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Resonances for Slowly Varying
Perturbations of a Periodic Schrodinger
Operator

Mouez Dimassi

Abstract. 'We study the resonances of the operator P(h) = — A, + V(x) + ¢(hx). Here V is a periodic
potential, ¢ a decreasing perturbation and h a small positive constant. We prove the existence of shape
resonances near the edges of the spectral bands of Py = —Ay + V(x), and we give its asymptotic

L 1
expansions in powers of h2 .

0 Introduction

In this paper, we study the theory of resonances for periodic Schrodinger operator
with decreasing perturbations. We consider Hamiltonians of the form:

(0.1) P(h) = —Ay + V(x) + p(hx), x€R", (h\,0).

Hamiltonian (0.1) is one of the main models in the theory of solids. It describes a
Bloch electron in a crystal placed in an external field. The function V' represents the
internal electric field of the crystal. It is real-valued, and periodic with respect to a
lattice I" in R". ((hx) is an external potential with dimensionless scale parameter A,
h < 1, which means that ¢ is slowly varying on the scale of the lattice. Usually, the
external field can be considered as very regular. See [2], [5], [27], [28], [37].

First, let us consider the case V' = 0. If one changes the variable x to r = hx,
equation (0.1) becomes

(0.2) Po(h) = =K A, + o(r).

Resonances of equation (0.2) have been studied quite extensively in the 30 last years.
The Balslev-Combes theory of dilation analytic systems [3], [32], or one of its vari-
ants [1], [10], [22], [30] allows an elegant definition of the complex resonance ener-
gies for P(h). This theory identifies the resonances of a self-adjoint operator H with
the complex eigenvalues of a closed operator H(t), which is obtained from H by the
method of spectral deformation.

If V # 0, the main difficulty encountered while trying to carry out the asymp-
totic analysis of equation (0.1) is to uncouple x, the fast variable and r = hx, the
slow variable. V. Buslaev [9] has proposed an approach based on a two-scale expan-
sion in which the electron coordinate x and the slowly variable r = hx are regarded
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as independent variables. This method is based on the simple observation that if
u(-,h) € D'(R*") is a solution I'-periodic in x of

(0.3) ((hD, +D)* +V(x) +o(r) — )\) u(x,r,h) =0,
then v(x, h) = u(x, hx) satisfies
(0.4) (P(h) — /\) v(x,h) = 0.

Buslaev has used this idea to construct asymptotic solutions of equation (0.4) by
considering (hD, + Dy)? + V(x) + ¢(r) — X as an h-pseudodifferential operator in r
with an operator valued symbol

(0.5) p(r k) := (k+Dy)* + V(x) + o(r) — A € L(H*(T*),LX(T")).

Here, T* = R"/T'* is the flat torus and I'* is the dual lattice of I". If the n-th band
Au(k) of the unperturbed periodic Schrodinger operator

P() =-A+ V(x)

is simple, and if A — A, (k) — () is the unique 0 eigenvalue of p(r, k), Buslaev trans-
formed the solvability of equation (0.4), modulo an error of order O(h), to the equa-
tion

(0.6) (¢(hDy) + Au(k) — X) ik, h) = 0, (-, h) € L*(T*).

Using this idea, Gérard, Martinez and Sjostrand [15] have showed that the spectral
study of equation (0.1), near any fixed energy level z, can be reduced to the study of
a finite system of h-pseudodifferential operator E_ (k, hDy, z, h) = E° , (k, hDy, z) +
hE'  (k,hDy,z) + - - - acting on L2(T* 5 CN). The matrix E°  (k, r, z) satisfies:

detE(Lr(k7 r,z) = 0 <= Il such that z = ¢(r) + \j(k).

The articles [9] and [15] reduce the problem of one electron in a periodic lattice
and additional perturbing potentials to a problem much like (0.2), and hence make
the problem of electron in a periodic lattice not more complicated than free electron
theory.

The goal of the present paper is to give a similar reduction for resonances, and
applying it to prove the existence of shape resonances. We will give explicitly the
leading terms of its asymptotic expansion in powers of .

