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Abstract. We will analyze the relationships between the special fibres of a pencil L of plane
curve singularities and the Jacobian curve J of L (defined by the zero locus of the Jacobian
determinant for any fixed basis f;f0

2 L). From the results, we find decompositions of J
(and of any special fibre of the pencil) in terms of the minimal resolution of L. Using these
decompositions and the topological type of any generic pair of curves of L, we obtain some
topological information about J. More precise decompositions for J can be deduced from
the minimal embedded resolution of any pair of fibres (not necessarily generic) or from the
minimal embedded resolution of all the special fibres.
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1. Introduction

Let f; g:C2; 0! C; 0 be two germs of holomorphic functions and let L ¼

flf þ mg : l; m 2 Cg be the pencil defined by f and g. We will assume that the plane

curve germs defined by f f ¼ 0g and fg ¼ 0g do not share any branch. For

w ¼ ðw1 : w2Þ 2 CP1, let fw ¼ w2 f 
 w1g be the function of the pencil L correspond-
ing to w and let Fw ¼ ffw ¼ 0g be the fibre defined by fw. It is well known that all the

fibres Fw are equisingular (and in fact have the same resolution) but a finite number,

those called special fibres. We will denote SpðLÞ the set of special fibres of L. The
nonspecial fibres are called generic. Notice that, if Fw is generic, then its correspond-

ing function fw is reduced.

In what follows the plane curve germ F ¼ fj ¼ 0g defined by the germ of a holo-

morphic function j:C2; 0! C; 0 is taken with its reduced structure (except places

where otherwise stated). Let C ¼ fc ¼ 0g be the plane curve germ defined by the

holomorphic function c:C2; 0! C; 0 and let j ¼
Qr

i¼1 j
ri

i (resp. c ¼
Qs

j¼1 c
sj

j ) be

the decomposition of j (resp. of c) in irreducible factors in Cfx; yg. Then ðF;CÞ0
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stands for the intersection multiplicity between F and C at the origin. We also use
ðj;cÞ0 to denote the contact order between the functions j and c at the origin;
i.e. ðj;cÞ0 ¼

P
i;j risjðfji ¼ 0g; fcj ¼ 0gÞ0. Note that ðF;CÞ0 ¼ ðj;cÞ0 if and only if

both j and c are reduced equations for F and C. In the same way we define
ðF;cÞ0 to be

P
j sjðF; fcj ¼ 0gÞ0.

The critical locus (or the Jacobian curve) J of the pencil L is the reduced plane
curve defined by the vanishing of the Jacobian determinant jðf; gÞ ¼ fxgy 
 fygx. If

f;f0
2 L, f 6¼ f0, then we have jðf; gÞ ¼ cjðf;f0

Þ for some c 2 C�. It means that J

depends only on L and not on the basis, ff;f0 : f 6¼ f0
g, fixed for L. Notice that

J is the critical locus of the map germ defined by f and g: ðf; gÞ : ðC2; 0Þ ! ðC2; 0Þ

(in fact for the map germ defined by any pair f;f0
2 L).

Among the relationships between J (or more precisely the branches of J ) and the

special fibres of L, SpðLÞ, we are going to mention two of them. The first one is a
direct relationship due to Casas? (see [Ca], 7.4):

THEOREM A. A curve Fw of L is special if and only if

ðfw; jðf; gÞÞ0 > minfðfw0 ; jðf; gÞÞ0 : w0 2 CP1g:

Moreover, let g be a branch of J. Then there exists exactly one wðgÞ 2 CP1 such that

ðg;fwðgÞÞ0 > ðg;fw0 Þ0 for all w0 6¼ wðgÞ.

As a consequence g 7!FwðgÞ ¼ ffwðgÞ ¼ 0g defines a map from the set of branches of

J, BðJÞ, onto the set of special fibres of L:

r:BðJÞ ! SpðLÞ
g 7! FwðgÞ

There is another relationship between BðJÞ and SpðLÞ which could be deduced
from the results of Maugendre in [Ma1] (see also [Ab]). Let p: ðX;EÞ ! ðC2; 0Þ be

a modification (i.e. the composition of a finite number of point blowings-up, each

one centered at an infinitely near point to the origin 0). For each irreducible compo-

nent Ea of the exceptional divisor E of p, let mf ðEaÞ (resp. mgðEaÞ) be the multiplicity

of the function ~f ¼ f � p: X ! C along Ea (resp. ~g ¼ g � p). We will denote
qðEaÞ ¼ mf ðEaÞ=mgðEaÞ.

Let p0: ðX 0;E 0Þ ! ðC2; 0Þ be an embedded resolution of f fg ¼ 0g; that is p0 is a
modification such that the support of the divisor of the function
efg ¼ fg � p0: X ! C is a normal crossing divisor. We will say that an irreducible

component, Ea, of E
0 is a rupture divisor if it intersects at least three different com-

ponents of the total transform of ffg ¼ 0g; i.e. if p0
1ðf fg ¼ 0gÞ 
 Ea has at least three

connected components.

THEOREM B. Let p0: ðX 0;E 0Þ ! ðC2; 0Þ be the minimal embedded resolution of

f fg ¼ 0g. Then

?The authors wish to acknowledge E. Casas for a very early version of this result.
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ðg; f Þ0
ðg; gÞ0

: g 2 BðJ Þ

� �
¼ fqðEaÞ : Ea a rupture divisorg:

The above result could be used to separate the branches of J in packages, each one

constituted by branches which have same ‘Jacobian quotient’ ðg; fÞ0=ðg; gÞ0. As a con-
sequence it permits us, roughly speaking, to obtain some topological information

about the branches of J from the topological type of f and g (see [Ma1] and the

results at the end of this introduction and Subsection 2.3 for a more precise version

of this assertion). Thus, this result can be seen as a generalization of the well-known

factorization proved by Merle ([Me]) for the polar curves (i.e. when g is a general

linear form).

However, an interesting fact is that in the case where f and g are generic elements

of L (in this case p0: ðX0;E0Þ ! ðC2; 0Þ just coincides with the minimal resolution of

the pencil L) then qðEaÞ ¼ 1 for every irreducible component Ea of E0 and as con-

sequence the above theorem does not give any information. Thus, in order to obtain

nontrivial information about BðJ Þ one needs to use the minimal embedded resolu-
tion (and so the topological type) of a pair of special fibres of L.
One of the main goals of this paper is to understand the above two relationships

and the connection between them. As the results allows a very natural interpretation

in terms of exceptional divisors (and its dual graph) we refer generically to [LW] for

notations and results about the geometry of pencils. Readers who prefer different

languages (such as infinitely near points and Enriques diagrams, for example) can

find in [Ca] the main ingredients to establish the adequate translation.

Let p: ðX;E Þ ! ðC2; 0Þ be a modification and let h ¼ f=g be the meromorphic

function defined by f and g in a punctured neighbourhood U of the origin of C2.

