J. Austral. Math. Soc. (Series A) 40 (1986), 414-420

FREE PRODUCTS OF TOPOLOGICAL GROUPS WITH A CLOSED SUBGROUP AMALGAMATED

PETER NICKOLAS

(Received 15 April 1984; revised 1 December 1984)

Communicated by J. H. Rubinstein

Abstract

It is shown that if $\{G_n: n = 1, 2, ...\}$ is a countable family of Hausdorff k_{ω} -topological groups with a common closed subgroup A, then the topological amalgamated free product $*_A G_n$ exists and is a Hausdorff k_{ω} -topological group with each G_n as a closed subgroup. A consequence is the theorem of La Martin that epimorphisms in the category of k_{ω} -topological groups have dense image.

1980 Mathematics subject classification (Amer. Math. Soc.): 22 A 05; secondary 20 E 06, 54 D 30, 18 A 20.

1. Introduction

Let $\{G_n: n = 1, 2, ...\}$ be a countable family of k_{ω} -topological groups, each having a fixed topological group A as a closed subgroup. We show that $*_A G_n$, the free topological product of $\{G_n\}$ with A amalgamated, exists, is a (Hausdorff) k_{ω} -group, and contains G_n as a closed subgroup for each n.

Katz and Morris [2, 3, 4] have already shown that an amalgamated product $G *_A H$ of k_{ω} -groups is k_{ω} whenever A is in a class of closed subgroups, including those which are normal and those which are the product of a compact subgroup and a central subgroup. Our theorem clearly contains these results, and moreover yields another proof of La Martin's theorem that epimorphisms in the category of k_{ω} -groups have dense range ([6]; see also [9] and [11]).

^{© 1986} Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

The proof of our theorem has similarities to Ordman's proof [10] that the free k-group on a t_2 k-space exists and is a t_2 k-group, and more especially to the proof of Brown and Hardy [1] that the universal topological groupoid on a k_{ω} -groupoid exists and is k_{ω} .

2. The theorem

Recall that a Hausdorff space X is a k_{ω} -space if it has the weak topology with respect to some increasing sequence of compact subsets $X_1 \subseteq X_2 \subseteq \cdots$ with union X; then we say that $\bigcup X_n$ is a k_{ω} -decomposition of X. A topological group is a k_{ω} -group if as a topological space it is k_{ω} . The appendix of [1] contains a useful list of the properties of k_{ω} -spaces.

Let $\{G_{\lambda}: \lambda \in \Lambda\}$ be a family of topological groups. Then we say that $(A, \{i_{\lambda}\})$ is a *common subgroup* of the G_{λ} if A is a topological group and, for each $\lambda \in \Lambda$, i_{λ} is a topological isomorphism of A onto a subgroup of G_{λ} . We denote $i_{\lambda}(A)$ by A_{λ} , and the isomorphism $i_{\mu}i_{\lambda}^{-1}: A_{\lambda} \to A_{\mu}$, where $\lambda, \mu \in \Lambda$, is denoted by $i_{\lambda,\mu}$. The common subgroup is closed if A_{λ} is closed in G_{λ} for each λ .

The above isomorphisms, of course, simply serve to identify the various copies of A in the G_{λ} . In purely algebraic arguments involving the amalgamated product it is often convenient to suppress these maps, and to regard A as a subgroup of each G_{λ} (cf. Chapter III, 12 of [8]); this can be done with advantage in the lemma below. In topological arguments, on the other hand, it is desirable to use the maps explicitly.