To our knowledge, the only known results on the existence of resonances for pe-
riodic Schrodinger operator perturbed by a decreasing potential were obtained for
the exponentially decaying perturbations. See [13], [14] and [25]. In the one dimen-
sional case (n = 1), N. E. Firsova [13] showed that in each gap of the Hill operator
of sufficiently high energy, there exists an odd number of resonances after perturba-
tions by an exponentially decaying potential. Under the same decay assumption, but
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without any restriction on the dimension, the meromorphic continuation of the re-
solvent of P(1) = —A+V (x)+p(x) as abounded operator between weighted Hilbert
spaces was proven in [14]. In the semi-classical regime, F. Klopp [25] has studied the
resonances of

H(h,0) = —h*A + V(x) + W (x),

where W (x) is a compactly supported potential, and ¢ is a small positive parameter
depending on h. Using the same method as in [14], E. Klopp has proved the existence
of one or more resonances near the edge of the first band when n # 2.

The method of [13], [14], [25] works only for the exponentially decaying pertur-
bations. It excludes potentials of physical interest for which one expects resonances
to exist.

In this work, we will use the Balslev-Combes theory of resonances [3]. So, we
will identify the resonances of P(h), near some fixed energy level A, with the complex
eigenvalues of a closed operator P(t, /), which is obtained from P(h) by the method of
spectral deformation (¢ is the distortion parameter). In order to study the spectrum
of the family P(¢, h), we will adapt a method similar to the one used in [15]. More
precisely, for z in a small complex neighborhood €2 of A\, we construct an effective
Hamiltonian E_ (z, t, h) acting on L2(T*, CN), N € N so that

z€a(P(t,h)) <= 0¢€ a(E_i(z,t,h).

Thus, the resonances of P(h) near ) are the points z in the lower half plane for which
E,Jr(z, t, h) is not invertible for some ¢ in i |0, fo[, (fo is a small constant).

We are now going to briefly describe the main results of the paper.

Fix a point A in the interior of some band A;. We assume that the Fermi surface
F) == U{k ; Mi(k) = A} does not contain any critical points, i.e., VA;(k) # 0
for k € F(A). In Section 4, we will prove that, for all ¢ and ¢ in a dense subset A of
L*(R"),

((z=Po)"'6,0)  (resp. fyy = ( (z—P(h) "o, ¢) )

has a holomorphic (resp. meromorphic) continuation from the upper half plane C*
to a complex disc around A. Following [1] and [32, Sect. XII.6], the poles of f, ,, are
called resonances of P(h).

Before stating the results concerning the existence of resonances, let us introduce
some assumptions on the I-th band Hamiltonian:

Wik, r) = Mi(k) + o(r).

We suppose that W 1(\) = @ if m # |, Wfl()\) = {(ko,10)} U X (where Xy
is a connected component with (ko,ry) ¢ X)), and W; has a local nondegenerate
extremum (local minimum or maximum) at (ko, ry). Finally, we assume that X,
satisfies some nontrapping condition, see assumption (H5). Under these conditions,
we prove in Section 5 that, for each Cy > 0, P(h) has a finite number of resonances in
the disc D(A, Coh) = {z € C; |z — A| < Coh}. Moreover, these resonances coincide,
modulo O(h% ), with the eigenvalues of the operator

2

h
A= ?<‘P”(7'0)kavk> + 5 (N (ko)k, k).

1
2
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Let us notice that our reduction can be used to study other types of resonances for
P(h), similar to those studied in [35] and [7].

The paper is organized as follows: In the next section, we introduce some nota-
tions and state the assumptions and the results precisely, which are proved in Sec-
tions 4 and 5. In Section 2, we define the distorted Hamiltonian. We also prove some
h-pseudodifferential results on the torus which will be used in this paper. In Sec-
tion 3, we recall the two-scale method of Buslaev and construct the effective Hamilto-
nian E_(z,t, h). Finally, some technical results on resolvent estimates and on pseu-
dodifferential calculus with operator valued symbols are given in an appendix.