One can see h as a map h: U ! CP1 defined by hðzÞ :¼ ð fðzÞ : gðzÞÞ and so the fibre

Fw is the closure of h

1ðwÞ for w 2 CP1. Let ~h :¼ h � p be the lifting of h to X. ~h is a

meromorphic function defined in a suitable neighbourhood of E in X but in a finite

set of points of the exceptional divisor E. We will say that p is a resolution of L if
~h : X ! CP1 is a morphism. It is well known that L admits a minimal resolution
and also that this minimal resolution coincides with the minimal embedded resolu-

tion of any pair of generic fibres of the pencil.

We will say that an irreducible component Ea of E is dicritical if ~hjEa
: Ea ! CP1 is

defined everywhere and not constant. Note that if Ea is dicritical then qðEaÞ ¼ 1.

However, the condition qðEaÞ ¼ 1 does not imply that Ea is dicritical. Moreover,

the condition qðEaÞ > 1 (resp. qðEaÞ < 1) is equivalent to saying that Ea is in the zero

divisor (resp. in the pole divisor) of ~h.

Let p: ðX;EÞ 
!ðC2; 0Þ be the minimal resolution of the pencil L and denote D
the dicritical locus; i.e. the union of the dicritical components of E. In this situation

we have the following results:

THEOREM 1. Let D be a connected component of ðE 
DÞ. Then ~h is constant along

D and if ~hjD � w 2 CP1 we have
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ð1Þ Fw is special.

ð2Þ There exists a branch j of Fw such that the strict transform of j intersects D.

ð3Þ There exists a branch g of J such that the strict transform of g intersects D.

ð4Þ rðgÞ ¼ Fw.

THEOREM 2. Let P be a singular point of D ði.e. the intersection point of two

dicritical divisorsÞ and ~hðPÞ ¼ w 2 CP1. Then the statements ð1Þ to ð4Þ of the above

theorem are also true for w and D ¼ fPg.

THEOREM 3. Let D be a dicritical divisor and let P be a critical point of
~hjD: D ! CP1, w ¼ ~hðPÞ and we assume that P is a smooth point of E ðthat means that

P is not the intersection point with another divisorÞ. Then we have

ð1Þ Fw is special.

ð2Þ The strict transform of Fw is singular or tangent to D at P.

ð3Þ There exists a branch g of J such that the strict transform of g intersects D at P.

ð4Þ rðgÞ ¼ Fw.

Moreover, if there exists a branch g of J such that the strict transform of g intersects

D at P, then P is a critical point for ~h.

All the special values w 2 CP1 (i.e. w is such that the corresponding fibre Fw is

special) are among the ones stated in Theorems 1, 2 and 3 above (see [LW]). On

the other hand, according to the last statement in Theorem 3, all the branches of

J are in one of the situations described by statement (3) in Theorems 1, 2 and 3.

As a consequence J can be decomposed as J ¼ [Ji in such a way that Ji consists

of the branches which intersect the same connected component D of ðE 
DÞ or

the same singular point of D or the same critical point P in some dicritical divisor

D. Moreover, it is clear that the map r is constant on the set of branches BðJiÞ (for

each Ji).

Let f ¼
Qp

i¼1 f
pi

i and g ¼
Qt

j¼1 g
tj
j ; fi 6¼ gj for any i; j. Let p0: ðX 0;E 0Þ ! ðC2; 0Þ be

the minimal embedded resolution of f fg ¼ 0g. We denote by D0 the dicritical locus

of E0 and by gCð f Þi (resp.
gCðgÞj) the strict transform of f fi ¼ 0g (resp. fgj ¼ 0g) by

p0. Let us consider Df
¼ fEa : qðEaÞ > 1g [ f gCð f Þi : pi > 1g (respectively, Dg

¼

fEa : qðEaÞ < 1g[ f gCðgÞi : tj > 1g). Let D
f
¼

Srf

i¼1 D
f
i (respectively, D

g
¼

Srg

i¼1 D
g
i ) be

the decomposition in connected components of Df (respectively, of Dg). In the same

way consider ðE0Þ
1
¼ E0 
 ðDf

[ Dg
[D0Þ and let ðE 0Þ

1
¼

Ss
i¼1 Di be the decomposi-

tion in connected components of ðE0Þ
1. It is straightforward to show that if Ea is a

divisor not contained in ðE0Þ
1 and Ea \ ðE0Þ

1
6¼ ;, then Ea is a dicritical divisor.

Moreover let P1; . . . ;Pr be the points of D0 which are either singular points of D0

or critical points of ~h. Let us set:

CRðp0Þ ¼ fD1; . . . ;D3;D
f
1; . . . ;D

f
rf
;Dg
1; . . . ;D

g
rg
;P1; . . . ;Ptg:
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The following theorem gives similar information as Theorems 1, 2 and 3 in terms

of the minimal embedded resolution of f fg ¼ 0g. Moreover, we shall use it in order

to detail decompositions for the set of branches of J.

THEOREM 4. Let p0: ðX0;E0Þ ! ðC2; 0Þ be the minimal resolution of f fg ¼ 0g and

CRðp0Þ defined as above. Then

ð1Þ For each B 2 CRðp0Þ there exists a unique fibre FwðBÞ 2 L such that its strict

transform by p0 intersects B. Moreover, the correspondence B 7!FwðBÞ defines a

surjective map v from CRðp0Þ to SpðLÞ.
ð2Þ For each B 2 CRðp0Þ there exists a branch g of J such that its strict transform by

p0 intersects B. Moreover, for such a branch g one has rðgÞ ¼ FwðBÞ.

As a consequence, the correspondence g 7! uðgÞ which associate with each branch g
of J the (unique) element uðgÞ of CRðp0Þ such that its strict transform intersects uðgÞ,
defines a surjective map u from the set of branches BðJÞ of J to the set CRðp0Þ. It is
clear that one has r ¼ v � u: BðJÞ 
!u CRðp0Þ 
!

v
SpðLÞ. Notice that, in general (see

the Examples in 2.9), neither u nor v are injective.

The map u gives the following decomposition of the set of branches of the Jaco-

bian curve BðJÞ ¼
S

B2CRðp0Þ u

1ðBÞ:

In fact, we can give a more precise decomposition of BðJÞ using Theorem B above.
For each Df

i we consider the subset fR
f
i;1; . . . ;R

f
i;nð f;iÞg of rupture divisors of E

0 belong-

ing to Df
i . For R

f
i;j let RZf

i;j be the maximal connected subset of D
f
i so that R

f
i;j 2 RZf

i;j

and q is constant along RZf
i;j. One knows ([Ma1]) that there exists a branch of J

whose strict transform intersects RZf
i;j for any i; j. One can do the same kind of

decomposition for each connected component Dg
j of D

g. Notice that as q is constant

along Di (14 i4 s), even if there exists some rupture divisor in it, the above decom-

position does not give more information about J. Let us denote RZ ¼

fD1; . . . ;Ds;RZf
1;1; . . . ;RZf

rf;nðf;rfÞ
RZg

1;1; . . . ;RZg
rg;nðg;rgÞ

;P1; . . . ;Ptg.

