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SOME REPRESENTATION FORMULAE
FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

CLEMENT FRAPPIER

We obtain some explicit formulae for series of the type

y fAnd, y (~1} '(->, , = 2,3,...,

where / is an entire function of exponential type r, bounded on the real exis (and
satisfying hj ( y j ^ 0 in the first case). These series are expressed in terms of the
derivatives of / and Bernoulli numbers. We examine the case where / is a trigonometric
polynomial which lead us, in particular, to a new representation of the associated Fejer

1. THE GENERAL CASE.

In the book of Boas [2, Chapter 11] there are several inequalities involving entire
functions of exponential type. Many of them are deduced from interpolation formulae.
Let / £ BT , the class of entire functions of exponential type r, bounded on the real
axis. The so called "cardinal series" [6]

OO ( i \V Cl TV\

(1) /(*) =

converges uniformly in any bounded set of the complex plane. If f(x) — O(|a;|) for
x € R, and if the sequence / (^ r ) , v € Z, is bounded then /(z) has the representation

TZ ^—^ 7Tl/(rZ — 7TI/)

Dividing by sinrz and differentiating both members of the resulting formula we
obtain [5]
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18 C. Frappier [2]

It is clear that formula (3) can be differentiated to get explicit formulae involving
higher derivatives of f(z). However these formulae become complicated. But, as we
shall see, they take a simple form in the case z = 0. In the first place we impose

on / the additional hypothesis / i / ( f ) ^ 0, where hf(Q) := lim ' ^ is the

Praghmen-Lindelof indicator function. With that hypothesis it will be sufficient to

interpolate at the points ^r for i / £ Z ; this is shown by:

THEOREM 1. Let f e BT be such that fr/(f) ^ 0. For all integers r > 2 we
have:

<«> "•&' t ^ ~ £ (;)*<*>*><-»•
l/=-OO fc=0 V '

Here Bk is the A;th Bernoulli number defined by the generating function eZ
z_1 =

REMARK: The condition / i / ( f ) < 0 is necessary for the validity of Theorem 1. To
see that we may consider the function f(z) — e~lcz , 0 < e ^ T ; we have / i / ( f ) = t.

If formula (4) were true for that function then it is readily seen that we would have, for
0 < x ^ 1, the equalities

in the case r = 0 (mod 2) , and

r_k

in the case r = 1 mod 2. If r = 2 then (5) would give

, 6 v ^ c o s (27rxi^)
"I I C™, l_ (iff* X • ^

which is impossible for x > 0. Similarly, if r = 3 then

" °° sin(27rxi/) , 3 ^

v=\

which is also impossible for x > 0. Now we observe that differentiation of formula (5)
(or(6)) gives us formula (6) (or (5)) where r is replaced by r — 1. Since it has already

https://doi.org/10.1017/S000497270000410X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270000410X


[3] Formulae for entire functions 19

been observed that formulae (5) and (6) are not true for r = 2 and r = 3 respectively,
we conclude that they cannot be true in an interval for r ^ 2.

PROOF OF THEOREM 1: If / 6 BT belongs, to L2 on the real axis then it has a
representation of the form

(7) /(*)=
J — T

where <j> G L2(—T,T). If / satisfies the additional hypothesis /i/(f) ^ 0 then it is not
difficult to verify that the proof of [2, p.105] can be adapted to obtain a representation
of the form

(8) f(z)= feeUi<j>{t)dt
Jo

where <f> £ X 2 ( 0 , T ) . Indeed, the hypothesis hf(j) < 0 and \f(x)\ < M for x £ R,
imply [2, Theorem 6.2.4] that \f(x + iy)\ ^ M for —oo < x < oo and 0 ^ y < oo, and
this inequality (instead of \f(x + iy)\ ^ MeTy ) gives us the required representation.

Now, if / has the form (8) then

p2irivt/r

-<f>{t)dt

(by the Lebesgue dominated convergence theorem). If 5n(a;) is the nth Bernoulli
polynomial, Bn(x) := Ylk=* Ck)B^""k , it is well-known [1, p.267] that

whence

that is
r-fc

or, in view of (8),
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20 C. Frappier [4]

This is the required formula whenever / € L2(—00,00). To extend it to func-

tions / which are merely in BT with /i/(-f) < 0 we consider the functions gg(z) :—

ei6z £ i £ ^ £ ) / ( z ) ) 8 > 0. We have gs G BT+2S, hgS(%) = / i / ( f ) < 0 and gs belongs to

