A functional calculus for continuous affine operators

J.J. Kolina

In the Appendix to a recent paper by J.J. Koliha and A.P. Leung (Math. Ann. 216 (1975), 273-284), a functional caIculus for continuous affine operators was constructed on the basis of the Taylor-Dunford calculus. This calculus applied only to functions defined and analytic in an open set containing the spectrum of an operator and the point $\lambda=1$. In the present paper I examine the affine resolvent, and develop independently a more general calculus applicable to functions which are analytic in any open neighbourhood of the spectrum of an affine operator.

Let X be a complex Banach space. An operator $A: X \rightarrow X$ is affine if $A(\alpha x+(1-\alpha) y)=\alpha A x+(1-\alpha) A y$ for all $x, y \in X$ and all complex α. The trace of A is the linear operator $A^{\#}$ on X defined by

$$
A^{\#} x=A x-A 0, \quad x \in X
$$

PROPOSITION 1. Let A, B be affine operators on X, and let λ, μ be complex numbers. Then:
(i) A is continuous iff $A^{\#}$ is continuous;
(ii) $(\lambda A+\mu B)^{\#}=\lambda A^{\#}+\mu B^{\#},(A B)^{\#}=A^{\#} B^{\#}$;
(iii) if A is bijective, then the inverse A^{-1} is affine, and $\left(A^{-1}\right)^{\#}=\left(A^{\#}\right)^{-1}$;

Received 22 December 1975.
(iv) A is bijective iff $A^{\#}$ is bijective;
(v) if A is continuous and bijective, its inverse A^{-1} is continuous.

The proof is omitted.
PROPOSITION 2. The set $A(X)$ of all continuous affine operators on X is a Banach space under the norm

$$
\|A\|=\|A O\|+\left\|A^{\#}\right\|
$$

The norm topology of $A(X)$ coincides with the topology of uniform convergence on bounded subsets of X.

The proof is omitted.
We note that $A(X)$ is a near algebra with the unit I, satisfying the laws

$$
(A+B) C=A C+B C, \quad(\alpha A) B=\alpha(A B) .
$$

Furthermore,

$$
\begin{aligned}
C(A+B) x & =(C A+C B) x-C 0 \\
A(\alpha B) x & =\alpha(A B) x+(1-\alpha) A O
\end{aligned}
$$

For any operator $A \in A(X)$, we define the resolvent set $\rho(A)$ of A as the set of all complex λ such that the operator $\lambda I-A$ is bijective; the spectrom $\sigma(A)$ is the complement of $\rho(A)$ in the complex plane. (This definition differs from the one given in [3], where the point $\lambda=1$ was adjoined to $\sigma(A)$ when A was non-linear.) In view of Proposition 1,

$$
\rho(A)=\rho\left(A^{\#}\right), \quad \sigma(A)=\sigma\left(A^{\#}\right) .
$$

It follows from [2, pp. 123-125] that the resolvent set is open, and that the spectrum is non-empty and compact. The spectral radius $r(A)$ of $A \in \mathrm{~A}(X)$ is the number $r(A)=\sup \{|\lambda|: \lambda \in \sigma(A)\}$.

For $A \in A(X)$, the function $R(\lambda ; A)=(\lambda I-A)^{-1}$ defined for $\lambda \in \rho(A)$ is the resolvent of A. We note that $R(\lambda ; A)^{\#}=R\left(\lambda ; A^{\#}\right)$.

THEOREM 1. For any $A \in A(X)$ the function $\lambda \longmapsto R(\lambda ; A)$ on $\rho(A)$ to $\mathrm{A}(X)$ is analytic in the norm topology of $\mathrm{A}(X)$.

Proof. First we show that

$$
\begin{equation*}
R(\lambda ; A) x=R\left(\lambda ; A^{\#}\right)(x+A 0), \lambda \in \rho(A) \tag{1}
\end{equation*}
$$

Indeed, applying $\lambda I-A$ to the vector on the right in (1), we get $\left(\lambda I-A^{\#}\right) R\left(\lambda ; A^{\#}\right)(x+A O)+(\lambda I-A) O=x$, and (1) follows.