Acknowledgements We thank J. Sjostrand for helpful discussions and valuable com-
ments. We are also grateful to the referee for his remarks on our paper.

1 Preliminaries and Main Result

LetT" = @?:1 Za; be the lattice generated by the basis a1, a,, ..., 4d,, a; € R". The
reciprocal lattice I'* is defined as the lattice generated by the dual basis {a},...,a’}
determined by g; aj = 27mdij, i, j = 1,...,n. Afundamental domain of I is denoted
by E, the one of I'* by E*. If we identify opposite edges of E (resp. E*) then it becomes
a flat torus denoted by T = R"/T" (resp. T* = R"/T"*).

Let V be a real-valued potential, C* and I'-periodic. For k in R", we define on
LX(T)

(1.1) P = (D, + k) + V(x).

Py is a semi-bounded self-adjoint operator with k-independent domain H?(T). Since
the resolvent of (Dy+k)? is compact, the resolvent of Py is also compact, and therefore
Py has a complete set of (normalized) eigenfunctions ¢,(-,k) € H*(T*), n € N,
called Bloch functions. The corresponding eigenvalues accumulate at infinity and
we enumerate them according to their multiplicities, A;(k) < A;(k) < ---. Since
e~ Pre™” = Pyy, \,(k) is periodic with respect to T'*. Ordinary perturbation
theory, shows that A;(k) are continuous functions in k for every fixed j, and \;(k)
is even an analytic function of k near every point ky € T* where A;(k) is a simple
eigenvalue of Py,. The function A;(k) is called the band function and the closed
intervals A; := \;(T*) are called bands.
Now, consider the self-adjoint operator with domain H?(R")

(1.2) P(h) = Py + ¢(hx), (h\,0),
where
(1.3) Py = —-A+V(x).

By Bloch-Floquet theory, it is well known (see [26]) that

I=00

(1.4) a(Py) = 0es(Py) = | A

I=1
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Fix A in o(Py), and put
FN) ={keT;x€0(Pr)}.

‘We assume:

(H1) There exist positive constants a and 0, such that ¢ extends analytically to
D(a) = {z € C";|Qz| < a(Rz)}, and

(1.5) lp(z)| < C(z)~°,

uniformly on z in D(a). Here (z) = (1 + |2|%)=.

(H2) For every k € F(A), Ais a simple eigenvalue of Py.
In a small neighborhood of F (), we let A(k) be the simple eigenvalue which
is close to A. Then A(k) depends analytically on k, and is equal to A when k
belongs to F(\).

(H3) dA(k) # 0 forallk € F(A).

Let us introduce the set of analytic vectors (see [10] and [30]),
A = {u € L*(R"); Ve, s > 0, exp(c{x))u(x) € H'(R™)}.

Theorem 1.1 Under the assumptions (H1), (H2) and (H3), there exist a neighborhood
Q of \, and small constants 1) and € > 0, such that for every t in I. = i ]0, €[ and every
¥, ¢ € A, we have:

i) The function

fo5(@) = ((Py —2) "', 0),

has an analytic continuation from the upper half plane C* to Q2_,,|. Here, §); :=
{z€Q;3z > s}
ii) For h small enough,

fouw(2) = ((P(h) —2)7' ¢, ¢),

. Lo +
has a meromorphic continuation, fy.., from C* to Q_, ).

Definition 1.2 Following [1] and [32, Sect. XI1.6], any z € Q_,,| which is a pole of
fo.4 for some ¢, 1) in A is called a resonance of P(h). We do not consider here the
resonances of P(h) which are far from the real axis.

