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The Ramanujan differential operator, a certain

CM elliptic curve and Kummer congruences

P. Guerzhoy

Abstract

Let τ be a point in the upper half-plane such that the elliptic curve corresponding to τ can
be defined over Q, and let f be a modular form on the full modular group with rational
Fourier coefficients. By applying the Ramanujan differential operator D to f , we obtain
a family of modular forms Dlf . In this paper we study the behavior of Dl(f)(τ) modulo
the powers of a prime p > 3. We show that for p ≡ 1 mod 3 the quantities Dl(f)(τ),
suitably normalized, satisfy Kummer-type congruences, and that for p ≡ 2 mod 3
the p-adic valuations of Dl(f)(τ) grow arbitrarily large. We prove these congruences by
making a connection with a certain elliptic curve whose reduction modulo p is ordinary if
p ≡ 1 mod 3 and supersingular otherwise.

Introduction

The holomorphic differential operator D (see below for the precise definition), which acts on the
ring of modular forms of level 1, was introduced by Ramanujan [Ram16], and has appeared since
then in numerous research papers in different connections (see e.g. [BKO04] as the most recent
reference). One finds in [Kat73, Appendix 1] a conceptual geometric interpretation of this operator
in the framework of the action of the Gauss–Manin connection on the symmetric powers of the
first de Rham cohomology of an elliptic curve over a smooth scheme. This operator also plays an
important role in the p-adic theory of modular forms developed by Serre and Swinnerton-Dyer
[Ser73a, Ser73b].

In this paper we consider the following question. Let f be a modular form with respect to the
full modular group of even integer weight k. If we apply the differentiation D to f repeatedly, we
obtain a sequence of modular forms Dl(f) with l � 0. Assume now that f has rational Fourier
coefficients. Therefore, all Dl(f) may be written as isobaric polynomials in Q and R (see § 1 below
for the notation). The weights of Q and R are 4 and 6 respectively, and the weight of Dl(f) is k+2l.
Pick a point τ on the complex upper half-plane such that the corresponding elliptic curve is defined
over Q. In other words, there is a non-zero S = S(τ) such that the numbers

Q = Q(τ)/S2 and R = R(τ)/S3

are rationals. One actually can find τ on the upper half-plane and S(τ) ∈ C∗ such that these two
numbers become any prescribed pair of rationals. Now ask about p-adic properties of the rational
numbers

bf (l) = Dl(f)(τ)/Sk/2+l.

Fix once and for all a prime p > 3, and put Z = Z(p). Assume that Q,R ∈ Z, and at least one
of these numbers is not divisible by p in Z. There exists M ∈ Z such that bMf (n) = Mbf (n) ∈ Z
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for any n � 0. Thus we can and will assume that bf (n) ∈ Z. Numerical experiments show that
the p-adic properties in question depend crucially on the residue of p mod 3. This research was
undertaken to explain this phenomenon.

We need some more notation to formulate our result. Put

δ(τ) = 1728∆/S6 = Q3 −R2 = S−6 1728q
∏
n�1

(1 − qn)24,

where q = exp(2πiτ). Note that δ depends on τ in a complicated way, because the choice of S
depends on τ . There is a certain freedom in this choice: we only assume that Q and R are rationals
and one of them is a p-unit. This defines S only up to multiplication by a p-unit. On the other hand,
a choice of S only exists for those τ that correspond to elliptic curves defined over the rationals.

Let c be any integer such that

c ≡
{

0 if p ≡ 2 mod 3,
1
2(p − 1)(−1)(p−1)/3δ(τ)(p−1)/6 if p ≡ 1 mod 3.

(mod p) (1)

Theorem 1. Let f be a modular form of even integral weight on the full modular group SL2(Z)
with rational Fourier coefficients.

For any integers n � r > 0 the following congruence holds:
r∑

j=0

(−1)r−j

(
r

j

)
cr−jbf (n + j(p − 1)) ≡ 0 mod pr.

Note that if p ≡ 2 mod 3 or if δ(τ) is divisible by p one can take c = 0, and the congruences
degenerate to

bf (n + r(p − 1)) ≡ 0 mod pr as soon as n � r > 0.
Otherwise the situation is quite different. For example, put r = 1 in Theorem 1 and obtain modulo
p periodicity for the numbers bf (l):

bf (n + p − 1) ≡ cbf (n) mod p for n � 1

with a certain p-unit c. This is an interesting phenomenon to observe in numerical experiments.
The proof of Theorem 1 splits into several parts. First, we apply the differential operator D to

the modular form Q repeatedly, and construct a generating function X (see (4) below) out of the
modular forms Dl(Q). We calculate this function explicitly in terms of the Weierstraß ℘-function in
Theorem 2. The generating function depends on two variables: in terms of the ℘-function these are
a lattice and a point in the complex plane modulo the lattice. An amusing separation of variables
phenomenon takes place at this moment: all the lattices that may appear for different finite values
of τ correspond to the same elliptic curve over C, namely, to the one whose j-invariant is zero.