Choose $\lambda_{0} \in \rho(A)$. For all λ in the disc $\left|\lambda-\lambda_{0}\right|<\left\|R\left(\lambda_{0} ; A^{\#}\right)\right\|^{-1}$ the series $\sum_{n=0}^{\infty}\left(\lambda_{0}-\lambda\right)^{n} R\left(\lambda_{0} ; A^{\#}\right)^{n+1}$ converges to $R\left(\lambda ; A^{\#}\right)$ in norm by Theorem 4.7.1 in [2, p. 123]. Consequently,

$$
\begin{equation*}
R(\lambda ; A) x=\sum_{n=0}^{\infty}\left(\lambda_{0}-\lambda\right)^{n} R\left(\lambda_{0} ; A^{\#}\right)^{n+1}(x+A 0) \tag{2}
\end{equation*}
$$

uniformly on bounded subsets of X.
Let K be a compact subset of an open set Ω in the complex plane. A cycle $\gamma[1, \mathrm{p} .138]$ is a Cauchy cycle with respect to the pair (Ω, K) if γ has a representation as a sum of rectifiable loops in $\Omega \backslash K$, and if the index $n(\gamma, \lambda)=(2 \pi i)^{-1} \int_{\gamma}(\xi-\lambda)^{-1} d \xi$ equals 0 for all $\lambda \in C \backslash \Omega$, and 1 for all $\lambda \in K$. The existence of such cycle is demonstrated as follows. Let $\varepsilon>0$ be such that $|\mu-\lambda| \geq \varepsilon$ if $\mu \in C \backslash \Omega$ and $\lambda \in K$. Cover the complex plane with a mesh of squares, each of diameter less than ε, and let $\partial S_{1}, \ldots, \partial S_{n}$ be the positively oriented boundary loops of those closed squares S_{1}, \ldots, S_{n} that meet K. Then $\gamma=\partial S_{1}+\ldots+\partial S_{n}$ is a desired cycle.

With each operator $A \in A(X)$ we associate the class $F(A)$ of complex valued functions f defined and analytic in an open neighbourhood $\Delta(f)$ of the spectrum $\sigma(A)$. For $f \in F(A)$, the germ $[f]$ is the set of all $g \in \mathrm{~F}(A)$ such that $g(\lambda)=f(\lambda)$ for all λ in some open neighbourhood of $\sigma(A)$.

Let $f \in F(A)$ for some $A \in A(X)$. We put $\Omega(f)=\Delta(f) \backslash\{1\}$ if $\lambda=1$ is in the resolvent set of A, and $\Omega(f)=\Delta(f)$ otherwise. We define $f_{\#}$ as the unique function analytic in $\Omega(f)$ satisfying

$$
f(\lambda)=\tau+(\lambda-1) f_{\#}(\lambda), \quad \lambda \in \Omega(f),
$$

where $\tau=\tau_{f, A}$ equals $f(1)$ if $1 \in \sigma(A)$, and 0 if $l \in \rho(A)$. Finally, define f_{*} on $\Omega(f)$ by

$$
f_{*}=f_{\#}-f .
$$

If $A \in A(X)$ and $f \in F(A)$, we define $f(A) x$ for each $x \in X$ by the formula

$$
\begin{equation*}
f(A) x=\frac{1}{2 \pi i} \int_{\gamma} f(\lambda) R(\lambda ; A) x d \lambda+\frac{1}{2 \pi i} \int_{\gamma} f_{*}(\lambda) R(\lambda ; A) \circ d \lambda, \tag{3}
\end{equation*}
$$

where γ is any Cauchy cycle with respect to the pair $(\Omega(f), \sigma(A))$.
THEOREM 2. For any $A \in A(X)$ and any $f \in \mathcal{F}(A), f(A)$ is a continuous affine operator on X dependent only on the germ $[f]$.

