rate 0.1m a^1

Htill Till thickness 10 m
²till Till viscosity 106^1015 Pa s
²ice Characteristic ice viscosity 1010 Pa s
Hrock Bedrock thickness 1000m

Fig. 2. (a)Longitudinal profile of velocity at the till^ice contact,
and (b) the surface profile, for a range of non-dimensional till
viscosities.The non-dimensional viscosity of Siple Dome ice at
^15³C is 1 (explained in the text).

Fig. 3.Vertical- and horizontal-velocity profiles at 0, 0.25H,
0.5H, 1H, 2H, 4H and 10H from the divide (as indicated by
the curve labels) for three model runs: (a) low-viscosity till,
(b) medium-viscosity till and (c) high-viscosity till.
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Fig. 4. Isochrones and effective viscosities for four model runs with decreasing till viscosity (dark shading represents low effective
viscosities; light shading represents high viscosities).The size of the Raymond bump is related to the ice viscosity peak at the base of the
ice at the divide relative to the flank (more than about five ice thicknesses away from the divide). (a) High till viscosity (²̂till ˆ105);
(b) moderate till viscosity (²̂till ˆ1.7); (c) till viscosity (²̂till ˆ1); (d) low till viscosity (²̂till ˆ10^4). (a^c) have similar flank
viscosities; (d) has a slightly higher flank viscosity because the steady-state ice sheet is somewhat thinner and therefore is colder. Note
that (b) and (c) have similar till viscosities, yet measurably different viscosity peaks and Raymond bump sizes; this is evidence that
the transition from hard-till end member (a) to soft-till end member (d) occurs over a small range of till viscosities.The isochrones
near the bed for the transitional model runs show a slight down-warping.This is a subtle effect of our choice of linear till rheology and
is not likely to occur in a real ice sheet.
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where x is the distance from the divide. In contrast, in the
high-viscosity-till model run (Fig.3c), sliding velocity is zero
everywhere, and the ice motion is accommodated largely
through internal horizontal simple shear. In both of these
cases, the details of the rheologyof our till layer do not affect
the results.

To conserve mass, the plug-flow horizontal-velocity
profile of the weak-till model run requires a near-linear ver-
tical velocity profile at all distances from the divide, as
shown on the left side of Figure 3. The ice sheet necessarily
reaches a different steady-state surface profile in plug flow
compared to a steady state dominated by internal deform-
ation in the ice (Fig. 2b). In steady state, the ice flux at any
position is equal to the integrated accumulation rate from
the ice divide; this flux is the same regardless of the till vis-
cosity. Therefore, as till viscosity decreases, increased basal
sliding contributes more to the ice flux, and the internal
deformation within the ice sheet must contribute less. Since
internal deformation is driven by ice thickness and slope, a
steady ice sheet with more sliding must be thinner and have
a shallower slope.

We also explored the behavior of the flow and stratig-
raphy with basal-till viscosities intermediate between the
stiff-till (²̂till ˆ 105) and weak-till (²̂till ˆ 10^4) model runs.
The velocity field and steady-state geometry of an ice sheet
are most sensitive to the till viscosity when the till viscosity
is within an order of magnitude of the characteristic ice vis-
cosity (²̂ice ˆ1). For these transitional model runs, the total
deformation is divided comparably between the till and the

ice.The sliding velocities and surface profiles for these inter-
mediate model runs are shown in Figure 2. Unlike the result
in the weak-till model run, these velocity profiles are not
linear (Fig. 2a). The sliding velocity gradually increases
with distance from the divide, with a steeper gradient within
a few ice thicknesses of the divide. The horizontal-velocity
profile is more similar to plug flow near the divide; however,
as surface slope and basal shear stress increase with increas-
ing distance from the divide, internal deformation carries
an increasing fraction of the ice flux (Fig. 3b). The details
of the model results for these transitional model runs de-
pend on our choice of till rheology. A power-law till would
slightly change the curvature of the sliding velocity and sur-
face-profile curves in Figure 2.