Theorem 1.3 (Absence of Resonances) Under the assumptions (H1), (H2) and (H3),
there exist a h-independent neighborhood 2 of X\ and a small positive constant €, such
that if Sup{|e(x)| ; x € D(a)} < € then forallp and ¢ € A

fo@ = ((P) =2) "'6,0),

has a holomorphic continuation from C* to Q.
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Resonances We denote by W(k,r) = ¢(r) + A\i(k) the I-th band Hamiltonian. For
m=20,1,2,...,set

S = k1) € T X R s Wy (k1) = A},

Assume

(H4) >\, = @form # I, Y, = {(ko,70)} U Xy, where X is a connected
con’lponent, (ko,10) & X and Wi has a local non-degenerate extremum (lo-
cal minimum or maximum) at (ko, rp). By a translation, we can assume that
(kO) 7’0) = (07 0)

(H5) Near Xy, Gi(r,k) = r- \/(k) is an escape function, i.e.,

(1.6)
oW, 0G;,  OW; 0G
e By ar = WO = (0N > a0 >0, Yk €T

The non-degeneracy of W at (0, 0) means that the 21 x 2n matrix,

W(0,0) = (3” N A,,O(O))

of second partial derivatives of W at (0, 0) is either positive or negative definite ma-
trix. We define a reference Hamiltonian by

(17) K =2 [~(¢" (07, V) + (" (0)k K.
+ (—) corresponds to a local minimum (maximum respectively).

It is clear that o(K) is discrete and contained in ]0, co[. Let e, be the eigenvalues
of K listed in increasing size, counting multiplicity, e; < e; < e3---. Let 0 < Cp ¢
{e1, e, ...} and let Ny be the number of ¢;’s in [0,Cy], so that ey, < Cyp < eny+1-
Our main result is:

Theorem 1.4 Fix Cy as above. Under the assumptions (H1), (H2), (H3), (H4) and
(H5), there exists hy > 0, such that for h € 10, hy[, P(h) has precisely Ny resonances
(e,-(h)) I<i<Ny in D(A,Coh) = {z € C; |z — A| < Coh} (counted with their algebraic
multiplicities). Moreover,

(1.8) ei(h) ~ Aeih+ Y ajh™s, (ajx €R), (h\0).
>1
2 The Distorted Hamiltonian

2.1 Spectral Deformation Family

Let H be a Hilbert space. The scalar product in H will be denoted by (, ). The
set of linear bounded operators from H; to H, is denoted by L(H;, H;). We set
L(H) = L(H, H).
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In this subsection, we define the spectral deformation family U, which will be used
in this paper. With the change of variable r = hx, P(h) becomes

B(h) = —12A, +V (%) +o(r) = By(h) + o(r).

As indicated in the introduction, to study the spectrum of the distorted Hamil-
tinian, we will use the method of [15], which is based on Floquet theory. Then,
we shall construct a family U, such that utﬁo(h)u; ! commute with Thys ¥ € T'. Here
Tiyt(x) = u(x — hry) is the translation operator. For that, we employ a technique of
spectral deformation in the momentum space introduced by [10] (see also [30]).

Letv = (vq,...,v,) € C®(T* ; R") and let t; be a small positive constant. For
t € D(ty) ={t € C; |t]| <t} set

ve(k) = k — tv(k).

We denote by J;(k) := det[Dv;(k)] the Jacobian of v;(k). Since v is bounded with its
derivatives, there exists a positive constant o > 0 such that v, is invertible for all ¢ in
D(ty).

Fort € ]—ty, ty[, we define a map on S(R") by

(2.1) Wu(r) = T {7 () () (v (k) 1,

where J), is the semi-classical Fourier transform
Fpu(k) = / e~ hy(r) dr.

From now on we write F for F;,. We adopt this notation henceforth.
Lemma 2.1 [30] Let A := {u e L*(R");Vc,s > 0, exp(c{x))u(x) € H(R")}.

i) For |t| < to and real, the map U, defined in (2.1) extends to a unitary operator on
L*(R").

ii) Foranyu € A, t — U,u can be extended to an L*(R")-valued analytic function on
D(ty), and the range U, A is dense in L*(R").

Lemma 2.2 ForV € C*(T) andt € ]—to,to[, the multiplication operator by V (3,)
on L*(R") is stable under decomposition with U, i.e.,

(2.2) TR (ﬁ) U u(r) =V (%) u(r), Vue L*R").