DEFINITION (cf. [2, 3, 4]). Let $(A, \{i_{\lambda}\})$ be a common subgroup of the topological groups $G_{\lambda}, \lambda \in \Lambda$. A topological group $G = *_A G_{\lambda}$ is the *free product of* $\{G_{\lambda}\}$ with A amalgamated if

(i) G_{λ} is a topological subgroup of G for each λ ,

(ii) $\bigcup_{\lambda} G_{\lambda}$ generates G algebraically, and

(iii) for any topological group H and any collection of continuous homomorphisms ϕ_{λ} : $G_{\lambda} \to H$ which agree on A (that is $\phi_{\lambda}i_{\lambda} = \phi_{\mu}i_{\mu}$ for all λ and μ), there exists a continuous homomorphism Φ : $G \to H$ which extends each ϕ_{λ} .

THEOREM. If $(A, \{i_n\})$ is a common closed subgroup of the k_{ω} -groups G_n , $n \in \mathbb{N}$, then $*_A G_n$ exists and is a (Hausdorff) k_{ω} -group, with each G_n as a closed subgroup.

Note that A is also necessarily a k $_{\omega}$ -group.

The proof of the theorem occupies almost the remainder of the paper.

Peter Nickolas

Let $U = \bigsqcup_n G_n$ and $W = \bigsqcup_n U^n = \bigcup_n W_n$, where $W_n = \bigsqcup_{i=1}^n U^i$ (here \bigsqcup denotes disjoint union (or the coproduct in the category of topological spaces), and U^n denotes the Cartesian product $U \times \cdots \times U$ of *n* copies of *U*). Clearly *U* and *W* are k_{ω} -spaces. Let *G* be the abstract amalgamated free product $*_A G_n$ of the G_n with the A_n amalgamated, and give *G* the quotient topology under the map $p: W \to G$ which sends (g_1, \ldots, g_n) to the product of g_1, \ldots, g_n in *G*. We shall show that *G* has all the properties required by the definition. The key to doing this is to show first that *G* has a (Hausdorff) k_{ω} -topology, and for this we need the definition and lemma below.

For convenience, first define $\Omega: U \to \mathbb{N}$ by setting $\Omega(g)$, for $g \in U$, equal to the (unique) $n \in \mathbb{N}$ for which $g \in G_n$.

DEFINITION. An *n*-tuple $(g_1, \ldots, g_n) \in W$ is reduced if $g_j \in G_{\Omega(g_j)} \setminus A_{\Omega(g_j)}$, $j = 1, \ldots, n$, and if $\Omega(g_j) \neq \Omega(g_{j+1}), j = 1, \ldots, n-1$.

LEMMA. Let (g_1, \ldots, g_n) and (h_1, \ldots, h_m) be reduced elements of W. Then, writing $\omega(j) = \omega(g_j)$ for $j = 1, \ldots, n$, we have $p(g_1, \ldots, g_n) = p(h_1, \ldots, h_m)$ if and only if

Moreover, (i), (ii) and (iii) together imply that $p(g_1, \ldots, g_n) = p(h_1, \ldots, h_m)$, whether or not (g_1, \ldots, g_n) and (h_1, \ldots, h_m) are reduced.

PROOF. Suppose $p(g_1, \ldots, g_n) = p(h_1, \ldots, h_m)$. By Chapter I of [8], we see that $p(g_1, \ldots, g_n)$ and $p(h_1, \ldots, h_m)$ have lengths *n* and *m*, respectively, in *G*, so that n = m, proving (i).

Let S_k $(k \in \mathbb{N})$ be a complete set of left coset representatives for A_k in G_k , with the representative of A_k always taken to be 1. Recall that for all $k, l \in \mathbb{N}$, $i_k(a)$ and $i_l(a)$ are identified as elements of G, for each $a \in A$. In the group $G_{\omega(1)}$, set

(1)
$$g_1 = s_1 a_1 \quad (s_1 \in S_{\omega(1)} \setminus \{1\}, a_1 \in A_{\omega(1)}),$$

and in the group $G_{\omega(j)}$, j = 2, ..., n, set

(2)
$$i_{\omega(j-1),\omega(j)}(a_{j-1})g_j = s_j a_j \qquad (s_j \in S_{\omega(j)} \setminus \{1\}, a_j \in A_{\omega(j)}).$$