Thus, one can define two surjective maps u1 : BðJÞ ! RZ and u2 : RZ ! CRðp0Þ
such that u ¼ u1 � u2. In particular BðJ Þ can be decomposed as BðJ Þ ¼S

Z2RZ u
11 ðZÞ. This decomposition, in general, improves the ones in [Ma1] and

[Ab]. Notice that the above decomposition could be refined once again by taking

similar zones for the minimal embedded resolution of all the special fibres (this gives

us the possibility of breaking u
11 ðZÞ by means of new rupture zones for the elements

Z 2 fD1; . . . ;Ds;P1; . . . ;Ptg).

2. Proofs

2.1. THE DUAL GRAPH

Let f; g : ðC2; 0Þ ! ðC; 0Þ be two germs of analytic functions and let f ¼
Qp

i¼1 f
pi

i ,

g ¼
Qt

j¼1 g
tj
j be their corresponding factorization in irreducible elements in the ring
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Cfx; yg. We assume, as at the beginning, that the plane curves ff ¼ 0g and fg ¼ 0g do

not share any branch.

Let p : ðX;EÞ ! ðC2; 0Þ be an embedded resolution of the reduced curve defined by

f fg ¼ 0g. We can construct the dual graph, Gðp; fgÞ, of p as follows: For each irredu-
cible component of E we put a vertex and two of them are connected by an edge if

and only if their associated divisors intersect. Each irreducible component ~L of the

strict transform of f fg ¼ 0g is represented by an arrow connected by an edge with

the (only) vertex whose corresponding divisor intersects ~L. If ~L is the strict transform

of f fi ¼ 0g (resp. fgj ¼ 0g), then we add pi (resp. tj) as a weight to the corresponding

arrow. For a vertex a we shall denote its corresponding divisor by Ea. Properties

defined for divisors (as dicritical, rupture, etc.) will be used as well for their corre-

sponding vertices. For a plane curve germ C and a set of vertices A of Gðp; fgÞ,
the sentence ‘C (or ~C) meets A’ means that ~C intersects [a2AEa, being ~C the strict

transform of C by p.
In fact, the dual graph is a tree. It is oriented from the vertex representing the divi-

sor obtained by the blowing-up of 0 in C2 (we will call ‘1’ this vertex) to the arrows.

There is a natural partial order on the set of vertices of the dual graph: s0 < s if, and
only if, in Gðp; fgÞ, the geodesic from the vertex 1 to the vertex s passes through the
vertex s0.
Let a be a vertex of Gðp; fgÞ. We denote stðaÞ the set constituted by a and the ver-

tices or arrows connected with a by one edge. Note that #stðaÞ > 3 if and only if a is a
rupture vertex. Vertices with #stðaÞ ¼ 2 are called ends.

An arc in Gðp; fgÞ is a completely ordered connected subtree A in such a way that,

if fa1 < � � � < arg is the set of vertices of A (we will write A ¼ fa1 < � � � < arg in order

to simplify notations) then #stðaiÞ ¼ 3 for i ¼ 2; . . . ; r 
 1.

Remark. The dual graph, with a suitable weight for each vertex (for example

one can take the number of blowing-ups done to produce the corresponding

divisor or, alternatively, the self-intersection of the divisor), determines the

topology of the singularity associated to fg. If, moreover, we distinguish the

branches of ff ¼ 0g from those of fg ¼ 0g (for example by using different colors or

different symbols for the corresponding arrows), it determines the topology of the

pair ð f; gÞ ([Ma2]).

Remark. If p: ðX;EÞ ! ðC2; 0Þ is a modification then, in the same way, we can

define the dual graph of p, GðpÞ, without any reference to strict transforms of curves;
i.e. without any arrow. In the same way we use freely for GðpÞ the definitions and
notations given in principle for Gðp; fgÞ.
Let p: ðX;EÞ ! ðC2; 0Þ be a modification and let f; g : ðC2; 0Þ ! ðC; 0Þ be two ana-

lytic functions as at the beginning. We define the map q f
g: GðpÞ ! Q by

q f
gðaÞ ¼ mfðEaÞ=mgðEaÞ. Notice that, with the notations of the Introduction,

q f
gðaÞ ¼ qðEaÞ, but in the sequel we need to use functions ‘q




’ for different pairs of

functions; this justifies the new notations.
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Let a be a vertex of GðpÞ and Ea its corresponding divisor. Let Ta be an irreducible

germ of a nonsingular curve which is transversal to the component Ea of E at a non-

singular point P of the total transform p
1ðffg ¼ 0gÞ. This means that the point P is

not an intersection point of the component Ea with another component of the excep-

tional divisor or with the strict transform of the curve ffg ¼ 0g. Usually, one says

that Ta is a curvetta of Ea. Let pðTaÞ � ðC2; 0Þ be the projection of the curve germ

Ta. Then one has mfðEaÞ ¼ ðpðTaÞ; fÞ0 and mgðEaÞ ¼ ðpðTaÞ; gÞ0. Thus

q f
gðaÞ ¼

ðpðTaÞ; f Þ0
ðpðTaÞ; gÞ0

:

Remark. Let p: ðX;EÞ ! ðC2; 0Þ be a modification and a a vertex of GðpÞ. Then
the corresponding divisor Ea is a dicritical one if and only if q

f
f0 ðaÞ ¼ 1 for any pair of

elements f;f0 of L. Note also that the dicritical components are essentially the same
for any resolution of L, i.e. for any modification p as above, with the condition that
gf=f0 is a meromorphic function defined everywhere (this condition is the equivalent

of saying that p is a resolution of any pair of generic functions of L).

PROPOSITION 1. Let p: ðX;EÞ 
!ðC2; 0Þ be a modification, a a vertex of GðpÞ and

Ea its corresponding divisor. Assume that the strict transform of ffg ¼ 0g does not

intersect Ea. Then, there exists b in stðaÞ such that q f
gðbÞ > q f

gðaÞ if and only if there

exists b0 in stðaÞ such that q f
gðb

0
Þ < q f

gðaÞ.
Proof. Let ~C be the strict transform of the curve C ¼ ff ¼ 0g by p (counted with

the corresponding multiplicities). Let ð ~fÞ ¼ ~C þ
P

a2GðpÞ mfðEaÞEa be the divisor of

the lifting ~f ¼ f � p of f to the space X of the modification. From the fact ð ~f Þ � Ea ¼ 0

(X � Y stands for the intersection number) and because ~C � Ea ¼ 0 one gets (see [SZ],

Proposition 3) 0 ¼
P

b2stðaÞ mfðEbÞðEb � EaÞ. Thus, if N ¼ 
ðEa � EaÞ > 0 one hasX
b2stðaÞ
fag

mf ðEbÞ ¼ N � mf ðEaÞ: ð�Þ

It is clear that the same equality is true for g instead of f.