The consideration of the degenerate case τ = i∞ yields Proposition 2, which allows us to reduce
the proof of Theorem 1 for an arbitrary modular form f to the special case f = Q.

An application of the addition formula for the Weierstraß ℘-function allows us to consider X
as a function on the formal group associated to the elliptic curve (9); moreover, the normalized
invariant differentiation on this formal group coincides with the differentiation d/dt. This is proved
in Proposition 3 and the remarks following it.

The Kummer-type congruences claimed in Theorem 1 follow in this situation from the works of
Carlitz [Car41, Car49] and Snyder [Sny93, Sny85]; we formulate the exact statement that we need
as Proposition 4.

We conclude the proof of Theorem 1 with the calculation of c mod p as in (1). This quantity
evidently governs the congruences, and is governed by the modp reduction of the elliptic curve (9).
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In particular, the cases when c is divisible and not divisible by p correspond to the cases when
the Hasse invariant of (9) is 0 and 1 respectively. Although this is a short calculation, it uses the
beautiful connection between the formal group of an elliptic curve and its L-series, found by Honda,
the Atkin and Swinnerton-Dyer conjecture which was proved on the basis of this connection, and
an elegant elementary method of computation of the Hasse invariant invented by Manin [Man61].

In the last section of this paper we make a few remarks concerning the connection between our
results and the congruence properties of Bernoulli–Hurwitz numbers.

1. Calculation of a generating function for the differential operator

For the particular Eisenstein series of low weights we use the classical notation of Ramanujan:

P = 1 − 24
∑
n�1

σ1(n)qn,

Q = 1 + 240
∑
n�1

σ3(n)qn,

R = 1 − 504
∑
n�1

σ5(n)qn.

The holomorphic function P is not actually an Eisenstein series, and not even a modular form.
The differential operator

1
2πi

d

dτ
= q

d

dq

does not preserve modularity, but its corrected version

D = −6q
d

dq
+

k

2
P (2)

does. Its action on Q and R is given by

D(Q) = 2R, D(R) = 3Q2. (3)

We remark that our definition of D differs from the usual one [Lan76, ch. X] by the factor of −6.
Consider the generating function

X = X(t, τ) =
∑
n�0

Dn(Q)(τ)
Sn+2

tn

n!
∈ Z[Q,R][[t]]. (4)

We are going to calculate this function.
Denote by ℘(z, L) the Weierstraß ℘-function. Consider the lattice in the complex plane generated

by 1 and ρ = eπi/3 = (1+
√−3)/2. For any complex number α �= 0 consider the lattice L = α−1〈ρ, 1〉.

The difference

℘′(z, L)2 − 4℘(z, L)3 = −g3(L) (5)

does not depend on z. It is known that

g3(〈ρ, 1〉) = 140
∑

(m,n)�=(0,0)

1
(m + nρ)6

=
1
27

(
Γ(1/3)2

Γ(2/3)

)6

,

but we do not need this precise value; we will use only the fact that g3(〈ρ, 1〉) �= 0. For any τ in the
complex upper half-plane choose α such that

g3(L) = α−6g3(〈ρ, 1〉) = 4δ(τ)
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and find a complex number a = a(τ) that satisfies{
℘(a,L) = Q(τ),
℘′(a,L) = 2R(τ).

(6)

Theorem 2. The following holds:

X = ℘(a + t, L).

To prove this theorem we need the following lemma, which describes an abstract situation, and
has nothing to do with modular forms. Let Z be a ring of characteristic zero, and assume that 2
and 3 are invertible in this ring. Any differential operator D, which acts on the ring of polynomials
in two variables Z[Q,R], is defined by its action on the generators Q and R:

D = A
∂

∂Q + B
∂

∂R with A,B ∈ Z[Q,R].

Consider the generating function

X =
∑
n�0

Dn(Q)
tn

n!
∈ Z[Q,R][[t]] (7)

(we assume that D0(Q) = Q).

Lemma 1. Assume that D2(Q) = λQ2 with λ ∈ Z. Then

Ẍ = λX2,

where a dot denotes the differentiation with respect to t.

Proof. We have

Ẋ =
∑
n�0

Dn+1(Q)
tn

n!

and

Ẍ =
∑
n�0

Dn+2(Q)
tn

n!
= λ

∑
n�0

Dn(Q2)
tn

n!
.

Using induction on m and Leibnitz’s rule one shows that

Dm(Q2) =
m∑

n=0

(
m

n

)
Dn(Q)Dm−n(Q).