Proof. The map $x \mapsto R(\lambda ; A) x$ is affine, and the correspondence $h \mapsto \int_{\gamma} h$ is linear; so $f(A)$ is affine. Let $\gamma=\sigma_{1}+\ldots+\sigma_{n}$ be a representation of γ by loops in $\Omega(f)$, and let

$$
M=\frac{1}{2 \pi} \sum_{j=1}^{n} \sup _{\lambda \in\left|\sigma_{j}\right|}|f(\lambda)|\left\|R\left(\lambda ; A^{\#}\right)\right\| v\left(\sigma_{j}\right) .
$$

Noting that $R(\lambda ; A) x_{1}-R(\lambda ; A) x_{2}=R\left(\lambda ; A^{\#}\right)\left(x_{1}-x_{2}\right)$ for all $x_{1}, x_{2} \in X$, we deduce that $\left\|f(A) x_{1}-f(A) x_{2}\right\| \leq M\left\|x_{1}-x_{2}\right\|$, which proves the (Lipschitz) continuity of $f(A)$.

Let f_{1}, f_{2} be members of $F(A)$ belonging to the germ [f]. Let γ_{k} be a Cauchy cycle with respect to $\left(\Omega\left(f_{k}\right), \sigma(A)\right), k=1,2$. By assumption, there is an open neighbourhood Ω of $\sigma(A)$ such that $f_{1}(\lambda)=f_{2}(\lambda)$ for all $\lambda \in \Omega$. Choose a Cauchy cycle γ with respect to $(\Omega, \sigma(A))$. For $k \in\{1,2\}, \gamma$ is also a Cauchy cycle with respect to $\left(\Omega\left(f_{k}\right), \sigma(A)\right)$, and $n\left(\gamma-\gamma_{k}, \lambda\right)=0$ if $\lambda k \Omega\left(f_{k}\right) \backslash \sigma(A)$. Hence $\gamma-\gamma_{k}$ is a cycle homologous to zero in $\Omega\left(f_{k}\right) \backslash \sigma(A)$. The homology form of Cauchy's Theorem [1, p. 145] implies that $\int_{\gamma_{k}} h_{k}=\int_{\gamma} h_{k}$ for any analytic
A functional calculus
function h_{k} on $\Omega\left(f_{k}\right) \backslash \sigma(A)$ to X. If, in addition, h_{1} and h_{2} are equal on Ω, then

$$
\int_{\gamma_{1}} h_{1}=\int_{\gamma} h_{1}=\int_{\gamma} h_{2}=\int_{\gamma_{2}} h_{2}
$$

The conclusion now follows as $\lambda \mapsto R(\lambda ; A) x$ is analytic in $\rho(A)$ for each fixed $x \in X$ by Theorem 1 .

If A is linear, the second integral in (3) vanishes, and we have

$$
f(A) x=\frac{1}{2 \pi i} \int_{\gamma} f(\lambda) R(\lambda ; A) x d \lambda
$$

in agreement with the Taylor-Dunford calculus.
THEOREM 3. For any $A \in \mathrm{~A}(X)$ and any $f \in \mathrm{~F}(A)$,

$$
\begin{equation*}
f(A) x=f\left(A^{\#}\right) x+f_{\#}\left(A^{\#}\right) A 0 \tag{4}
\end{equation*}
$$

where

$$
f\left(A^{\#}\right)=f(A)^{\#}, \quad f_{\#}\left(A^{\#}\right) A 0=f(A) 0
$$

Proof. Let γ be a Cauchy cycle with respect to the pair $(\Omega(f), \sigma(A))$. The defining formula (3) implies that $f(A) x-f(A) 0$ is equal to the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} f(\lambda)(R(\lambda ; A) x-R(\lambda ; A) 0) d \lambda
$$

which is seen to be $f\left(A^{\#}\right) x$. Again by (3),

$$
\begin{equation*}
f(A) 0=\frac{1}{2 \pi i} \int_{\gamma} f_{\#}(\lambda) R(\lambda ; A) \circ d \lambda \tag{5}
\end{equation*}
$$