Proof By Lemma 2.1 i), (2.2) is equivalent to

(2.3) U, (v ( -

) u) n=v (%) W;u(r), VueSR".
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Let u € S(R"). Since V € C°°(T), the Fourier series Zﬁ* cr= cﬂ*eirﬂ* of V is uni-
formly convergent, which shows that

Z Cg*e"rﬁ*u — Vu inL*R").
|6*|<N

Then, it suffices to show (2.3) for V (r) = ", g* e I'*.
Using the fact that
24)  Jik—B)=J (K, and v(k—B*) =v(k) 8", VB el
we obtain
W M) (r) = FL T RF (7 u)) (wk) }

— 5 OFu(nk) — 67) }
— 5 JE (k= B)Fu(vi(k— 87) }
= e”ﬁ*/hutu(r).

This ends the proof of the lemma.

2.2  h-Pseudodifferential Operators

In this subsection, we prepare some results on h-pseudodifferential operator calculus
which we use in the following sections.

Let m(r, k) be an order function. For [, § € R, we define the class of semi-classical
symbols on T*R" = R*":

SER? m) = {a(r,k; h) € C®°R*™ x 10,1] 5V, 8 € N", ICq g,
(2.5)
0280 a(r, k3 )| < Co gh™ 2010 m(r, )}

We denote by S5(R?") (resp. S°(R*", m)), S5(R?*", 1) (resp. SJ(R*", m)).

If a = a(r,k ; z,h) depends also on some parameter z € (2, we say that a €
SfS(Rz”7 m), if the constant C,, g in (2.5) is independent of z € (2.

Let a(r, k ; h) € S°(R*", m). We say that a(r, k ; h) has an asymptotic expansion in
powers of hin S°(R?" m), and we write

a(rk;h) ~ > aj(rnkh! in S (R, m),

j=0

if for every N € N, h~N+D (g — Z?]:o a;jh?) € SY(R*", m).
For a € S°(R?", m), the h-Weyl operator a” (r, hD; ; h) is defined by

(2.6)  a"(r,hD, ; hyu(r) = 2nh)™" / / kg (HTykh) u(y) dy dk.
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Let (r,k) — p(r,k ; h) € S°(R*") be ['**-periodic in k, and let a, § be two positive
constants. We assume that p extends holomorphically to the complex zone

Swa = {(rk) € C" x W ; [Sr| < a(Rr)},
(where W is a complex neighborhood of the torus T*), and satisfies
(2.7) Ip(r k)| < C(r)~°,

uniformly on (r, k) € Sw 4.

Note that, by passing from a to @ = 5 we may assume that

(2.8) Va, B, 3Cap; 0900 p(r,k)| < Cop(r)~071o])

uniformly on Sy ;. This is a simple consequence of (2.7) and Cauchy inequalities.

Theorem 2.3 Forty > 0 small enough, the map
I—to, to[ D t = W, p™ (r, ADHU; ",

extends to D(ty) asa L (LZ(R”)) -valued analytic function. Moreover, there exists p; €
SO(R?", (r)~?), T*-periodic with respect to k such that

(2.9) U, p" (r, DU = pi¥ (1, hD; 5 h),

and -
perksh) ~ ) pej(n ol in YR, (1)),
j=0
Here

— Ov;
2.10)  pro(rk) = 1= tM(K) " rw(k), Mk)—< ’(k)) ,
( Prolr p(( () v ) ( Ok; 1<i,j<n

(2.11) pra(r k) =0.

Proof Let u € S(R") and t € |—ty, tp[. Remembering the definition of U; and using
the well known formula

Fp"(r, hD,)F " = p"(—hD,, 7)
(see [21]), we obtain

FUp*(, hD,)Ut_lff"_lu(r)

= J () < p"(=hDy ) (7 0u (v (1) ) ) (w()

— o) // =PRI (1) 173 () (—k, V’”;”) u(vi () dy dk.
R" X R"
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Next, we use a standard change of variables and we get:

(2.12)
F U, p" (r, DI F " u(r)