Then from the well-known algebraic structure of G [8], we see that, in the group G, $g_1g_2 \cdots g_n = s_1s_2 \cdots s_na_n$, and that the latter is the (uniquely-defined) normal form of $g_1g_2 \cdots g_n$. Computing the normal form of $h_1h_2 \cdots h_n$ similarly, we see that (writing $\Omega'(j) = \Omega(h_j)$, j = 1, ..., n) we have

(3)
$$h_1 = s'_1 a'_1 \quad (s'_1 \in S_{\omega'(1)} \setminus \{1\}, a_1 \in A_{\omega'(1)})$$

and, for j = 2, ..., n,

(4)
$$i_{\omega'(j-1),\omega'(j)}(a'_{j-1})h_j = s'_j a'_j \quad (s'_j \in S_{\omega'(j)} \setminus \{1\}, a'_j \in A_{\omega'(j)}),$$

so that $h_1h_2 \cdots h_n$ has normal form $s'_1s'_2 \cdots s'_na'_n$. Since each element of G has a unique normal form, we must have $s_j = s'_j$, j = 1, ..., n, and $a_n = a'_n$, and so $\omega(j) = \omega'(j)$ for each j, proving (ii).

Combining (1) and (3) then shows that $h_1^{-1}g_1 = (a'_1)^{-1}a_1 \in A_{\omega(1)}$, and from repeated combination of (2) and (4) it follows that $h_j^{-1}i_{\omega(j-1),\omega(j)}(h_{j-1}^{-1}\cdots g_{j-1})g_j = (a'_j)^{-1}a_j \in A_{\omega(j)}, \ j = 2, ..., n$. Thus (noting that $(a'_n)^{-1}a_n = 1$) we see that (iii) is true.

The remainder of the proof of the lemma follows along similar lines, again using the normal form, and the details are left to the reader.

PROPOSITION. The graph Γ of the equivalence relation defined by p (that is, the set $\{(w, w') \in W \times W: p(w) = p(w')\}$) is closed in $W \times W$.

PROOF. Clearly $W \times W$ has the weak topology with respect to the sets $W_n \times W_n$, and it suffices to show that $\Gamma_n = \Gamma \cap (W_n \times W_n)$ is closed in $W_n \times W_n$ for each *n*. The proof is by induction on *n*. We point out that the proof will not make use of the fact that the G_n are k_{ω} ; Hausdorffness is the only topological condition required.

Now $W_1 \times W_1 = U \times U = \bigsqcup_{i,k} G_i \times G_k$, and it is clear that

$$\Gamma \cap (G_j \times G_k) = \begin{cases} \{(g,g) \colon g \in G_j\}, & j = k, \\ \{(i_j(a), i_k(a)) \colon a \in A\}, & j \neq k, \end{cases}$$

which is closed for all j and k, as each G_i is Hausdorff and A_i is closed in each G_i . Hence Γ_1 is closed in $W_1 \times W_1$.

Suppose that Γ_{n-1} is closed in $W_{n-1} \times W_{n-1}$ for some $n \ge 2$. We proceed to show that Γ_n is closed in $W_n \times W_n$. This will be done by decomposing $W_n \times W_n$ into a disjoint union of smaller subspaces, and by showing that the intersection of Γ_n with each of these is closed. To this end, we introduce some definitions.

For $k_1, \ldots, k_n \in \mathbb{N}$ define $K(k_1, \ldots, k_n)$ to be the set of $(g_1, \ldots, g_n, h_1, \ldots, h_n) \in G_{k_1} \times \cdots \times G_{k_n} \times G_{k_1} \times \cdots \times G_{k_n}$ such that $g_1, \ldots, g_n, h_1, \ldots, h_n$ satisfy all the conditions listed in (iii) of the lemma. It is straightforward to check that $K(k_1, \ldots, k_n)$ is a closed subset of the above product.