Since $R(\lambda ; A) O=R\left(\lambda ; A^{\#}\right) A 0$ by (1), we get $f(A) 0=f_{\#}\left(A^{\#}\right) A 0$.
A formula closely related to (4) was used in [3] to define the functional calculus for an affine operator A, admitting only functions f analytic in an open neighbourhood $\Delta(f)$ of the set $\sigma\left(A^{\#}\right) \cup\{1\}$. For any such f define $f^{\#}$ on $\Delta(f)$ by $f^{\#}(\lambda)=(\lambda-1)^{-1}(f(\lambda)-f(1))$ if $\lambda \neq 1$, and $f^{\#}(1)=f^{\prime}(1)$. The calculus presented in [3] is defined by the
formula

$$
(4)^{\prime} \quad \bar{f}(A) x=f\left(A^{\#}\right) x+F^{\#}\left(A^{\#}\right) A 0,
$$

where $f\left(A^{\#}\right)$ and $f^{\#}\left(A^{\#}\right)$ are interpreted in the sense of the TaylorDunford calculus. To prove the consistency of (4) and (4)', we show that for any member f of $F(A)$ whose domain $\Delta(f)$ contains the point $\lambda=1$ we have $f(A) 0=\bar{f}(A) 0$; that is,

$$
\begin{equation*}
f(A) 0=\frac{1}{2 \pi i} \int_{\sigma} f^{\#}(\lambda) R(\lambda ; A) 0 d \lambda \tag{5}
\end{equation*}
$$

where σ is any Cauchy cycle with respect to $(\Delta(f), \sigma(A))$.
If $I \in \sigma(A)$, then $f^{\#}=f_{\#}$. Suppose that $l \in \rho(A)$, and recall that $\Omega(f)=\Delta(f) \backslash\{I\}$. Choose a Cauchy cycle γ with respect to $(\Omega(A), \sigma(A))$, and a Cauchy cycle σ with respect to $(\Delta(f), \sigma(A))$. We note that γ is also a Cauchy cycle with respect to $(\Delta(f), \sigma(A))$, so that the difference

$$
\frac{1}{2 \pi i} \int_{\sigma} f^{\#}(\lambda) R(\lambda ; A) O d \lambda-\frac{1}{2 \pi i} \int_{\gamma} f_{\#}(\lambda) R(\lambda ; A) O d \lambda
$$

is equal to

$$
\frac{1}{2 \pi i} \int_{\gamma} f(1)(\lambda-1)^{-1} R(\lambda ; A) o d \lambda
$$

The last integral vanishes since the integrand is analytic in $\Omega(f)$, and the cycle γ homologous to zero in $\Omega(f)$. This result combined with (5) establishes (5)'.

The foregoing argument illuminates our convention that the point $\lambda=1$ be deleted from $\Delta(f)$ when $l \in \rho(A)$.

To test the formula (3) as a basis for a functional calculus, we prove that for each $x \in X$,

$$
f_{k}(A) x=A^{k} x \text { if } f_{k}(\lambda)=\lambda^{k}, k=0,1, \ldots
$$

According to the formula (4), this is equivalent to

$$
\begin{equation*}
f_{k}\left(A^{\#}\right) x=A^{\# k} x \text { and } f_{k}(A) 0=A^{k_{0}} \tag{6}
\end{equation*}
$$

The first equation in (6) follows from the well known power series expansion for the linear resolvent $R\left(\lambda ; A^{\#}\right)$ (Theorem 4.7.2 in [2, p. 124]). In view of (5)', the second equation in (6) is equivalent to

$$
\frac{1}{2 \pi i} \int_{\sigma}\left(\sum_{j=0}^{k-1} \lambda^{j}\right) R(\lambda ; A) o d \lambda=A^{k_{0}}
$$

where σ is any Cauchy cycle with respect to $(C, \sigma(A))$, and where $\sum_{j=0}^{-1}=0$. Proceeding by induction, we obtain