— (2rh)~" // ei(r—y—r(v(r)—v(y»k/h]t%(r)]t% ()p (—k, M) u(y) dy dk
RMXRVI 2

= (Q2rh)™" / / Fr=NA=tkE)K/h 2 (1) 1 () p <—k, W) u(y) dy dk
Ri‘lxRH

= Qrh)™" / / TIRG (1, y, K)uly) dy dk,
R"XR"

where
(2.13)
Gt(r? Vs k)

k(r, y) is defined by

1
v(r) —v(y) = / 8yv(y +s(r — y)) ds(r—y) = k(r,y)(r — y).
0

Since v € C°(T* ; R"), k is bounded with all its derivatives. Combining this with
(2.13) and using the analytic assumption on p, we deduce that for #;, small enough
G;(r, y,k) extends analytically on t € D(ty). On the other hand, (2.8) and (2.13)
show that

(214) VO&, ﬂa Y€ Nna Elcoc.ﬂ,“/ 5 |8;‘18582Gt(ra Vs k)‘ < Ca,[3,7 <k>_57

uniformly on # in D(%).
By a classical result of h-pseudodifferential theory (see [33, Theorem I1.27]), we
deduce from (2.12), (2.13) and (2.14) that

(2.15) FU,p" (1, ADIU ' F~" = b (1, hD, 5 h),
with

. u u e .
216)  bisksh) =e P0G (r+ 2 - 2 k) o~ ; by (r, O,

in SO(R?", (k)~9). Here

’ |
(2.17) by (1K) = ’J.—!(<auak>)fct (r+5.r=50%)

lu=0
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In particular,

(2.18) ol k) = Gulr ) = p(((sM(1) = 1) "k m(n),
and
(2.19) bi(r k) = %(&@G,(n r,k) — 0,0¢G(r,1,k)) = 0.

Clearly, (2.15) implies
W, p" (r, AD)U; ' = b} (hD,, —r ; h) := p}*(r,hD, ; h),

which together with (2.16), (2.18) and (2.19) give (2.9), (2.10) and (2.11).
By assumption, k — p(r, k) is I'*-periodic. Hence,

e MW (1 hD,)e™ M = p¥(r, hD, + B*) = p"(r, hD,).
Combining this with the fact that U, commutes with ¢ /1 (see Lemma 2.2), we get
py(r,hD, + B* 5 h) = e~ " pl(r, kD, ; byt
= U, (e /" p"(r, hD,)e"™ MY U = pi¥(r,hD, 5 h).

Consequently, p;(r, k ; h) is I'*-periodic with respect to k.
Now, it remains to show that t — WU, p*(r, hD,)U; Ve o) is analytic.
Let u, 1) € S(R"). By (2.12), one has

(WU T, Fap) = ()™ / / / STIMNG, (1, y, K)u(y () dr dy dk.

Using repeated integration by parts with the help of the operator (1 + h*A ), we get
(U p™ W T, F1ep)

- (th)_”/// TR TIN 1 + PA)N (G(r, y, K)u(y)) (r) dr dy dk.

Clearly, for N large enough the right member of the above equality is analytic on ¢.
Since || p}(r, kD, 5 h)||z2) is uniformly bounded on t € D(t,), by the Calderon-
Vaillancourt theorem (see Theorem A.3), and since {F~'u ; u € S(R")} is dense in
L*(R"), it follows from [23, p. 365] that U, p"*(r, hD)U; ' is analytic on ¢.

Remark 2.4 Note that, if v(0) = 0 and p(r,k) = O((r, k)o‘) , for all || < N then
pri(nk) = O((r, k)ﬁ) for all | 3] < N — 2j. This is a simple consequence of (2.13)
and (2.17).

Corollary 2.5 Let p(r, k) and p,(r, k ; h) be as in Theorem 2.3. The family of operators
P (—hDy, k 5 h), is well defined on L*(T*) and is unitarily equivalent to p*(—hDy, k)
for real t. Moreover,

t € D(ty) = pl'(~hD,,r3 h) = FUp”(r, DI F 1 € L(I3(TY))

is analytic.
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Proof Since p, is I'*-periodic with respect to k, it follows from the Calderon-
Vaillancourt theorem on the torus (see [16]) that p}’(—hD,,r ; h) € L(LZ(T*)).
The analiticity on t can be proved as in Theorem 2.3.