Now, let us suppose that q f
gðb

0
Þ5 q f

gðaÞ for each b0 in stðaÞ. This is equivalent to

mf ðEb0 ÞmgðEaÞ5mf ðEaÞmgðEb0 Þ:

Then we obtainX
b02stðaÞ
b0 6¼a

mf ðEb0 ÞmgðEaÞ >
X

b02stðaÞ
b0 6¼a

mf ðEaÞmgðEb0 Þ;

and using the above formula ð�Þ, we reach a contradiction. &

A direct consequence of Proposition 1 is the following:

COROLLARY 1. Let A ¼ fa1 < � � � < arg be an arc of GðpÞ and assume that the

strict transform of f fg ¼ 0g does not intersect
Sr
1
2 Eai

. Then the map q f
g : GðpÞ ! Q is
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strictly monotonous or constant along the arc A. Moreover, if ar ðor a1Þ is an end then

q f
g is constant along A.

2.2. PROOF OF THEOREM 1 PARTS (1) AND (2)

Let p : ðX;EÞ ! ðC2; 0Þ be the minimal resolution of the pencil L and let D be the
dicritical locus. Let us denote by D a connected component of ðE 
DÞ.

Let h ¼ f=g be the meromorphic function defined in a punctured neighbourhood

of the origin in C2 by f and g and let ~h ¼ h � p be the lifting of h to X. As p is a reso-
lution of L, ~h is a meromorphic function defined everywhere in a suitable neighbour-
hood of E. Moreover, the meromorphic function ~h is constant along D and if
~hjD � w 2 CP1, it is known that Fw ¼ ffw ¼ 0g is a special fibre of L ([LW]).
We consider the functions fw;f 2 L, where ff ¼ 0g is a generic fibre of the pencil

and denote h0 ¼ fw=f. As D is contained in the zero locus of ~h0 ¼ h0 � p one has that
q
fw

f ðaÞ > 1 for any Ea � D.
Let us suppose that there does not exist any irreducible component x of

Fw ¼ ffw ¼ 0g such that its strict transform by p intersects D.
Let Ea � D be such that qfw

f ðaÞ5 q
fw

f ðbÞ for each Eb � D. Assume that there exists
a0 2 stðaÞ so that E0

a 6� D; then E0
a must be dicritical and so q

fw

f ða0Þ ¼ 1 < q
fw

f ðaÞ.
Thus, one has a contradiction with Proposition 1. Then, again by Proposition 1,S

b2stðaÞ Eb � D and q
fw

f ðaÞ ¼ q
fw

f ðbÞ for each b 2 stðaÞ. As D is connected, qfw

f is con-

stant in D and strictly greater than 1. However, if Eb � D is such that at least one
component b0 of stðbÞ satisfies that Eb0 6� D then Eb0 is dicritical and we reach a con-

tradiction with Proposition 1 again.

2.3. STABILITY OF RUPTURE ZONES

Now, in order to prove part 3 of Theorem 1, we need first to prove some technical

results.

DEFINITION. Let p: ðX;EÞ ! ðC2; 0Þ be the minimal resolution of ffg ¼ 0g. A

rupture zone R of Gðp; fgÞ (with respect to f and g) is a connected subtree of Gðp; fgÞ
containing at least one rupture vertex, and such that the map q f

g is constant on R.

From [Ma2] we have the following result:

THEOREM 5. Let p: ðX;EÞ ! ðC2; 0Þ be the minimal embedded resolution of

ffg ¼ 0g. Let fR1; . . . ;Rpg be the set of rupture zones of Gðp; fgÞ. Then, J can be

decomposed as J ¼ J1 [ � � � [ Jp in such a way that Ji 6¼ ; for i ¼ 1; . . . ; p and g is a

branch of Ji if and only if the strict transform of g by p meets Ri.

In fact, in [Ma2] the above Theorem is given in terms of Waldhausen manifolds.

Indeed, it is well known that there exists a bijective correspondence between the rup-

ture vertices of Gðp; fgÞ and the Seifert manifolds of the minimal Waldhausen
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decomposition of the complement in S3E (it is the sphere of radius E, small enough,
centered at the origin of C2) of the link Kfg ¼ f fg ¼ 0g \ S3E . Moreover, we have from

[Ma1], Theorem 1 and [Ma2], Theorem 1:

THEOREM 6. The set fq f
gðaÞg where a is a rupture vertex of Gðp; fgÞ is equal to the

set fLðKf; nÞ=LðKg; nÞg, where Lð
;
Þ denotes the linking number in S3E and n is a leaf

of a Seifert manifold of the minimal Waldhausen decomposition of the complement in

S3E of Kfg.

The set fLðKf; vÞ=LðKg; vÞg is called the set of linking quotients. We recall that

v ¼ Kx, where x is an irreducible function germ, and that LðKf; vÞ ¼ ð f; xÞ0.
As a consequence, a rupture zone Ri, (14 i4 p), of Gðp; fgÞ corresponds to a finite

connected union Wi, (14 i4 p), of Seifert fibred manifolds (of the above minimal

Waldhausen decomposition) which have the same linking quotient.

In [Ma2] (Proposition 3 and Theorem 7) we prove that for each i, (14 i4 p), there

exists at least one branch g of J such that g intersects Wi. So, in terms of rupture

zones it gives Theorem 5.

Remark. Let f, f0 be such that F ¼ ff ¼ 0g and F0 ¼ ff0
¼ 0g are generic fibres

of L, p: ðX;EÞ ! ðC2; 0Þ the minimal resolution of f fg ¼ 0g and p0: ðX0;E0Þ ! ðC2; 0Þ

the one of fff0fg ¼ 0g. The construction of p0 from p by a sequence of blowings-up,
s: ðX0;E0Þ ! ðX;EÞ, is well known (see, e.g., [LW], [Ca]): at each step it suffices to

blow-up an indetermination point of the lifting of ðf=gÞ in the corresponding space.

More precisely, the lifting ff=g of f=g to X is not defined in a point P 2 X if and only

if P ¼ S1 \ S2 for irreducible components S1 and S2 of the total transform of

f fg ¼ 0g by p with q f
gðS1Þ > 1 and q f

gðS2Þ < 1 (see [LW]). Note that q f
gðS1Þ > 1

(respectively, q f
gðS2Þ < 1) is equivalent to saying that

ff=g ¼ 0 ¼ ð0 : 1Þ 2 CP1 generically

along S1 (respectively ff=g ¼ 1 ¼ ð1 : 0Þ 2 CP1 generically along S2). So if one takes

different elements fw;fv of L, the corresponding meromorphic function gfw=fv dif-

fers from ff=g up to a projective isomorphism of CP1 and so takes two different
values of CP1 in S1 and in S2. Thus, it could not be defined at P ¼ S1 \ S2.