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\sigma}\left(\sum_{j=0}^{k} \lambda^{j}\right)_{R(\lambda ; A) O d \lambda} & =A^{k} 0+\frac{1}{2 \pi i} \int_{\sigma} \lambda^{k} R\left(\lambda ; A^{\#}\right) A 0 d \lambda \\
& =A^{k} 0+A^{\# k} A 0 \\
& =A^{k+1} 0
\end{aligned}
$$

THEOREM 4. Let $A \in A(X)$, Let $f, g \in F(A)$, and let α, β be complex numbers. Then:
(i) $\alpha f+\beta g \in F(A)$, and $(\alpha f+\beta g)(A)=\alpha f(A)+\beta g(A)$;
(ii) $f \cdot g \in F(A)$, and

$$
f(A)_{g}(A) x=(f \cdot g)(A) x+(1-\tau) f(A) 0,
$$

where $\tau=\tau_{g, A}$ equals $g(1)$ if $1 \in \sigma(A)$, and 0 if $I \in \rho(A) ;$
(iii) if f has the power series expansion $f(\lambda)=\sum_{k=0}^{\infty} \alpha_{k} \lambda^{k}$ valid in an open neighbourhood of $\sigma(A)$, then $f(A)=\sum_{k=0}^{\infty} \alpha_{k} A^{k}$ in the norm of $A(X)$;
(iv) $\sigma(f(A))=f(\sigma(A))$.

Proof. (i) This follows from the defining formula (3) and the identity $(\alpha f+\beta g)_{*}=\alpha f_{*}+\beta g_{*}$.
(ii) If A is linear, we apply the argument given in (5.2.7) [2, p. 169] with Γ and Γ^{\prime} chosen as follows: let $\Omega=\Omega(f) \cap \Omega(g)$, and let D be a bounded open neighbourhood of $\sigma(A)$ whose closure \bar{D} is
contained in Ω. Then select Γ as a Cauchy cycle with respect to $(D, \sigma(A))$, and Γ^{\prime} as a Cauchy cycle with respect to (Ω, \bar{D}). We conclude that

$$
f(A) g(A)=(f \cdot g)(A) .
$$

Let A be affine. In view of Theorem 3 and the preceding result for linear operators, (7) will be established when we show that

$$
\begin{equation*}
f(A) g(A) 0=(f \cdot g)(A) 0+(1-\tau) f(A) 0 . \tag{8}
\end{equation*}
$$

Applying (4), the preceding result for linear operators, and part (i) of the present theorem, we reduce (8) to

$$
\left(f \cdot g_{\#}+f_{\#}\right)\left(A^{\#}\right) A 0=\left((f \cdot g)_{\#}+(1-\tau) f_{\#}\right)\left(A^{\#}\right) A 0 ;
$$

this equation holds as $(f \cdot g)_{\#}=f \cdot g_{\#}+\tau f_{\#}$.
(iii) Using the first equation in (6) and the limit passage under the integral sign, we obtain the series expansion

$$
\begin{equation*}
f\left(A^{\#}\right)=\sum_{k=0}^{\infty} \alpha_{k} A^{\# k} \text { (in the operator norm). } \tag{9}
\end{equation*}
$$

Let $l \in \sigma(A)$. Then $f_{\#}=f^{\#}$, and

$$
f^{\#}(\lambda)=\sum_{k=0}^{\infty} \alpha_{k}\left(\sum_{j=0}^{k-1} \lambda^{j}\right)
$$

uniformly on compact subsets of $\Delta(f)$ by (A9) in [3]. According to the formula (5) and the second equation in (6), $f(A) 0$ is given by

$$
\sum_{k=0}^{\infty} \alpha_{k}\left(\frac{1}{2 \pi i} \int_{\gamma}\left(\sum_{j=0}^{k-1} \lambda^{j}\right) R(\lambda ; A) 0 d \lambda\right)=\sum_{k=0}^{\infty} \alpha_{k} A^{k} 0
$$