Peter Nickolas

Also for $k_1, \ldots, k_n \in \mathbb{N}$, we define certain classes of functions from subsets of $G_{k_1} \times \cdots \times G_{k_n}$ into W_{n-1} as follows. First, if for any $p(1 \le p \le n-1)$, k_p and k_{p+1} are equal, we define $\lambda_p^{(k_1,\ldots,k_n)} \equiv \lambda_p$ by $\lambda_p(g_1,\ldots,g_n) = (g_1,\ldots,(g_pg_{p+1}),\ldots,g_n) \in W_{n-1}$ for each $(g_1,\ldots,g_n) \in G_{k_1} \times \cdots \times G_{k_n}$, the multiplication taking place in G_{k_p} . And second, if (g_1,\ldots,g_n) is such that g_p lies in A_{k_p} , we define $\mu_p^{(k_1,\ldots,k_n)} \equiv \mu_p$ by

$$\mu_p(g_1,...,g_n) = (g_1,...,(i_{k_p,k_{p+1}}(g_p)g_{p+1}),...,g_n)$$

for p = 1, ..., n - 1, and $\nu_p^{(k_1, ..., k_n)} \equiv \nu_p$ by

$$\nu_p(g_1,...,g_n) = (g_1,...,(g_{p-1}i_{k_p,k_{p-1}}(g_p)),...,g_n)$$
 for $p = 2,...,n$.

By means of these three classes of functions we can describe all possible reductions of a non-reduced *n*-tuple in W_n to a (reduced or non-reduced) (n-1)-tuple. Further, it is clear that, for each p (and each k_1, \ldots, k_n), each λ_p , μ_p and ν_p has closed domain and is continuous.

Now we see easily from the definition of W_n that $W_n \times W_n = \bigsqcup G_{l,m}^{i,j}$, where the disjoint union is over all $i, j \le n$ and (for each fixed i and j) all positive integers $l_1, \ldots, l_i, m_1, \ldots, m_j$, and where $G_{l,m}^{i,j}$ is shorthand for $(G_{l_1} \times \cdots \times G_{l_i})$ $\times (G_{m_1} \times \cdots \times G_{m_j})$ (with l standing for (l_1, \ldots, l_i) and m for (m_1, \ldots, m_j)). To show that $\Gamma_n = \Gamma \cap (W_n \times W_n)$ is closed in $W_n \times W_n$, it therefore suffices to show that $\Gamma_{l,m}^{i,j} = \Gamma \cap G_{l,m}^{i,j}$ is closed in $G_{l,m}^{i,j}$ for all i, j, l, m. We need to distinguish four cases: (a) i, j < n; (b) i = n, j < n; (c) i < n, j = n; and (d) i = j = n.

In case (a), $G_{l,m}^{i,j}$ in fact lies in $W_{n-1} \times W_{n-1}$, so that $\Gamma_{l,m}^{i,j} = \Gamma \cap G_{l,m}^{i,j} = \Gamma_{n-1} \cap G_{l,m}^{i,j}$, which is closed in $G_{l,m}^{i,j}$ by the inductive assumption.