Now to produce p0 we start by blowing-up a point P ¼ S1 \ S2 as above. In the

new divisor, Ea, at most one of the points Ea \ S1 or Ea \ S2 is an indetermination

point and Ea is a dicritical divisor if and only if the lifting of f=g to the new space is

defined at both of them. We repeat the same procedure until (in the corresponding

space) the lifting of f=g is a well defined meromorphic function.

For the divisor Ea one has

. a does not belong to any rupture zone with respect to f and g because the new

vertices created are not rupture vertices and, as q f
gðEaÞ 6¼ q f

gðS1Þ and

q f
gðEaÞ 6¼ q f

gðS2Þ, a can not be incorporated to any pre-existing rupture zone.
. a does not break any rupture zone of Gðp; fgÞ because S1 and S2 can not belong

to the same rupture zone.
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As a consequence, Gðp; fgÞ and Gðp0; fgÞ have, roughly speaking, the same rupture
vertices and the same rupture zones. In a more precise form:

PROPOSITION 2. The rupture zones of Gðp0; fgÞ are exactly the strict transforms of

those of Gðp; fgÞ by s : ðX0;E0Þ ! ðX;EÞ. As a consequence statements in Theorem 5

above are valid for p0: ðX0;E0Þ ! ðC2; 0Þ as well.

2.4. SEMIGROUP OF VALUES

Let C be the plane branch defined by fj ¼ 0g for some irreducible analytic function

j: ðC2; 0Þ ! ðC; 0Þ. The semigroup of values, SðCÞ, of C is the subsemigroup of N

constituted by the intersection multiplicities of C with any plane curve C0 provided

that C is not a branch of C0. Let f �b0; . . . ; �bsg be the minimal set of generators of SðCÞ

(i.e the so-called ‘maximal contact values’ of C) and let ei ¼ gcdð �b0; . . . ; �biÞ,

Ni ¼ ei
1=ei for i ¼ 1; . . . ; s. It is known that Ni
�bi < �biþ1, i ¼ 0; . . . ; s 
 1;

‘ �bi =2 h �b0; . . . ; �bi
1i if 0 < ‘ < Ni and Ni
�bi 2 h �b0; . . . ; �bi
1i for i ¼ 1; . . . ; s. Moreover,

if m 2 SðCÞ then m can be represented in a unique way as m ¼ k0 �b0 þ
Ps

j¼1 kj
�bj with

k05 0, 04 kj < Nj for j ¼ 1; . . . ; s. Finally ei divides m if and only if

m 2 h �b0; . . . ; �bii ¼
Pi

j¼0N
�bj and this condition is also equivalent to saying that, in

the unique representation of m, one has kj ¼ 0 for j ¼ i þ 1; . . . ; s.

The dual graph of C is, by definition, the dual graph Gðp;jÞ for a minimal reso-
lution of C. It is known that Gðp;jÞ has s þ 1 dead arcs (i.e. maximal arcs with a

vertex a such that #stðaÞ ¼ 2, i.e. with an end) L0; . . . ;Ls and s rupture vertices

s1; . . . ; ss. We denote t0; . . . ; ts the ends corresponding to L0; . . . ;Ls (see Figure 1).

Let g ¼ fc ¼ 0g be a branch defined by the irreducible analytic function c such
that the strict transform ~g of g by p does not intersect the one of C. It is known

([D], [ZT], [D2]) that

(1) �bi ¼ ðC; gÞ0 if and only if the strict transform ~g of g is a curvetta on Eti
. In par-

ticular �bi ¼ mjðEti
Þ.

(2) If ~g intersects Ls (i.e. intersects
S

a2Ls
Ea) then ðC; gÞ0 is a multiple of �bs.

Figure 1. The dual resolution graph of the curve C.
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(3) If ~g does not intersect Ls 
 fssg then ðC; gÞ0 2 h �b0; . . . ; �bs
1i (i.e. es
1 divides

ðC; gÞ0).

A direct consequence of the above remarks is the following lemma:

LEMMA 1. Let c : ðC2; 0Þ ! ðC; 0Þ be an analytic function and assume that

ðj;cÞ0 ¼ m þ l �bs with m 2 h �b0; . . . ; �bs
1i and 0 < l < Ns. Then there exists a branch g
of fc ¼ 0g such that the strict transform of g by p intersects Ls 
 fssg.

2.5. PROOF OF THEOREM 1. PART (3) AND (4)

Let p: ðX;EÞ ! ðC2; 0Þ be the minimal resolution of L and let D be a connected com-
ponent of ðE 
DÞ. Let Fw ¼ ffw ¼ 0g be the special fibre associated to D. Let
p0: ðX0;E0Þ ! ðC2; 0Þ be the minimal resolution of fff0fw ¼ 0g for f and f0 in L
such that F ¼ ff ¼ 0g and F0 ¼ ff0

¼ 0g are generic fibres of L and let D0 be the

dicritical locus in E0. We can factorize p0 ¼ p � s with s : ðX0;E0Þ ! ðX;EÞ and so

D0 just coincides with the strict transform of D by s.
There exists D0, a connected component of E0 
D0, such that sðD0

Þ ¼ D. We will
distinguish two different cases:

Case (1) There exists a rupture divisor Ea in D0.

For each vertex b 2 D we have q
f0

f ðbÞ ¼ 1. Thus, as f and f
0 are generic, their strict

transforms do not intersect D and as a consequence q
f0

f ðbÞ ¼ 1 for any b 2 D0. Then
ff=g is constant (and equal to w 2 CP1) along the divisors corresponding to the ver-

tices of D0. This implies that q
fw

f ðbÞ > 1 for any b 2 D0 and in particular for the rup-

ture vertex a. The rupture zone R of Gðp0;fwfÞ corresponding to Ea is also contained

in D0 because q
fw

f ðbÞ ¼ 1 for any b such that Eb is a dicritical divisor.

Now, from Theorem 5, there exists a branch g of J such that its strict transform by
p0 intersects some divisor corresponding to a vertex of R and as a consequence inter-
sects D0. Then it is obvious that the strict transform of g by p intersects D.

Case (2) D0 does not contain any rupture divisor.

This situation could only happen if the strict transform fFw of Fw by p intersects D
in a smooth point of a divisor Et with t an end vertex of Gðp;ff0

Þ (in fact the strict

transform of Fw must also be smooth and transversal at that point). Moreover, D
must consist of the divisors corresponding to a dead arc L minus its rupture vertex

s and Es must be a dicritical divisor. As a consequence there exists x (resp. x
0) a

branch of F ¼ ff ¼ 0g (resp. F0 ¼ ff0
¼ 0g) such that its strict transform by p inter-

sects Es.