L 2 ( - o o , o o ) . Thus, using (10),

and the result follows if we let S —> 0 (since |<jr«(a:)| < max \f{t)\ for x £ R, the
— oo<t<oo

passage to the limit is easily justified by the Lebesgue dominated convergence theorem.)
This completes the proof of Theorem 1. |

Let us apply the result of Theorem 1 to the function g 6 B2T > g{z) '•= e'TZ f{z) > / G
BT , which satisfies hg[^) = ^f{j) — T ^ 0. If we use Leibniz's formula, substitute in
(4), interchange the order of summation and use the formula 5 m ( | ) = ( 2 ~ m + 1 — l)Bm

for m. = 0 ,1 ,2 , . . . (obtainable from (9)), then we obtain

THEOREMl'. Let f £ BT. For all integers r ) 2 w e have

fc=0

As particular cases of (11) we mention (r = 2)

l / = —OO

a formula which may be obtained from (3) by evaluating

/f'(z)-Tf(z) cot TZ
um I :z—>o y smrz

and (r = 3)

6r3

It is interesting to observe that the coefficient of the term /( r~1)(0) is always equal to
zero in (11).
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[5] Formulae for entire functions 21

2. T H E TRIGONOMETRIC POLYNOMIAL CASE

A trigonometric polynomial t,

j=-n

is an entire function of exponential type n, bounded on the real axis. It does not satisfy,
in general, the condition A.t(f) < 0 but, as we shall see now, there is an interpolation
formula which is closely related to (4) and (11) whenever r = 2.

THEOREM 2. Let <(0) := Y^j=-n
 c j e * J 0 be a trigonometric polynomial of degree

^ n and <rn(t; 0) := £)"__„ y- ~ n)cJ e*J0 ^° *^e associated Fejer mean. We have

The usual representation

' \ sin (f) ) (n + 1)

gives the inequality

(13) M*;©)l< 11*11(0,2-), for 0 6 R,

where

As a particular case of (12) (for example t(Q) = 1) we get

k=i s m

so that Theorem 2 has the immediate corollary:

COROLLARY 1. For any trigonometric polynomial t, of degree < n , we have

(14) k»(t; e ) - ^ t " ( 0 ) | < |f | ( 0 i 2 w ) , 0 € R.

We note that the equality is possible in (14) for t(Q) = ae~tn& + b + cein& , where

a,b,c, are any complex numbers.
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22 C. Frappier [6]

PROOF OF THEOREM 2: . Let a(z) := £)"__„ i j e t i z be a trigonometric polyno-
mial of degree ^ n such that 5(0) = s'(0) = 0. The function f(z) := s(z)/z2 is an
entire function of exponential type n . Moreover,

According to a known quadrature formula (see, for example, [4]) we have thus

that is

Now,

s(x) + s(-x)

J-co X2 Jo
dx

}=-n

since 5Z"__rl bj — s(0) = 0 , whence

= Jo ^ * ^

=f ±^}X/2-xr
/2) **>

3*0

- 1

j=-n 7=1

n / I I \
= -rwr J ] ( 1 - HI j 6, since s(0) = 0

i=-n ^ n ^

= -nir<rn(s;Q).
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[7] Formulae for entire functions 23

Thus, noting that a ( ^ E ) = 0 if v = 0 (mod n ) , we may write formula (16) in the
form

I £ ^ = --(';O)-^"(o).
( n )

If t(z) := ]C n =-n c i e * J Z ls a n arbitrary trigonometric polynomial of degree < n then
the trigonometric polynomial s(z) = t ( z ) + i ( e " — l)i'(O)—1(0) has a zero of multiplicity
^ 2 at z = 0. Hence, using (17),

( 1 8 ) - , - .«)+i(^"--iW0)-,

7TI 7T

71 7 1 2

Formula (4), with r = 2, setting / ( z ) = e " - 1 € B n , gives

v = —OO
"?60 (n)

It then follows from (18) that

I(i-^)*(o)-^»(o) = ̂  f;
u~- oo

On the other hand,
oo

2

oo 4(2irv\ oo (/i+l)n-l j/2jrfc\

ii t\~)
i/=-oo

"Ĵ O (n)

The series being absolutely convergent we get

"5^0 (n)

where the last step uses the Mittag-Leffler expansion
OO ., n

y I =(^)
/,fr'oo0* + *)2 Vsin7

with x = k/n. Formula (19) is thus equivalent to

(20) , . ( l i o , -

This completes the proof of Theorem 2 in the case 0 = 0. It is clear that (12) follows
from (20) by translation. |
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3. T H E ALGEBRAIC POLYNOMIAL CASE.

