BULL. AUSTRAL. MATH. SOC. VOL. 14 (1976), 279-288.

A functional calculus for continuous affine operators

J.J. Koliha

In the Appendix to a recent paper by J.J. Koliha and A.P. Leung (*Math. Ann.* 216 (1975), 273-284), a functional calculus for continuous affine operators was constructed on the basis of the Taylor-Dunford calculus. This calculus applied only to functions defined and analytic in an open set containing the spectrum of an operator and the point $\lambda = 1$. In the present paper I examine the affine resolvent, and develop independently a more general calculus applicable to functions which are analytic in any open neighbourhood of the spectrum of an affine operator.

Let X be a complex Banach space. An operator $A : X \to X$ is affine if $A(\alpha x+(1-\alpha)y) = \alpha Ax + (1-\alpha)Ay$ for all $x, y \in X$ and all complex α . The *trace* of A is the linear operator $A^{\#}$ on X defined by

$$A^{\#}x \doteq Ax - A0 , \quad x \in X .$$

PROPOSITION 1. Let A, B be affine operators on X , and let $\lambda,\,\mu$ be complex numbers. Then:

...

(i) A is continuous iff
$$A^{\#}$$
 is continuous;
(ii) $(\lambda A + \mu B)^{\#} = \lambda A^{\#} + \mu B^{\#}$, $(AB)^{\#} = A^{\#}B^{\#}$;
(iii) if A is bijective, then the inverse A^{-1} is affine, and $(A^{-1})^{\#} = (A^{\#})^{-1}$;

Received 22 December 1975.

(iv) A is bijective iff $A^{\#}$ is bijective;

(v) if A is continuous and bijective, its inverse A^{-1} is continuous.

The proof is omitted.

PROPOSITION 2. The set A(X) of all continuous affine operators on X is a Banach space under the norm

$$||A|| = ||A0|| + ||A^{\#}||$$
.

The norm topology of A(X) coincides with the topology of uniform convergence on bounded subsets of X.

The proof is omitted.

We note that A(X) is a near algebra with the unit I , satisfying the laws

$$(A+B)C = AC + BC$$
, $(\alpha A)B = \alpha(AB)$.

Furthermore,

$$C(A+B)x = (CA+CB)x - CO ,$$

$$A(\alpha B)x = \alpha(AB)x + (1-\alpha)AO .$$

For any operator $A \in A(X)$, we define the *resolvent set* $\rho(A)$ of A as the set of all complex λ such that the operator $\lambda I - A$ is bijective; the *spectrum* $\sigma(A)$ is the complement of $\rho(A)$ in the complex plane. (This definition differs from the one given in [3], where the point $\lambda = 1$ was adjoined to $\sigma(A)$ when A was non-linear.) In view of Proposition 1,

$$\rho(A) = \rho(A^{\#}) , \quad \sigma(A) = \sigma(A^{\#}) .$$

It follows from [2, pp. 123-125] that the resolvent set is open, and that the spectrum is non-empty and compact. The *spectral radius* r(A) of $A \in A(X)$ is the number $r(A) = \sup\{|\lambda| : \lambda \in \sigma(A)\}$.

For $A \in A(X)$, the function $R(\lambda; A) = (\lambda I - A)^{-1}$ defined for $\lambda \in \rho(A)$ is the *resolvent* of A. We note that $R(\lambda; A)^{\#} = R(\lambda; A^{\#})$.

THEOREM 1. For any $A \in A(X)$ the function $\lambda \mapsto R(\lambda; A)$ on $\rho(A)$ to A(X) is analytic in the norm topology of A(X).

Proof. First we show that

(1)
$$R(\lambda; A)x = R(\lambda; A^{\#})(x+A0), \quad \lambda \in \rho(A)$$

Indeed, applying $\lambda I - A$ to the vector on the right in (1), we get $(\lambda I - A^{\#})R(\lambda; A^{\#})(x+A0) + (\lambda I - A)0 = x$, and (1) follows.