Assume first that 1 6¼ t. In this case the dead arc L is the last one of the dual

graph corresponding to the minimal resolution of x. Let SðxÞ be the semigroup of
values of x and f �b0; . . . ; �bsg its minimal set of generators. Now, being that L is

also a dead arc in Gðp;ff0
Þ, the strict transform of any branch g, g 6¼ x, of
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F [ F0 does not intersect L 
 fsg. Then ðx; gÞ0 2 h �b0; . . . ; �bs
1i and, in particular,

ðx; x0Þ0 ¼ es
1
�bs 2 h �b0; . . . ; �bs
1i as es
1 divides es
1

�bs.

Let B be the set of branches of F [ F0 different from x. Then, following the com-
putation of ðx; JÞ0 given in [D1], one reaches:

ðx; JÞ0 ¼
Xs

i¼1

ðNi 
 1Þ �bi 

�b0 þ

X
g2B

ðx; gÞ0

¼
Xs

i¼1

ðNi 
 1Þ �bi 

�b0 þ es
1

�bs þ
X

g2B
fx0g

ðx; gÞ0:

As

es
1
�bs 2 h �b0; . . . ; �bs
1i and es
1

�bs >
Xs

i¼1

ðNi 
 1Þ �bi;

then the unique representation of ðx; x0Þ0 ¼ es
1
�bs in the semigroup is es
1

�bs ¼

‘0 �b0 þ
Ps
1
1 ‘i

�bi with ‘i < Ni for i ¼ 1; . . . ; s 
 1, and ‘0 > 0. In particular,

es
1
�bs 


�b0 2 h �b0; . . . ; �bs
1i and as a consequence

Xs
1
i¼1

ðNi 
 1Þ �bi 

�b0 þ es
1

�bs þ
X

g2B
fx0g

ðx; gÞ0 2 h �b0; . . . ; �bs
1i:

Thus, one has ðx; JÞ0 ¼ m þ ðNs 
 1Þ �bs for some m 2 h �b0; . . . ; �bs
1i. As f;f
0 are

such that F ¼ ff ¼ 0g and F0 ¼ ff0
¼ 0g are generic (hence f and f0 are reduced),

then ðg;fÞ0=ðg;f
0
Þ0 ¼ 1 for any branch g of J. This implies that the strict transform

of J by p does not meet either the one of F or the one of F0. So, by Lemma 1 there

exists a branch g of J whose strict transform intersects D.
It only remains to prove the theorem for Case 2 and when 1 ¼ t. In this case x and

x0 must be either smooth or, otherwise, have only one characteristic pair.
Assume that x is smooth. Then one has ðx; x0Þ ¼ k > 1 and for any branch g of

F [ F0, g 6¼ x, ðg; xÞ0 is a multiple of k. The computation of ðx; JÞ0 in this case gives:

ðx; JÞ0 ¼ 
1þ k þ
X

g2B
fx0g

ðx; gÞ0 ¼ ðk 
 1Þ þ mk:

In particular, ðx; JÞ0 is not a multiple of k. Let g be a branch of J and ~g its strict trans-
form by p. If ~g \ D ¼ ;, then ðg; xÞ0 is a multiple of k. So there exists a branch g of J
such that ~g \ D 6¼ ;.

Assume that x (and x0) has exactly one characteristic pair and let SðxÞ ¼ h �b0; b1i be
its semigroup of values. Now we have ðx; x0Þ0 ¼ �b0 �b1 and for any branch g of F [ F0,

g 6¼ x, ðx; gÞ0 is a multiple of �b1. As a consequence

ðx; J Þ0 ¼ ð �b0 
 1Þ �b1 
 �b0 þ �b0 �b1 þ n �b1 ¼ m �b1 þ ð �b1 
 1Þ �b0 ;

and, in particular, ðx; JÞ0 is not a multiple of �b1. As above, if g is a branch of J and
~g \ D ¼ ; then ðx; gÞ0 is multiple of �b1 and so there exists a branch g of J whose strict
transform meets D.
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Now let us show part (4): if g is a branch of J whose strict transform intersects D
then rðgÞ ¼ Fw; that is ðg;fwÞ0 > ðg;fÞ0 for any f 6¼ fw.

Let p0: ðX 0;E0Þ ! ðC2; 0Þ be the minimal embedded resolution of fff0
¼ 0g [ g

with f;f0 generic elements of L. Then D is contained in a connected component
D0 of E0 
D and the strict transform ~g of g by p0 is a curvetta in some divisor a of
D0. Because the strict transform of F [ F0 by p does not meet D then, as in the proof
of Theorem 1 (3), Case 1, we have q

fw

f ðbÞ > 1 for any b 2 D0. In particular, for a we
find

q
fw

f ðaÞ ¼
mfw

ðEaÞ

mfðEaÞ
¼

ðg;fwÞ0

ðg;fÞ0
> 1: &

2.6. PROOF OF THEOREM 2

Let p: ðX;EÞ ! ðC2; 0Þ be the minimal resolution of L and let Eb and Eb0 be two

dicritical divisors such that fPg ¼ Eb \ Eb0 . If
~hðPÞ ¼ w 2 CP1 then it is known that

Fw ¼ ffw ¼ 0g is a special fibre of L ([LW]).
To prove (2), we make an additional blowing-up at P, and so we create a new

exceptional divisor Ea. For this new resolution, p1, we have stðaÞ ¼ fb < a < b0g with
q
fw

f ðbÞ ¼ q
fw

f ðb0Þ ¼ 1 and q
fw

f ðaÞ > 1. From Proposition 1 there exists an irreducible
component x of Fw whose strict transform by p1 intersects Ea and so its strict trans-

form by p intersects the exceptional divisor E at the point P.

Let p0: ðX0;E0Þ ! ðC2; 0Þ be the minimal embedded resolution of fff0fw ¼ 0g for

f and f0 generic elements of L. We can factorize p0 ¼ p � s with s: ðX0;E0Þ ! ðX;EÞ.

The dicritical locus D0 in E0 is nothing but the strict transform of D by s. Thus, there
exists a connected component D0 of E0 
D0 such that sðD0

Þ ¼ fPg and D0 must have a

rupture divisor with respect to fw;f (note that D
0 contains at least the rupture divi-

sor Ea produced by the blowing-up at P). So, we can conclude the proof of statement

(3) as in Case (1) of 2.5.

Finally, the proof of part (4) is the same as the one for Theorem 1. &

2.7. PROOF OF THEOREM 3

Let p: ðX;EÞ ! ðC2; 0Þ be the minimal embedded resolution of L, D a dicritical divi-
sor, P 2 D a smooth point of E and ~hðPÞ ¼ w. It is known ([LW], [Ca]) that P is a

critical point of ~hjD: D ! CP1 if and only if the strict transform of Fw by p is singu-
lar or tangent to D at the point P. Then part (1) and (2) are clear.Notice that if fw is

not reduced and is divisible by jr with r > 1, in such a way that the strict transform

of fj ¼ 0g intersects D in the point P, then fj ¼ 0g is a branch of J and so statement

3 is evident. As a consequence we can assume that if j divides fw and the strict trans-

form of fj ¼ 0g intersects D in the point P then j2 does not divide fw.