In case (b), we claim that $\Gamma_{l,m}^{i,j} = \bigcup_{\sigma} (\sigma \times \iota)^{-1} (\Gamma_{n-1})$, where ι is the identity on $G_{m_1} \times \cdots \times G_{m_j}$, and where σ runs through all the functions of $\{\mu_p; p = 1, \ldots, n-1\}$, of $\{v_p; p = 2, \ldots, n\}$, and of $\{\lambda_p; p$ satisfies $l_p = l_{p+1}\}$ (with the superscripts (l_1, \ldots, l_n) assumed). For if $(w, w') \in \Gamma_{l,m}^{i,j}$ (with i = n, j < n), then w must be non-reduced, since p(w) and p(w') have the same length; and then one of the functions σ just listed, when applied to w, gives $w'' \in W_{n-1}$ satisfying p(w) = p(w''), so that $(\sigma \times \iota)(w, w') = (w'', w') \in \Gamma_{n-1}$. Thus $\Gamma_{l,m}^{i,j} \subset \bigcup (\sigma \times \iota)^{-1}(\Gamma_{n-1})$. Conversely, if $(\sigma(w), w') \in \Gamma_{n-1}$ for some $(w, w') \in G_{l,m}^{i,j}$, then we must have $p(w) = p(\sigma(w))$, so that $(w, w') \in \Gamma_{l,m}^{i,j}$. Hence $\Gamma_{l,m}^{i,j} = \bigcup_{\sigma} (\sigma \times \iota)^{-1}(\Gamma_{n-1})$, as claimed. Since all the functions $\sigma \times \iota$ are continuous on closed subsets of $G_{l,m}^{i,j}$, and since Γ_{n-1} is closed in $W_{n-1} \times W_{n-1}$ by assumption, it follows that $\Gamma_{l,m}^{i,j}$ is a finite union of closed sets, and is therefore closed in $G_{l,m}^{i,j}$.

Finally, consider case (d). If $(w, w') \in \Gamma_{l,m}^{i,j}$, then since the lengths of p(w) and p(w') are equal, w and w' are either both reduced or both non-reduced. If, for any p $(1 \le p \le n)$, we have $l_p \ne m_p$, then it is clear from the lemma that $\Gamma_{l,m}^{i,j}$ can

contain no pairs (w, w') in which w and w' are reduced. An argument like that for case (b) then shows that $\Gamma_{l,m}^{i,j} = \bigcup_{\sigma,\tau} (\sigma \times \tau)^{-1}(\Gamma_{n-1})$, where σ runs through the functions specified in case (b), and τ runs through a set of functions specified analogously, with (assumed) superscripts (m_1, \ldots, m_n) . It follows (with the assumption $l_p \neq m_p$ for some p) that $\Gamma_{l,m}^{i,j}$ is closed. Now suppose that $l_p = m_p$ for $p = 1, \ldots, n$. We claim that under this assumption $\Gamma_{l,m}^{i,j} = K(l_1, \ldots, l_n) \cup$ $\bigcup_{\sigma,\tau} (\sigma \times \tau)^{-1}(\Gamma_{n-1})$, with σ and τ as above. To prove this, consider $(w, w') \in \Gamma_{l,m}^{i,j}$. If w and w' are reduced, then the lemma shows that $(w, w') \in K(l_1, \ldots, l_n)$, while if w and w' are not reduced, then $(w, w') \in (\sigma \times \tau)^{-1}(\Gamma_{n-1})$ for suitable σ and τ , as earlier. Conversely, if $(w, w') \in K(l_1, \ldots, l_n)$, then the last part of the lemma shows that $(w, w') \in \Gamma_{l,m}^{i,j}$, while $(w, w') \in (\sigma \times \tau)^{-1}(\Gamma_{n-1})$ implies that $(w, w') \in$ $\Gamma_{l,m}^{i,j}$, much as in case (b). Therefore $\Gamma_{l,m}^{i,j}$ is again a finite union of closed sets, and

Thus $\Gamma_{l,m}^{i,j}$ is closed in $G_{l,m}^{i,j}$ for all i, j, l, m, whence Γ_n is closed in $W_n \times W_n$. The proposition now follows by induction.

From Proposition 4.25 of [7] (or Proposition A.1 of [1]), we may immediately deduce the following result, using the fact that W is a k_w -space.

COROLLARY. With the quotient topology determined by p, G is a (Hausdorff) k_{ω} -space.