Choose $\lambda_0 \in \rho(A)$. For all λ in the disc $|\lambda - \lambda_0| < ||R(\lambda_0; A^{\#})||^{-1}$ the series $\sum_{n=0}^{\infty} (\lambda_0 - \lambda)^n R(\lambda_0; A^{\#})^{n+1}$ converges to $R(\lambda; A^{\#})$ in norm by Theorem 4.7.1 in [2, p. 123]. Consequently,

(2)
$$R(\lambda; A)x = \sum_{n=0}^{\infty} (\lambda_0 - \lambda)^n R\left(\lambda_0; A^{\#}\right)^{n+1} (x+A0)$$

uniformly on bounded subsets of X. \Box

Let K be a compact subset of an open set Ω in the complex plane. A cycle γ [1, p. 138] is a *Cauchy cycle with respect to the pair* (Ω, K) if γ has a representation as a sum of rectifiable loops in $\Omega \setminus K$, and if the index $n(\gamma, \lambda) = (2\pi i)^{-1} \int_{\gamma} (\xi - \lambda)^{-1} d\xi$ equals 0 for all $\lambda \in \mathbb{C} \setminus \Omega$, and 1 for all $\lambda \in K$. The existence of such cycle is demonstrated as follows. Let $\varepsilon > 0$ be such that $|\mu - \lambda| \ge \varepsilon$ if $\mu \in \mathbb{C} \setminus \Omega$ and $\lambda \in K$. Cover the complex plane with a mesh of squares, each of diameter less than ε , and let $\partial S_1, \ldots, \partial S_n$ be the positively oriented boundary loops of those closed squares S_1, \ldots, S_n that meet K. Then $\gamma = \partial S_1 + \ldots + \partial S_n$ is a desired cycle.

With each operator $A \in A(X)$ we associate the class F(A) of complex valued functions f defined and analytic in an open neighbourhood $\Delta(f)$ of the spectrum $\sigma(A)$. For $f \in F(A)$, the germ [f] is the set of all $g \in F(A)$ such that $g(\lambda) = f(\lambda)$ for all λ in some open neighbourhood of $\sigma(A)$.

Let $f \in F(A)$ for some $A \in A(X)$. We put $\Omega(f) = \Delta(f) \setminus \{1\}$ if $\lambda = 1$ is in the resolvent set of A, and $\Omega(f) = \Delta(f)$ otherwise. We define $f_{\#}$ as the unique function analytic in $\Omega(f)$ satisfying

$$f(\lambda) = \tau + (\lambda - 1)f_{\mu}(\lambda)$$
, $\lambda \in \Omega(f)$,

where $\tau = \tau_{f,A}$ equals f(1) if $1 \in \sigma(A)$, and 0 if $1 \in \rho(A)$. Finally, define f_* on $\Omega(f)$ by

$$f_* = f_\# - f \ .$$

If $A \in A(X)$ and $f \in F(A)$, we define f(A)x for each $x \in X$ by the formula

(3)
$$f(A)x = \frac{1}{2\pi i} \int_{\gamma} f(\lambda)R(\lambda; A)xd\lambda + \frac{1}{2\pi i} \int_{\gamma} f_{*}(\lambda)R(\lambda; A)0d\lambda ,$$

where γ is any Cauchy cycle with respect to the pair $(\Omega(f), \sigma(A))$.

THEOREM 2. For any $A \in A(X)$ and any $f \in F(A)$, f(A) is a continuous affine operator on X dependent only on the germ [f].

Proof. The map $x \mapsto R(\lambda; A)x$ is affine, and the correspondence $h \mapsto \int_{\gamma} h$ is linear; so f(A) is affine. Let $\gamma = \sigma_1 + \ldots + \sigma_n$ be a representation of γ by loops in $\Omega(f)$, and let

$$M = \frac{1}{2\pi} \sum_{j=1}^{n} \sup_{\lambda \in [\sigma_j]} |f(\lambda)| ||R(\lambda; A^{\#})||V(\sigma_j) .$$

Noting that $R(\lambda; A)x_1 - R(\lambda; A)x_2 = R(\lambda; A^{\#})(x_1 - x_2)$ for all $x_1, x_2 \in X$, we deduce that $||f(A)x_1 - f(A)x_2|| \leq M||x_1 - x_2||$, which proves the (Lipschitz) continuity of f(A).