Let us assume that P is a critical point and let p0: ðX0;E0Þ ! ðC2; 0Þ be the minimal

resolution of fff0fw ¼ 0g for some generic elements f;f0. As p is the minimal resol-
ution of fff0

¼ 0g then p0 is obtained from p by a finite number of blowing-ups
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s: ðX0;E0Þ ! ðX;EÞ and, being P a singular point of the total transform of ffw ¼ 0g

by p, some blowing-ups are centered in P. In particular, the dual graph Gðp0Þ is
obtained from GðpÞ by adding (among other things) a connected tree T (the dual pic-
ture of s
1ðPÞ) to the vertex corresponding to D. The tree T contains, at least, one
rupture vertex in Gðp0;ffwÞ, and so at least one rupture zone. Then, from Proposi-

tion 2, there exists a branch g of J whose strict transform by p0 intersects T . As a
consequence the strict transform of g by p intersects D at P.

The fourth part of the Theorem is clear, because ðg;fwÞ0 > ðg;fÞ0.
Finally, if P is not a critical point then the strict transform of ffw ¼ 0g at P is

smooth and transversal to D at P. But if there exists a branch g of J whose strict

transform goes by P then ffw ¼ 0g and J are not separated in the minimal resolution

of fffw ¼ 0g and this gives a contradiction. &

2.8. PROOF OF THEOREM 4

Let p: ðX;EÞ ! ðC2; 0Þ (respectively p0: ðX0;E0Þ ! ðC2; 0Þ) be the minimal resolution

of L (respectively of f fg ¼ 0g). Let p00: ðX00;E00Þ ! ðC2; 0Þ be the minimal embedded

resolution of fff0fg ¼ 0g. Then one has a commutative diagram:

ðX00;E00Þ 
!
s

ðX;EÞ
s0 # # p

ðX0;E0Þ 
!
p0

ðC2; 0Þ

with p00 ¼ p0 � s0 ¼ p � s. Let CRðp0Þ be the set defined in the introduction for p0. Let
us consider CRðpÞ (resp. CRðp00Þ) the set consisting of the connected components of
E 
D (resp. of E00 
D00), the intersection points of two dicritical divisors of D in X

(resp. of D00 in X00) and the critical points of ðf=gÞ � p (resp. f=g � p00) in the smooth
part of D (resp. D00).

As s does not produce new dicritical divisors, the dicritical locus D00 in E00 is the

strict transform of D by s. As a consequence for each A 2 CRðpÞ there exists a
unique A00 2 CRðp00Þ such that the strict transform of A by s is contained in A00

(we say simply A � A00). This condition is equivalent to saying that sðA00Þ ¼ A. Thus,

the correspondence A 7!A00, with sðA00Þ ¼ A, defines a bijective map from CRðpÞ to
CRðp00Þ. For an irreducible germ of curve g in C2 it is clear that its strict transform by
pmeets A if and only if the corresponding one meets A00. On the other hand the (con-

stant) value of ðf=gÞ � p00 along A00 is equal to the one of ðf=gÞ � p along A. So, as a

consequence one can translate Theorems 1, 2 and 3 to p00;X00;E00.

Now we shall establish a bijective map from CRðp0Þ and CRðp00Þ exactly in the same
way. More precisely, for A0 2 CRðp0Þ we will show that there exists a unique
A00 2 CRðp00Þ such thatA0 � A00 (or, equivalently, s0ðA00Þ ¼ A0). Notice that in that case

we can translate Theorems 1, 2 and 3 from p00;X00;E00 to p0;X0;E0 and the Theorem fol-

lows. Note that s0 produces new dicritical divisors, so, essentially, one needs to prove
that a new dicritical divisor D does not break a connected component of CRðp0Þ and
moreover, that ðf=gÞ � p00jD does not have critical points in the smooth part.
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The construction of p00 from p0 by composite blowing-ups was described in the
Remark before Proposition 2. Using the notations as in the above-mentioned

Remark, it is clear that S1 and S2 are not contained in the same connected com-

ponent of CRðp0Þ. Thus, the dicritical divisor D such that s0ðDÞ ¼ P does not break

either the connected component containing S1 or the one of S2. Note that a new

dicritical divisor D breaks the connected component A if and only if

s0ðDÞ 2 A 
 ðE0 
 AÞ.

Thus, in order to finish the proof it suffices to prove the following proposition:

PROPOSITION 3 Let D � E00 be a dicritical divisor that does not appear in p0 and
~h ¼ ðf=gÞ � p00. Then, either ~hjD: D
!CP1 is an isomorphism or it has exactly two

critical points that correspond to the critical values 0 and 1.

Proof. As the component D does not appear in p0, it is obtained by blowing-up
the intersection between two irreducible components, Ea and Eb, of the total

transform of f fg ¼ 0g in the corresponding space and with q f
gðEaÞ > 1 and

q f
gðEbÞ < 1. We have

mf ðDÞ ¼ mf ðEaÞ þ mf ðEbÞ and mgðDÞ ¼ mgðEaÞ þ mgðEbÞ:

(Note that, being that p0 is an embedded resolution of f fg ¼ 0g, if Ea and Eb are ir-

reducible components of the exceptional divisor then Ea \ Eb is not an infinitely near

point neither for f nor for g.)

The degree of ~hjD is equal to n ¼ mfðEaÞ 
 mgðEaÞ ¼ mgðEbÞ 
 mf ðEbÞ because

P1 ¼ Ea \ D (respectively, P2 ¼ Eb \ D) is the unique zero (respectively pole) of
~hjD. If n ¼ 1 then ~hjD is an isomorphism.

If n > 1, by the Riemann–Hurwitz formula, we have

2ðn 
 1Þ ¼
X
P2D

ðeP 
 1Þ ¼
X

P=2fP1;P2g

ðeP 
 1Þ þ ðn 
 1Þ þ ðn 
 1Þ;

where eP is the ramification index of P.

We conclude that fP1;P2g is the set of ramification points of ~hjD, and 0 and1 its

corresponding values. &

Remark. From Proposition 3, we know that, to study the special fibres of L
associated to the critical points of the dicritical components, we have to consider

only the dicritical components that appear in the minimal resolution of every

Fo [ Fo0 .