To maintain the plug flow characteristic of the low-vis-
cosity-till model run (and the near-divide zone of the
transitional model runs), the longitudinal deviatoric stresses
must be more evenly distributed with depth, compared with
the pattern for an ice sheet frozen to its bed.This is particu-
larly important near the base of the ice at the divide, where
low deviatoric stresses and correspondingly high effective
ice viscosity (due to the non-linearity of Glen’s flow law)
contribute to the formation of the Raymond bump in the
isochrones. In Figure 4, we show results from four model
runs with non-dimensional till viscosities varying from 105

to 10^4. The left column shows simulated steady-state iso-
chrones, and the right column shows the pattern of non-
dimensional effective viscosity in the ice. Figure 4a shows
the typical patterns for an ice sheet frozen to its bed. The

Fig. 5. Variation in arch amplitude (relative to the ice-sheet
thickness) with height above bed for several model runs.The
dashed part of the curves indicates a rough extrapolation to the
surface and the bed (the curves should approach the surface
and bed with infinite slope).

Fig. 6. Relationship between the maximum Raymond-bump
amplitude for each model run (`̀ 6’’; plotted relative to the
stiff-till model run) and the ratio of sliding to total flux at a
distance of five ice thicknesses from the divide.The curve is an
exponential fitted to the data points.
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arch in the isochrones on the left results from deformation
around the `̀ hard’’ zone deep under the divide, as seen in
the effective-viscosity distribution on the right. All three of
the high- to moderate-viscosity till model runs (a^c) show a
zone of relatively hard ice deep under the divide.The extent
of this zone and the magnitude of its peak effective viscosity
relative to the viscosity on the flank determines the size of
the Raymond bump; as we increase basal sliding, the arch
in the isochrones diminishes. The high longitudinal stresses
near the bed of an ice sheet with basal sliding keep the effec-
tive viscosity low (Fig. 4d), and hinder the formation of this
zone, resulting in flatter isochrones.

By analyzing the decrease in prominence of the divide
arch, we can quantify the effect of sliding on the flow field.
We define the amplitude of the Raymond bump for each iso-
chrone as the maximum distance that the isochrone rises
above an imaginary smooth curve that best fits the shape
of the isochrone on both flanks of the dome. In Figure 5, this
arch amplitude is plotted as a function of the fractional
height of the isochrone at 10 ice thicknesses from the divide
for each model run. The arch decreases in magnitude with
increasing sliding. Also, the depth of its maximum ampli-
tude decreases as sliding increases. This effect is due to a
subtle change in the shape of the vertical velocity profile at
the divide (see Fig. 3). The depth of a layer is given by the
temporal integral of its downward velocity along its particle
path. The maximum arch amplitude occurs at a depth
where the difference between these integrals is maximum
for particle paths at the divide and on the flank. As the

amount of basal sliding increases, the differences between
flank anddivide vertical-velocity profiles are pushed to shal-
lower depths; this subtle shape change pushes the height of
the maximum amplitude upwards.

In Figure 6 we take each curve from Figure 5, and plot
the maximum bump amplitude against the flank flux ratio
qs, defined as the percentage of the total ice flux carried by
sliding at about five ice thicknesses from the divide:

qs ˆ ubH5

ubH5 ‡
R H5

0 ui…z† dz
; …5†

where H5 is the ice thickness at 5Hdiv, ub is the sliding
velocity at 5Hdiv, and ui is the horizontal velocity due to
internal deformation at 5Hdiv. Figure 6 shows that the max-
imum arch amplitude decays exponentially with increasing
sliding: it takes only 11% sliding flux to cause the arch to
decrease to 36% (1=e) of its size in the stiff-till model run.
Thus, a small amount of sliding can significantly alter ice
flow and reduce the amplitude of the Raymond bump.