Note that, for real ¢

ue LT - Wu(k) = FUT; ulk) = 2 (Du(v(k) € AT,

is unitary. Hence, F U, p"(r,hD,)U;'F~! = ﬁt? p(r, hD,)S-"lﬁt_ ! is unitarily
equivalent to
Fp*(r,hD,)F ' = p"(—hD,,r). ]

Applying Theorem 2.3 to p(r, k) = ¢(r), we get:
Corollary 2.6 Assume (H1). The map

t € D(tg) — WU, ' € L(L*(RY)),

is analytic. Moreover, there exists p, € S"(R*", (r)~?), ['*-periodic in k such that

(2.20) WU, = @} (r,hD;, 5 h),
with -
Sat(ﬂ k 5 h) ~ Z QD[J(T, k)h]7 il’l SO(Rzna <T>_5).
j=0
In particular

_ ov;i(k
(2.21) ©r0(r, k) :w((l—fM(k)) 1’)’ Mk) = < glfz)> ’
i /J1<ij<n

and
(2.22) w1(r k) =0. |

We end this section by a standard result on a weighted L?-estimate [19]. Let f; and
f2 be two real-valued functions, bounded with all their derivatives. We assume that f,
is I'™*-periodic, and ||V fi|| o is small enough. Conjugating the left hand side of (2.12)
by efi/", and using a standard change of variables (a complex version of Kuranishi
trick) similar to the one used in the last equality of (2.12), we prove:

Proposition 2.7 Let f; and f, be as above, and let p}(r,hD, ; h) be given by (2.9).
There exists p.(r,k 3 h) € S’ (R*", (r)=%), T'*-periodic with respect to k, such that

O/t (e WD, 5 h)e MM = p o (1, hD, 5 ),

and
PUPIh o (e hD, 5 e RPN = p e (1 WD, 5 h).
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Moreover o
Pre(rks k)~ pra ik, in SR, (r)™0),
j=0
with ]
(2.23) P k) = pro(nk+iVAr),
and
(2.24) Pheo(nk) = pio(r—iV f(k), k) .

Here p, o(r, k) is given by (2.10).

2.3 Distorted Hamiltonian

Now, we are ready to define the distorted Hamiltonian. Consider for t € |—ty, o[ the
family of unitarily equivalent operators,
P(t,h) = W, P(h)U; "

We recall that R .

B(h) = —WA+V (E) + (1),
A simple calculus shows that

WU (~HAN = (w(hD))’,
which together with Lemma 2.2 and Corollary 2.6 yield

(2.25) P(t,h) = (w(hD,))" +V (%) + Q" (1, hD, 5 h).

Recall that v;(k) = k — tv(k), where v(k) is bounded with all its derivatives. This
ensures that the domain of (vt(hD,)) ? is independent of t and D( (vt(hD,)) 2) =
D(—A) = H*(R"). Combining this with Corollary 2.6, we get:

Proposition 2.8 Assume (H1). The self-adjoint operator P(t,h), defined for t €
1—to,t0[, extends to an analytic type-A family of operators on D(ty) with domain
H?(RM).

3 Effective Resonant Hamiltonians

When V' = 0, the spectrum of P(t, h) was studied by Nakamura [30]. The main
technique used in [30] is the calculus of h-pseudodifferential operators and the
Fefferman-Phong inequalities.

The additional periodic, but rapidly oscillating potential modifies considerably
the spectral study of P(t, h). The main question is, how to uncouple x, the fast vari-
able and r = hx, the slow variable.

As indicated in the introduction, one possible choice is to introduce a new oper-
ator P(t, h) in which x and r are regarded as independent variables. This is the two
scale expansion method which we will describe in the next subsection.
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3.1 The Two Scale Expansion Method
Denote by Tt the distribution in S’(R?") defined by

1 .
1 T - i(r—hx)B/h
(3.1) (%) vol(E)i [,;F* ¢

We recall that E is a fundamental domain of I
Set
L= {v(r)Tr(r,x) ; v € L*(R")}.