Thus we have

Ẍ = λ
∑
m�0

tm

m!

m∑
n=0

(
m

n

)
Dn(Q)Dm−n(Q).

Since also

X2 =
( ∑

n�0

Dn(Q)
tn

n!

)2

=
∑
m�0

tm
m∑

n=0

1
n!
Dn(Q)

1
(m − n)!

Dm−n(Q),

the lemma is proved.

Multiply the differential equation in Lemma 1 by Ẋ and integrate it once.

Corollary 1. Under the assumptions of Lemma 1 the generating function X satisfies the differ-
ential equation

Ẋ2 = 2
3λX3 + C. (8)

with C = (D(Q))2 − 2
3λQ3.
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From now on we specialize to the ring of modular forms; thus Q and R become functions on
the upper half-plane, and D becomes the differential operator (2). Fix the point τ , choose S and
consider the differential operator D = S−1D acting on Z[Q,R]. It follows from (3) that

D(Q) = 2R, D(R) = 3Q2.

Both operators D and D satisfy the condition of Lemma 1 with λ = 6. Take Z = Z(p); thus the former
operator acts on the ring Z[Q,R] of modular forms with rational p-integer Fourier coefficients, while
the latter acts on the ring Z[Q,R] of modular forms with p-integer values at τ . The equation of the
elliptic curve, defined by (8), is

y2 = x3 − δ(τ) (9)

with

x = X and y = Ẋ/2. (10)

Proof of Theorem 2. The generating function X defined by (4) satisfies the differential equation (8),
and coincides with (7). Since the Weierstraß ℘-function, considered as a function on the complex
variable z, satisfies the differential equation (5) and the initial conditions (6), the result follows from
the uniqueness of the solution.

2. The degenerate case

Consider the constant terms of the q-expansions of the modular forms Dn(Q). To do so pick τ = i∞,
and solve Equation (8) with C = 4δ(i∞) = 0. Choose S = 1, which is suitable for this τ . The initial
conditions (6) then become X(0) = Q(i∞) = 1 and Ẋ(0) = 2R(i∞) = 2.

Proposition 1. As τ ∈ i∞, the generating function is given by

X(t, i∞) =
1

(t − 1)2
.

In particular, Dn(Q)(i∞) = Dn(Q)(i∞) = (n + 1)!.

Note that the quantities Dn(Q)(i∞) = Dn(Q)(i∞) clearly never vanish.
The following proposition is a standard consequence of the fact that Dn(Q)(i∞) �= 0 together

with the fact that D(∆) = 0.

Proposition 2. Any modular form f with rational Fourier coefficients can be written as a finite
rational linear combination

f = β0D
l(Q) + β1∆Dl−6(Q) + β2∆2Dl−12(Q) + · · · .

For a modular form f of even integer weight k with rational Fourier coefficients, consider the
generating function

Xf = Xf (t, τ) =
∑
n�0

Dn(f)
Sk/2+n

tn

n!
∈ Z[Q,R][[t]].

Thus for the function X previously introduced (4) we have X = XQ. Proposition 2 now implies
that Xf is equal to a finite rational linear combination of the derivatives of X with respect to t:

Xf = β0X
(l) + β1∆X(l−6) + β2∆2X(l−12) + · · · . (11)

The first claim of Theorem 1 follows from this. Moreover, (11) implies that it is sufficient to prove
Theorem 1 for Xf = X.
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3. The generating function X as a function on a formal group

Theorem 2 asserts that X is a function on the elliptic curve (9), and we will now consider it as a
function on the corresponding formal group, that is a formal power series in the group parameter.
Let E(V,W ) be the formal group of the elliptic curve (9), and let z = −x/y be the parameter at
the origin. We refer to [Sil86, ch. IV] for the definitions and construction.

Proposition 3. Assume that ℘(a,L), ℘′(a,L) ∈ Z. Then there exists a power series ϕ(z) ∈ Z[[z]]
such that

X = ℘(a,L) + zϕ(z).
In other words, X is a function on the group.

Proof. Since we do not consider here any lattice other than L, we omit it from the notation and
simply write ℘(t) = x and ℘′(t) = 2y for ℘(t, L) and ℘′(t, L). Tate’s construction [Sil86, ch. IV, § 1]
implies that ℘′(t) = −1/(Uz3), where U is a unit in Z[[z]]. Thus ℘(t) = −z℘′(t)/2 = 1/(2Uz2).
Substitute u = a and v = t into the addition formula for the Weierstraß ℘-function

℘(u + v) = ℘(u) +
1
2

∂

∂u

(
℘′(u) − ℘′(v)
℘(u) − ℘(v)

)

and take into the account that ℘′′(t) = 6℘(t)2 to obtain

℘(a + t) = ℘(a) + z2U
6℘(a)2

1 + ℘(a)z2U
− 2℘′(a)zU

℘′(a)z3U + 1
(1 + ℘(a)z3U)2

.