3 .1 . If t(Q) — P(e>€>) , where P(z) := ]C?=o aiz* ls a n algebraic polynomial of degree

^ n , then an(t; 0 ) = P(ei@) - ±ei@ P'(ei@) . Hence Theorem 2 admits the corollary:

COROLLARY 2. For any algebraic polynomial P , of degree ^n, we have

( V - l) 1 ^ P(ze2"ik/n)
(21) z*P»iz)-in-l)zP\z) + ^-^)-P(z)=l-Y/ S i n ' f ^ ' Z € C ' n > 2 '

If we write zP'(z) = 2>=o 3 aiz' an(^ z2P"(z) — X)"=o j'O' ~ 1 ) a J zJ an<^ compare
the coefficients in (21) then we see that Corollary 2 is equivalent to the equations

n - l

and

n-i Sin

E(23)
s m

3.2. For any algebraic polynomial P(z) :— X)J=o ai z* ^n e function f(z) = P(et;£) is

in Bn. Moreover, / i / ( f ) ^ 0. We have the formula (which may be proved easily by

mathematical induction)
k

(24) /(fc)(z) = ik J ] S(k,j)eejzP{j)(eiz) for * > 1,

where the S(k,j) are Stirling numbers of the second kind, defined by the recurrence
relation 5(1 , jfe) = S(k,k) = 1 for k ^ 1 and S(k,j) = j S(k,j - 1) + S(k - l,j - 1)
for 1 < j' < k. Thus formula (4) is applicable and noting that

(25) P(e") = J

we obtain

j/= —oo fc=0

In both members of (26) we may interchange the order of summation; since the numbers
P(k\l) for k = 0,1,2,... ,n are arbitrary, we see that Theorem 1 admits, as a particular
case, the following corollary:
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COROLLARY 3. Let

i.—< j / '

l/=—oo

wiere n ^ l , O ^ f c ^ n and r > 2 are integers. We have bOtr,n = —Br,

(27) 6*,r,n = - ;

for 1 < k < r and 6fc,r,n = 0 for r < k.

We may also apply formula (11) to the function f(z) = P{etz) . The same line of
reasoning gives us the

COROLLARY 3'. Let

i °°

^ ' I/=—OC

where n ^ l , O ^ f c ^ n and r ^ 2 are integers. We have cOtr,n = (2 — 2 r ) B r ,

(28) cfc,r,n = *! ^ Q ( 2 J ) g r - j 5 ( j , k),
j=k ^ ^

for 1 Sj k ^ r and Ck,r,n = 0 ^° r »" < fc.

It is to be noted that formula (27) is, for r ^ k ^ n , a consequence of the
(eiz —i)k

quadrature formula (15); we need only consider, in (15), the function f(z) = i—zT '

which is an element of Bn. However, in the case k < r, that function is not an entire
function so that formula (15) is not applicable directly.

4. O T H E R OBSERVATIONS.

Formula (4) could have been proved by other methods.

4 . 1 . By mathematical induction. Suppose that formula (4) is proved for r = 2. With
the hypothesis that (4) is true for a given r > 2 we may apply Theorem 1 to the
function F(z) := 'yz>~f\°> ; it is a matter of simple computation to see then that (4) is
true with r + 1 instead of r. To prove formula (4) with r = 2 we may use the same
line of proof as in the text or proceed as in 4.3, below.
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26 C. Frappier [10]

4.2. With Taylor expansion. Here again we must suppose that formula (4) is estab-
lished for r = 2. We use the remainder term in the integral form to obtain, for r ^ 3 ,

,29) T /(fe)(°> (2™ V f(2™\ /*** f{r~2){t) (27n/ t)"~3dt
( } h k[ V - ) ~ f \ r ) Jo ( r - 3 ) ! V - )
We substitute the righthand member of (29) in

(30)
fc=O i /=-oo x / fe=O

which leads us to (4) in the case r ^ 3.

4.3. By approximation. In the first place we must prove (4) when /(z) = Cj(etz),
where Q is a polynomial having a zero of multiplicity ^ r at the point 1. In general
we approximate / by polynomials of the kind considered in [4] and use (15) with an
appropriate n. After some lengthy calculation we are led to a formula which turns
out to be equivalent to (4). We omit the details of that proof but we observe that the
coefficient of /( ' ^(0) appears in the form

(sin x) sin (r — l)x
ax

x-

for some computable constant C. Thus a conjunction of two proofs shows that

, , f°
(31) /

(s inx) r ~ 1 s in(r - l )x
= w, for r = 2,3,4,.. .
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