Continuity of the group operations in G now follows by a standard argument (cf. [1], [7]) which uses the facts that $p: W \to G$ and $p \times p: W \times W \to G \times G$ are both quotient maps of k_{ω} -spaces ([1], [7]). It also follows routinely that G has the universal property required of it by the definition. It thus remains only to show that the restriction of p to G_j is a closed embedding, for each j. This is achieved by a simple inductive argument, modelled on that given above, which shows that if C is a closed subset of G_j for any j, then $p^{-1}(p(C))$ is closed in W, so that p(C) is closed in G. The outline of this argument is as follows. Write $\Delta = p^{-1}(p(C))$. Now $\Delta \cap W_1 = \bigsqcup_m (\Delta \cap G_m)$, and clearly $\Delta \cap G_m$ is C if m = j, and is $i_{j,m}(C \cap A_j)$ otherwise. Therefore $\Delta \cap W_1$ is closed. We now assume that $\Delta \cap W_{n-1}$ is closed for some $n \ge 2$ and show that $\Delta \cap W_n$ is closed. To do this, it suffices to show that $\Delta \cap (G_{k_1} \times \cdots \times G_{k_n})$ is closed for every choice of $k_1, \ldots, k_n \in \mathbb{N}$. But it is easy to see that $\Delta \cap (G_{k_1} \times \cdots \times G_{k_n}) = \bigcup_{\sigma \sigma^{-1}(\Delta \cap W_{n-1})$, with the functions σ as defined earlier, and so the result follows.

This completes the proof of the theorem.

As mentioned in the introduction, we can now provide a new proof of the following result of La Martin [6]; our proof is a topologized version of the original proof ([5]; see also [9]) that epimorphisms of groups are surjective.

hence is closed.

Peter Nickolas

COROLLARY. Epimorphisms in the category of (Hausdorff) k $_{\omega}$ -groups have dense image.

PROOF. Let $f: H \to G$ be an epimorphism of k_{ω} -groups, and let A be the closure of f(H) in G; thus A is a k_{ω} -group. Now let ϕ_1 , ϕ_2 be the two natural topological isomorphisms from G into the topological amalgamated free product $G *_A G$. Clearly ϕ_1 and ϕ_2 agree on, and only on, A. Hence $\phi_1 f = \phi_2 f$, and so, since f is an epimorphism, $\phi_1 = \phi_2$. This implies that A = G, that is, that f(H) is dense in G.

References

- R. Brown and J. P. L. Hardy, "Subgroups of free topological groups and free topological products of topological groups", J. London Math. Soc. (2) 10 (1975), 431–440.
- [2] Elyahu Katz and Sidney A. Morris, "Free products of topological groups with amalgamation", to appear.
- [3] Elyahu Katz and Sidney A. Morris, "Free products of topological groups with amalgamation. II", to appear.
- [4] Eli Katz and Sidney A. Morris, "Free products of k_{ω} -topological groups with normal amalgamation", *Topology Appl.* **15** (1983), 189–196.
- [5] A. G. Kurosh, A. Kh. Kivshits and E. G. Schul'geifer, "The foundations of the theory of categories", *Russian Math. Surveys* 15 (No. 6) (1960), 1-46.
- [6] W. F. La Martin, "On the foundations of k-group theory", Dissertationes Math. (Rozprawy Mat.) 146 (1977).
- [7] B. L. Madison, Congruences in topological semigroups (Second Florida Symposium on Automata and Semigroups, University of Florida (1971), Part II).
- [8] B. H. Neumann, "An essay on free products of groups with amalgamations", Philos. Trans. Royal Soc. London (A) 246 (1954), 503-554.
- [9] Eric C. Nummela, "On epimorphisms of topological groups", General Topology and Appl. 9 (1978), 155-167.
- [10] Edward T. Ordman, "Free k-groups and free topological groups", General Topology and Appl. 5 (1975), 205–219.
- [11] Barbara V. Smith Thomas, Categories of topological groups (Presented to Second Symposium on Categorical Topology, University of Capetown (1976), Memphis State University Report 76-16).

Department of Mathematics University of Queensland St. Lucia 4067 Australia