Let f_1 , f_2 be members of F(A) belonging to the germ [f]. Let Υ_k be a Cauchy cycle with respect to $(\Omega(f_k), \sigma(A))$, k = 1, 2. By assumption, there is an open neighbourhood Ω of $\sigma(A)$ such that $f_1(\lambda) = f_2(\lambda)$ for all $\lambda \in \Omega$. Choose a Cauchy cycle Υ with respect to $(\Omega, \sigma(A))$. For $k \in \{1, 2\}$, Υ is also a Cauchy cycle with respect to $(\Omega(f_k), \sigma(A))$, and $n(\Upsilon - \Upsilon_k, \lambda) = 0$ if $\lambda \notin \Omega(f_k) \setminus \sigma(A)$. Hence $\Upsilon - \Upsilon_k$ is a cycle homologous to zero in $\Omega(f_k) \setminus \sigma(A)$. The homology form of Cauchy's Theorem [1, p. 145] implies that $\int_{\Upsilon_k} h_k = \int_{\Upsilon} h_k$ for any analytic

function h_k on $\Omega(f_k) \setminus \sigma(A)$ to X. If, in addition, h_1 and h_2 are equal on Ω , then

$$\int_{\gamma_{\perp}} h_{\perp} = \int_{\gamma} h_{\perp} = \int_{\gamma} h_{2} = \int_{\gamma_{2}} h_{2}$$

The conclusion now follows as $\lambda \mapsto R(\lambda; A)x$ is analytic in $\rho(A)$ for each fixed $x \in X$ by Theorem 1. \Box

If A is linear, the second integral in (3) vanishes, and we have

$$f(A)x = \frac{1}{2\pi i} \int_{\gamma} f(\lambda)R(\lambda; A)xd\lambda$$

in agreement with the Taylor-Dunford calculus.

THEOREM 3. For any $A \in A(X)$ and any $f \in F(A)$,

(4)
$$f(A)x = f(A^{\#})x + f_{\#}(A^{\#})A0,$$

where

$$f(A^{\#}) = f(A)^{\#}$$
, $f_{\#}(A^{\#})A0 = f(A)0$.

Proof. Let γ be a Cauchy cycle with respect to the pair $(\Omega(f), \sigma(A))$. The defining formula (3) implies that f(A)x - f(A)0 is equal to the integral

$$\frac{1}{2\pi i}\int_{\gamma} f(\lambda) \left(R(\lambda; A) x - R(\lambda; A) 0 \right) d\lambda ,$$

which is seen to be $f(A^{\#})x$. Again by (3),

(5)
$$f(A) = \frac{1}{2\pi i} \int_{\gamma} f_{\#}(\lambda) R(\lambda; A) d\lambda .$$

Since $R(\lambda; A)0 = R(\lambda; A^{\#})A0$ by (1), we get $f(A)0 = f_{\#}(A^{\#})A0$.

A formula closely related to (4) was used in [3] to define the functional calculus for an affine operator A, admitting only functions f analytic in an open neighbourhood $\Delta(f)$ of the set $\sigma(A^{\#}) \cup \{1\}$. For any such f define $f^{\#}$ on $\Delta(f)$ by $f^{\#}(\lambda) = (\lambda-1)^{-1}(f(\lambda)-f(1))$ if $\lambda \neq 1$, and $f^{\#}(1) = f'(1)$. The calculus presented in [3] is defined by the

formula

(4)'
$$\overline{f}(A)x = f(A^{\#})x + F^{\#}(A^{\#})A0$$

where $f(A^{\#})$ and $f^{\#}(A^{\#})$ are interpreted in the sense of the Taylor-Dunford calculus. To prove the consistency of (4) and (4)', we show that for any member f of F(A) whose domain $\Delta(f)$ contains the point $\lambda = 1$ we have $f(A)0 = \overline{f}(A)0$; that is,

(5)'
$$f(A) = \frac{1}{2\pi i} \int_{\sigma} f^{\#}(\lambda) R(\lambda; A) d\lambda ,$$

where σ is any Cauchy cycle with respect to $(\Delta(f), \sigma(A))$.

If $l \in \sigma(A)$, then $f^{\#} = f_{\#}$. Suppose that $l \in \rho(A)$, and recall that $\Omega(f) = \Delta(f) \setminus \{l\}$. Choose a Cauchy cycle γ with respect to $(\Omega(A), \sigma(A))$, and a Cauchy cycle σ with respect to $(\Delta(f), \sigma(A))$. We note that γ is also a Cauchy cycle with respect to $(\Delta(f), \sigma(A))$, so that the difference

$$\frac{1}{2\pi i} \int_{\sigma} f^{\#}(\lambda) R(\lambda; A) 0 d\lambda - \frac{1}{2\pi i} \int_{\gamma} f_{\#}(\lambda) R(\lambda; A) 0 d\lambda$$

is equal to

$$\frac{1}{2\pi i} \int_{\gamma} f(1)(\lambda-1)^{-1} R(\lambda; A) 0 d\lambda .$$

The last integral vanishes since the integrand is analytic in $\Omega(f)$, and the cycle γ homologous to zero in $\Omega(f)$. This result combined with (5) establishes (5)'.