Proposition 3 follows from this formula.

Since the normalized invariant differential on the formal group E(V,W ) is given by [Sil86, ch. IV]

ω =
dV

EW (V, 0)
=

dx

2y
,

we can write the normalized invariant differentiation using (10) as

D = EW (V, 0)
d

dV
= 2y

d

dx
=

d

dt
. (12)

4. Kummer congruences for functions on formal groups

Let F = F (V,W ) be a formal group defined over the ring Z. We refer to [Hon68, Haz78] for basic
definitions. We denote by

λ(T ) =
∑
n�1

e(n)
n

T n

the logarithmic series for F , and by

ε(t) =
∑
n�1

a(n)
n!

tn

the exponential series with λ(ε(t)) = t. The normalized invariant differentiation after the substitu-
tion T = ε(t) is given by

D =
1

λ′(T )
d

dT
= FW (T, 0)

d

dT
=

d

dt
. (13)

We pick any power series ϕ ∈ Z[[T ]]. This is a function on the formal group F . Note that the
differential operator D acts on this function. For non-negative integers l define the numbers

Bϕ(l) = Dl(ϕ)(0).
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Note that in the case when F = E, where E is the formal group of the elliptic curve (9), the
invariant differentiation (13) becomes (12): both are just d/dt. Thus we have

BX(l) = bQ(l)

for l � 0. These numbers satisfy congruences. The following precise statement essentially comes
from the works of Carlitz [Car41, Car49] and, in the context of formal groups, from the works of
Snyder [Sny93, Sny85].

Proposition 4. Pick c ≡ e(p) mod p. For any function f and any integers n � r > 0 the following
congruences hold:

r∑
j=0

(−1)r−j

(
r

j

)
cr−jbf (n + j(p − 1)) ≡ 0 mod pr.

5. Calculation of e(p) modulo p

It follows from the Atkin and Swinnerton-Dyer conjecture, proved by Cartier [Car71] (see [Haz78,
ch. 33] for the full and correct proof), that for the formal group of any elliptic curve E defined
over Q,

e(p) ≡ ap mod p,

where ap is the pth coefficient of the Hasse–Weil L-function of E. That is

ap = 1 + p − #E(Fp).

It follows from a classical argument (see [Man61] or [Sil86, ch. V, proof of Theorem 4.1]) that, for
an elliptic curve with an equation y2 = φ(x), this quantity is congruent modulo p to the coefficient
of xp−1 in the polynomial φ(x)(p−1)/2. For the formal group of the elliptic curve (9), it follows that
e(p) ≡ c mod p, where c is given by (1), and this concludes the proof of Theorem 1.

6. Remarks about the connection with Bernoulli–Hurwitz numbers
The Bernoulli–Hurwitz numbers BH (n + 2) are defined as the (properly normalized) values of
Eisenstein series at a CM-point, and, consequently, as the Laurent expansion coefficients of the
Weierstraß ℘-function:

℘(z) =
1
z2

+
∑
n�2

BH (n + 2)
n + 2

zn

n!
.

Hurwitz [Hur99] considered these numbers (for the Weierstraß ℘-function associated with the lem-
niscatic curve y2 = 4x3 − 4x) as being analogues for the Gaussian field of the Bernoulli numbers for
the rational field Q. (Note that one obtains Bernoulli numbers when one considers the degenerate
elliptic curve at infinity, and the constant terms of Eisenstein series as their values at infinity.)
In particular, Hurwitz observed congruences for the Bernoulli–Hurwitz numbers similar to the
Kummer congruences for Bernoulli numbers and to the congruences in Theorem 1. Generalizations
of and different approaches to such congruences have been considered since the time of Hurwitz by
many authors (see, for example, [Lic80, Kat81, Kat77]).

In the case under consideration in this paper, we consider, according to Theorem 2, the Taylor
expansion of the Weierstraß ℘-function associated with the elliptic curve (9) at a point different
from the origin. This situation is easier, because we do not need to modify the function in order
to kill the pole at the origin, but the result is weaker: Theorem 1 in the ordinary (c �= 0) case is
essentially equivalent to the existence of a Zp-measure with prescribed moments [Sny93], and no
restriction to a Z∗

p-measure makes sense. On the other hand, this paper provides a more general
outcome: we consider bad, supersingular and ordinary primes simultaneously, and are able to prove
a result for an arbitrary modular form.
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It is amusing to remark that as Hurwitz considers the lemniscatic curve, which is attached to
the point τ = i, our consideration of the Ramanujan differential operator led us to the elliptic curve
attached to the point τ = ρ = exp(πi/3), and these two, i and ρ, are the only elliptic points in the
fundamental domain for SL2(Z).
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