2.9 COMMENTS AND EXAMPLES

This paragraph consists of three examples, the first one shows a way in which the

above informations could be used in order to obtain some results in different context

and problems. The last two examples are two concrete applications of the results

which show different avatars of the statements and of the map r.
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EXAMPLE. The results could be used to give necessary conditions on

L ¼ flf þ mgg in order to have J irreducible (see [Ma3]). In that case, as a con-

sequence of the results, one must have that #RZ ¼ 1 (see the Introduction for the

definition of RZ). It implies, in particular, that among the base points of L some are
smooth for any branch of any generic fibre. More precisely, for any pair of generic

fibres F ¼ ff ¼ 0g;F0 ¼ ff0
¼ 0g and for any irreducible component j of f there

exists an irreducible component j0 of f0 such that the dual graph of the resolution of

fjj0 ¼ 0g has a vertex a with #stðaÞ ¼ 4 and stðaÞ contains the two arrows corre-
sponding to the strict transforms of fj ¼ 0g and fj0 ¼ 0g (otherwise the corre-

sponding dicritical divisor Ea produces at least two connected components in

E 
D). Moreover, there is only one branch of ff ¼ 0g (in fact of any generic fibre)

whose strict transform meets Ea (otherwise the degree of the corresponding mero-

morphic function is at least 2 and, by the Riemann–Hurwitz Theorem, there must

exist some critical point in EaÞ.

Thus, if e: ðY;FÞ ! ðC2; 0Þ is the minimal embedded resolution of a generic fibre

F ¼ ff ¼ 0g and P 2 F is a point with multiplicity 1 of the strict transform ~F of
F ¼ ff ¼ 0g (i.e. is a point which meets the strict transform) then P is a point of mul-

tiplicity 2 of the strict transform gF [ F0 for any generic fibre F0 6¼ F. As a con-
sequence in order to obtain the minimal resolution of L one needs to make at
least an additional blowing-up at each point P as above.

EXAMPLE. Let L be the pencil generated by

f ¼ ðx3 þ y2Þðy3 
 x2Þ ¼ x3y3 
 x5 þ y5 
 x2y2 and

g ¼ ðx3 þ 2y2Þðy3 
 2x2Þ ¼ x3y3 
 2x5 þ 2y5 
 4x2y2:

The dual graph of the minimal embedded resolution, p: ðX;EÞ ! ðC2; 0Þ, for ffg ¼ 0g

(which coincides with the minimal resolution of L, being f f ¼ 0g and fg ¼ 0g generic

fibres) is shown in Figure 2. In the pictures big vertices are used to represent dicritical

divisors. We have three connected components for E 
D: D1 ¼ fE1g, D2 ¼ fE2g,

D3 ¼ fE20 g. As ff ¼ 0g and fg ¼ 0g are generic fibres then q f
gð
Þ ¼ 1 for any vertex,

in particular no critical points exist for ð f=gÞ � p either in E3 or in E30 . As a con-

sequence CRðpÞ ¼ fD1;D2;D3g and so J must have at least three branches and there

exists at most three special fibres in L.
In fact the computation of J provides:

J ¼ f5ð3xy þ 4Þxyðx þ yÞðx4 
 yx3 þ y2x2 
 xy3 þ y4Þ ¼ 0g;

and so it consists of 7 smooth and transversal branches. The branch fx ¼ 0g meets 2,

fy ¼ 0g meets 20 and the others meet 1. It is easy (killing monomials in the Newton

diagram, for example) to find two special fibres, namely the zero locus of

g 
 2f ¼ 
x2y2ð2þ xyÞ and g 
 4f ¼ 
3x3y3 þ 2x5 
 2y5:

The first one has repeated factors and corresponds to two connected components: D2
and D3. So, fg 
 2f ¼ 0g and fg 
 4f ¼ 0g are the only special fibres. Moreover,
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fg 
 4f ¼ 0g consists of 5 smooth and transverse irreducible components which meet

E1 and so it corresponds to D1 (the second picture in Figure 2 shows the behaviour of
the special fibres as well as the one of the Jacobian J ).

EXAMPLE. Let L be the pencil generated by

f ¼ ðx3 þ y2Þðy3 
 x2Þðx þ yÞ and g ¼ ðx3 þ 2y2Þðy3 
 2x2Þðx 
 yÞ:

The dual graph of the minimal resolution of L (as in the above example f and g are

generic) is represented in Figure 3. One has D1 ¼ E1 \ E3 and D2 ¼ E1 \ E30 corre-

sponding to the singular points of the dicritical locus and two connected components

for E 
D, D3 ¼ f2g and D4 ¼ f20g. As above, one can conclude that CRðpÞ ¼
fD1;D2;D3;D4g and so the curve J has at least four branches and there are, at most,

four special fibres.

The Jacobian determinant has the expression

jð f; gÞ ¼ 
 14x6y6 þ 18x9y2 þ 39x8y3 
 17x7y4 þ 17x4y7 
 39x3y8 
 18x2y9 



 24x10 þ 3x6y4 þ 108x5y5 þ 3x4y6 
 24y10 þ 24x8y 



 66x7y2 
 26x6y3 þ 26x3y6 þ 66x2y7 
 24xy8 
 40x4y4:

It consists of four branches, two of them tangent to fy ¼ 0g and two tangent to

fx ¼ 0g. Of the two branches tangent to fy ¼ 0g one is smooth (and meets the com-

ponent fE2g ¼ D3) and the other has characteristic pair ð4; 3Þ (it meets D1 ¼ E1 \ E3).

A symmetric situation holds for the others.

The pencil L has four special fibres corresponding to the zero locus of the follow-
ing functions:

Figure 2. Minimal resolution and behaviour of critical locus and special fibres.
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g� 2f ¼ �x4y3 � 3x3y4 þ 4x5y� 4y6 � 2x3y2 þ 6x2y3 ;

gþ 2f ¼ 3x4y3 þ x3y4 � 4x6 þ 4xy5 � 6x3y2 þ 2x2y3 ;

g� 4f ¼ �3x4y3 � 5x3y4 þ 2x6 þ 6x5y� 2xy5 � 6y6 þ 8x2y3

and

gþ 4f ¼ 5x4y3 þ 3x3y4 � 6x6 � 2x5yþ 6xy5 þ 2y6 � 8x3y2:

The special fibre fg� 2f ¼ 0g consists of four branches, three of them are smooth.

Namely, one has two smooth branches meeting D3 ¼ fE2g (one of them is fy ¼ 0g),

one smooth branch transversal to fyx ¼ 0g (and so meeting E1) and finally a singular

branch with only one Puiseux pair ð3; 2Þmeeting E30 . As a consequence, fg� 2f ¼ 0g is

the special fibre corresponding to D3. The behaviour of fgþ 2f ¼ 0g is symmetric to

the one of fg� 2f ¼ 0g, it corresponds to the connected component D4.

The fibre fgþ 4f ¼ 0g has two branches. One of them has only one Puiseux pair

ð4; 3Þ tangent to fx ¼ 0g (which meets D2) and the other tangent to fy ¼ 0g and

has characteristic pair ð3; 2Þ (which meets the dicritical divisor 3 as a curvetta). So,

fgþ 4f ¼ 0g is the fibre corresponding to D2. For the fibre fg� 4f ¼ 0g it is the same

situation by exchanging x and y; it corresponds to D1. The right-hand part of

Figure 3 shows the dual graph for the minimal resolution of the curve J and all

the special fibres together.

Figure 3. Minimal resolution and behaviour of critical locus and special fibres.
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