The foregoing argument illuminates our convention that the point λ = l be deleted from $\Delta(f)$ when l $\in \rho(A)$.

To test the formula (3) as a basis for a functional calculus, we prove that for each $x \in X$,

$$f_k(A)x = A^k x$$
 if $f_k(\lambda) = \lambda^k$, $k = 0, 1, ...$

According to the formula (4), this is equivalent to

(6)
$$f_k(A^{\#})x = A^{\#k}x \text{ and } f_k(A)0 = A^k0$$

https://doi.org/10.1017/S0004972700025090 Published online by Cambridge University Press

The first equation in (6) follows from the well known power series expansion for the linear resolvent $R(\lambda; A^{\#})$ (Theorem 4.7.2 in [2, p. 124]). In view of (5)', the second equation in (6) is equivalent to

$$\frac{1}{2\pi i} \int_{\sigma} \left(\sum_{j=0}^{k-1} \lambda^{j} \right) R(\lambda; A) 0 d\lambda = A^{k} 0 ,$$

where σ is any Cauchy cycle with respect to $(C, \sigma(A))$, and where $\sum_{j=0}^{-1} = 0$. Proceeding by induction, we obtain

$$\frac{1}{2\pi i} \int_{\sigma} \left(\sum_{j=0}^{k} \lambda^{j} \right) R(\lambda; A) 0 d\lambda = A^{k} 0 + \frac{1}{2\pi i} \int_{\sigma} \lambda^{k} R(\lambda; A^{\#}) A 0 d\lambda$$
$$= A^{k} 0 + A^{\#k} A 0$$
$$= A^{k+1} 0 .$$

THEOREM 4. Let $A \in A(X)$, let $f, g \in F(A)$, and let α, β be complex numbers. Then:

(i) $\alpha f + \beta g \in F(A)$, and $(\alpha f + \beta g)(A) = \alpha f(A) + \beta g(A)$; (ii) $f \cdot g \in F(A)$, and $f(A)g(A)x = (f \cdot g)(A)x + (1-\tau)f(A)0$, where $\tau = \tau_{g,A}$ equals g(1) if $1 \in \sigma(A)$, and 0 if $1 \in \rho(A)$;

(iii) if f has the power series expansion $f(\lambda) = \sum_{k=0}^{\infty} \alpha_k \lambda^k$ valid in an open neighbourhood of $\sigma(A)$, then $f(A) = \sum_{k=0}^{\infty} \alpha_k A^k$ in the norm of A(X);

(iv) $\sigma(f(A)) = f(\sigma(A))$.

Proof. (i) This follows from the defining formula (3) and the identity $(\alpha f + \beta g)_* = \alpha f_* + \beta g_*$.

(ii) If A is linear, we apply the argument given in (5.2.7) [2, p. 169] with Γ and Γ' chosen as follows: let $\Omega = \Omega(f) \cap \Omega(g)$, and let D be a bounded open neighbourhood of $\sigma(A)$ whose closure \overline{D} is contained in Ω . Then select Γ as a Cauchy cycle with respect to $(D, \sigma(A))$, and Γ' as a Cauchy cycle with respect to (Ω, \overline{D}) . We conclude that

$$f(A)g(A) = (f \cdot g)(A)$$

Let A be affine. In view of Theorem 3 and the preceding result for linear operators, (7) will be established when we show that

(8)
$$f(A)g(A)0 = (f \cdot g)(A)0 + (1-\tau)f(A)0$$

Applying (4), the preceding result for linear operators, and part (i) of the present theorem, we reduce (8) to

$$(f \cdot g_{\#} + f_{\#}) (A^{\#}) A 0 = ((f \cdot g)_{\#} + (1 - \tau) f_{\#}) (A^{\#}) A 0 ;$$

this equation holds as $(f \cdot g)_{\#} = f \cdot g_{\#} + \tau f_{\#}$.

(iii) Using the first equation in (6) and the limit passage under the integral sign, we obtain the series expansion

(9)
$$f(A^{\#}) = \sum_{k=0}^{\infty} \alpha_k A^{\#k}$$
 (in the operator norm).