DISCUSSION

Previous attention to sliding has focused on fast-moving ice
streams and on the central reaches of valley glaciers. The
impact of sliding on the flow pattern near ice divides has
received little attention. To our knowledge, only Morland
and Johnson (1980) have looked in some detail at the effect
of sliding on the flow field near an ice divide.They assumed
a sliding velocity based on a modification of Equation (1),
which we expect has difficulty in reflecting the important
role of longitudinal-stress gradients near a divide. Because
the overlying ice resists dramatic inhomogeneities in longi-
tudinal strain rate, the basal-ice velocity should also vary
smoothly with position. Weertman (1961), realizing that
Equation (1) may be inapplicable near a divide, added a lon-
gitudinal-stress term, and showed that, as a result, small ice
caps such as the Barnes were predicted to have a flatter
profile than the sliding law (Equation (1)) would suggest.

To investigate the effect of sliding at a divide more thor-
oughly, we have incorporated a layer of deformable till into
our plane-strain finite-element ice-flow model. Our till layer
is not intended to be a realistic basal substrate, but it is a sim-
ple method for representing slidingbehaviorthat includes the
strong longitudinal-stress coupling represented by exten-
sional stresses in the ice. Indeed, for low-viscosity till, the slid-
ing velocity near the divide is controlled by the longitudinal
strain rate in the ice, not by the details of processes in the till.
Furthermore, with a`̀ slippery’’ ice^rock interface instead of a
till layer, the results should be the same. Also, the longitudinal
coupling in the ice will smooth out stress variations due to
roughness or small topographic features.

Althoughwe present results for a steady-state ice sheet, ice
divides that are undergoing changes are probably never far
from the steady-state stress and flow patterns that we derive
(e.g. Nereson and Waddington, 2002). This allows us to use
our results to address changes in flow and stratigraphy as an
ice sheet evolves. For example, Conway and others (1999)
used the stratigraphy observed by ice-penetrating radar in
the vicinity of the divide on Roosevelt Island to infer that,
prior to 3200 years ago, Roosevelt Island did not exhibit the
special flow pattern that is characteristic of an ice divide
frozen to its bed (Raymond,1983). They also went on to infer
that Roosevelt Islandwas not an ice divide prior to 3200 BP; it

Fig. 7. Depth^age scale at the ice divide for varying till vis-
cosities. Since the final steady-state geometries are slightly
different, we use non-dimensional time t ˆ t̂=tchar. The
depth^age scales for all model runs at a location on the flank
fall on the same curve as the low-viscosity till model run.
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may have been on the slope of a larger ice sheet. While the
latter inference may be correct, our results suggest that an
alternate interpretation is possible. Prior to 3200 BP, Roosevelt
Island could have supported an ice divide over a wet bed
that allowed sliding; if, at 3200 BP, the basal ice on Roosevelt
Island then froze to the bedrock, the special ice-divide flow
pattern that is creating the observed transient Raymond
bump would have been initiated.The ice on Roosevelt Island
appears to have thinned by several hundred meters since
3200 BP (Conway and others, 1999). Comparable thinning
prior to 3200 BP would have tended to cool the basal ice
and, if it was thawed, could have led to freezing.

CONCLUSION

In this modeling study, we find that basal-ice motion under
a divide in plane strain is likely to exhibit a roughly linear
increase with distance from the divide if the ice^bed inter-
face is slippery. The basal motion is limited not by shearing
in the till but by longitudinal stretching within the ice.

The shapes of the horizontal- and vertical-velocity
profiles are more uniform with distance from the divide
when the basal ice is allowed to slide; the unique divide flow
described by Raymond (1983) disappears. This creates flat-
ter isochrones and a younger depth^age scale. As the sliding
contribution increases, the vertical-velocity pattern (Fig. 3)
and the depth^age distribution (Fig. 7) approach their cor-
responding patterns on the flank. In addition, as the flux
fraction due to basal motion is increased, the longitudinal
and vertical strain rates become more uniformly distributed
over depth. As a result, the ice experiences greater down-
ward flow at all intermediate depths, creating younger
depth^age relationships as shown in Figure 7.

The history of basal sliding is an important factor in the
interpretation of ice-penetrating radar layers and depth^
age scales for ice-core records at ice divides.
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