Let $1 \in \rho(A)$. Then $f_{\#}(\lambda)=(\lambda-1)^{-1} f(\lambda)$ for all $\lambda \in \Delta(f) \backslash\{1\}$, and $f(A) 0$ is equal to

$$
\sum_{k=0}^{\infty} \alpha_{k}\left(\frac{1}{2 \pi i} \int_{\gamma}(\lambda-1)^{-1} \lambda^{k} R(\lambda ; A) O d \lambda\right)
$$

for any Cauchy cycle γ with respect to $(\Delta(f) \backslash\{1\}, \sigma(A))$. The integral under the summation sign is equal to

$$
\frac{1}{2 \pi i} \int_{\gamma}\left(\sum_{j=0}^{k-1} \lambda^{j}\right) R(\lambda ; A) 0 d \lambda+\frac{1}{2 \pi i} \int_{\gamma}(\lambda-1)^{-1} R(\lambda ; A) O d \lambda
$$

the second integral vanishes, and we have again

$$
\begin{equation*}
f(A) 0=\sum_{k=0}^{\infty} \alpha_{k} A^{k_{0}} \tag{10}
\end{equation*}
$$

The result follows from (9) and (10).
(iv) Since $\sigma(f(A))=\sigma\left(f(A)^{\#}\right)=\sigma\left(f\left(A^{\#}\right)\right)$, we can apply the spectral mapping theorem for bounded linear operators [2, p. 171].

Theorem 4 (i), ($i i$), (i ii) extend the correspondingly numbered parts of Theorem Al in [3] to arbitrary members f, g of $F(A)$. The best result on composite functions seems to be Theorem AI (iv) of [3] which states that

$$
h(f(A))=(h \circ f)(A)
$$

if $f \in \mathrm{~F}(A)$ is such that $f(1)=1$, and if $h \in \mathrm{~F}(f(A))$. When we relinquish the requirement $f(1)=1$, we can only conclude that $h(f(A))-(h \circ f)(A)$ is a constant operator.

We observe that the operators $f(A), g(A)$ do not commute in general; however, the commutator $[f(A), g(A)]=f(A) g(A)-g(A) f(A)$ is a constant operator, namely

$$
[f(A), g(A)] x=[f(A), g(A)] 0, \quad x \in X
$$

We conclude the paper with an application.
EXAMPLE. Let T be a bounded linear operator on X, and let $y, z \in X$ be given. We show that the differential equation

$$
\frac{d y(t)}{d t}=I y(t)+e^{t_{z}}, \quad y(0)=y
$$

in the real variable t has a unique solution given by

$$
y(t)=e^{t A} y
$$

where A is the affine operator defined by $A x=T x+z$.
Clearly, it is enough to prove that

$$
\frac{d}{d t} e^{t A} y=A e^{t A} y+\left(e^{t}-1\right) z
$$

Put $G(t, \lambda)=e^{t \lambda}$, and define $G(t, A)$ in accordance with (3). Differentiating under the integral sign, and observing that $\partial G_{*} / \partial t=(\partial G / \partial t)_{*}$, we obtain that

$$
\frac{d}{d t} e^{t A}=\frac{\partial G}{\partial t}(t, A)
$$

The result then follows when we find that

$$
\frac{\partial G}{\partial t}(t, A) y=A e^{t A} y+\left(e^{t}-1\right) z
$$

by Theorem 4 (ii) with $f(\lambda)=\lambda$ and $g(\lambda)=e^{t \lambda}$.

References

[1] Lars V. Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, second edition (McGraw-Hill, New York; Toronto, Ontario; London; 1966).
[2] Einar Hille and Ralph S. Phillips, Functional analysis and semigroups (Colloquium Publications, 31, revised edition. Amer. Math. Soc., Providence, Rhode Island, 1957).
[3] J.J. Koliha and A.P. Leung, "Ergodic families of affine operators", Math. Ann. 216 (1975), 273-284.

Department of Mathematics,
University of Melbourne,
Parkville,
Victoria.