Let $l \in \sigma(A)$. Then $f_{\#} = f^{\#}$, and

$$f^{\#}(\lambda) = \sum_{k=0}^{\infty} \alpha_{k} \left(\sum_{j=0}^{k-1} \lambda^{j} \right)$$

uniformly on compact subsets of $\Delta(f)$ by (A9) in [3]. According to the formula (5) and the second equation in (6), f(A)0 is given by

$$\sum_{k=0}^{\infty} \alpha_k \left(\frac{1}{2\pi i} \int_{\gamma} \left(\sum_{j=0}^{k-1} \lambda^j \right) R(\lambda; A) 0 d\lambda \right) = \sum_{k=0}^{\infty} \alpha_k A^k 0$$

Let $1 \in \rho(A)$. Then $f_{\#}(\lambda) = (\lambda - 1)^{-1} f(\lambda)$ for all $\lambda \in \Delta(f) \setminus \{1\}$, and f(A)0 is equal to

$$\sum_{k=0}^{\infty} \alpha_k \left(\frac{1}{2\pi i} \int_{\gamma} (\lambda - 1)^{-1} \lambda^k R(\lambda; A) 0 d\lambda \right)$$

for any Cauchy cycle γ with respect to $(\Delta(f) \setminus \{1\}, \sigma(A))$. The integral under the summation sign is equal to

https://doi.org/10.1017/S0004972700025090 Published online by Cambridge University Press

$$\frac{1}{2\pi i} \int_{\gamma} \left(\sum_{j=0}^{k-1} \lambda^j \right) R(\lambda; A) 0 d\lambda + \frac{1}{2\pi i} \int_{\gamma} (\lambda-1)^{-1} R(\lambda; A) 0 d\lambda ;$$

the second integral vanishes, and we have again

$$f(A) 0 = \sum_{k=0}^{\infty} \alpha_k A^k 0$$

The result follows from (9) and (10).

(*iv*) Since $\sigma(f(A)) = \sigma(f(A)^{\#}) = \sigma(f(A^{\#}))$, we can apply the spectral mapping theorem for bounded linear operators [2, p. 171].

Theorem 4 (i), (ii), (iii) extend the correspondingly numbered parts of Theorem Al in [3] to arbitrary members f, g of F(A). The best result on composite functions seems to be Theorem Al (iv) of [3] which states that

$$h(f(A)) = (h \circ f)(A)$$

if $f \in F(A)$ is such that f(1) = 1, and if $h \in F(f(A))$. When we relinquish the requirement f(1) = 1, we can only conclude that $h(f(A)) - (h \circ f)(A)$ is a constant operator.

We observe that the operators f(A), g(A) do not commute in general; however, the commutator [f(A), g(A)] = f(A)g(A) - g(A)f(A) is a constant operator, namely

$$[f(A), g(A)]x = [f(A), g(A)]0, x \in X$$

We conclude the paper with an application.

EXAMPLE. Let T be a bounded linear operator on X, and let $y, z \in X$ be given. We show that the differential equation

$$\frac{dy(t)}{dt} = Ty(t) + e^t z , \quad y(0) = y ,$$

in the real variable t has a unique solution given by

$$y(t) = e^{tA}y ,$$

where A is the affine operator defined by Ax = Tx + z.

Clearly, it is enough to prove that

$$\frac{d}{dt}e^{tA}y = Ae^{tA}y + (e^t - 1)z .$$

Put $G(t, \lambda) = e^{t\lambda}$, and define G(t, A) in accordance with (3). Differentiating under the integral sign, and observing that $\partial G_*/\partial t = (\partial G/\partial t)_*$, we obtain that

$$\frac{d}{dt} e^{tA} = \frac{\partial G}{\partial t} (t, A) .$$

The result then follows when we find that

$$\frac{\partial G}{\partial t}(t, A)y = Ae^{tA}y + (e^{t}-1)z$$

by Theorem 4 (ii) with $f(\lambda) = \lambda$ and $g(\lambda) = e^{t\lambda}$.

References

- [1] Lars V. Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, second edition (McGraw-Hill, New York; Toronto, Ontario; London; 1966).
- [2] Einar Hille and Ralph S. Phillips, Functional analysis and semigroups (Colloquium Publications, 31, revised edition. Amer. Math. Soc., Providence, Rhode Island, 1957).
- [3] J.J. Koliha and A.P. Leung, "Ergodic families of affine operators", Math. Ann. 216 (1975), 273-284.

Department of Mathematics, University of Melbourne, Parkville, Victoria.