By Poissons’ formula, one has:
(3.2) Tr(rx) =Y 8(r— hx+hy).
yel

Then, for ¢ € 8(R" x T) := {¢ € C¥[R*) ; (NN € L*(R" x T), VN, a} and
u(r,x) = v(r)Tr(r, x)

(u, ) == // u(r, x)(r, x) dx dr
R'XE

= Z/V(h(x — 7)) <p(h(x - 7),x) dx = / v(hx)p(hx, x) dx.
E

~vel !

The last integral can be bounded by seminorms of ¢ in S(R” x T). Hence, L can be
viewed as a subspace of 8’(R" x T).

Moreover, the above equality shows that, uTr = 0 in L implies that u = 0 in L%
Therefore, IL equipped with (uTr,vIT) — (u,v);2 has an Hilbert structure, and the
map

(3.3) U:I’R")3v—vIrel
is unitary.
Lemma 3.1 Let (r,k) — p(r,k) € S°(R*") be I'* periodic with respect to k. One has
(3.4) Up"(r,hD,)U ™! = p¥(r, hD,).
Proof (3.4) is equivalent to
(35) Vw=u(r)Tr(rx) €L, p"(r,hD)w(r,x) = (pw(r, hD,)u) (r)Tr(r, x).
Since p(r,k +~*) = p(r, k) for all v* € T'*,
P (1, hD,)el = b — gilr=hon” fhpw(y by
which yields (3.5).

Lemma 3.2 Under assumption (H1), P(t, h) acting on L*(R") with domain H*(R") is
unitarily equivalent to

(3.6) P(t,h) = (Dy +v(hD,))* + V() + (1, hD, 5 )

acting on I with domain L2 := {u(r)Tr(r,x) ; 0%u € L*(R"),V |a| < 2}. In particu-
lar, t € D(ty) — P(t, h) is analytic of type-A with domain 1.2
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Proof Recall thatv,(hD,+v*) = v;(hD,)+~*,V~y* € I'*. Hence, for all u(r)Tr(r,x) €
L

(v(hD,) + D) “u(n Te(rx) = > 7/ (v, (hD, +5) + Dy —77) "u(r)

= Y Ty (WD) u(r)
= Tr(r,x)vi(hD,)*u(r),

which yields

(3.7) U(w(hD) U™ = (w(hD,) + Dy) .

On the other hand, the periodicity of V and (3.2) give

v (5) 10 = %Wx — 5 — hx + by) = V() Tr (1,%),

which implies that
r -1 _
(3.8) Uv (h) U~ = V().

Now, applying Lemma 3.1 to ¢,(r, k ;5 h) and using (3.7), (3.8) and Proposition 2.8
we get the lemma.

3.2 Grushin Problem for P(t, h)

In this subsection, we will reduce the spectral study of P(t, h) to an h-pseudodif-
ferential operator acting only on the r-variable. More precisely, we shall show that
complete informations on the spectrum of P(t, h), near any fixed energy level z, is
contained in a certain h-pseudodifferential operator E_.(z,t,h) = EY (—hDy,k ;
z,t, h), which is defined by constructing an inverse of an appropriate Grushin prob-
lem for P(t, h). See Theorem 3.8 below. Our method is quite similar to the one of
[15], and that is why we omit sometimes the details of the proofs and we refer to [15].
We introduce the following Hilbert space with their natural norms

Hy = L(T),
Hyx = {u € Hy; (Dy + k)*u € Hp,V || < m}.

We notice that only the norm on H,, x depends on k and not the space itself and we
have:

l|ul|m,, < Clk— k')’”||uHHMH Vu € Hyp, k, k' € R".

Then, we can use the theory of h-pseudodifferential operator with operator valued
symbol in L(Hyx 5 Hyu k). See Appendix A.
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In the form (3.6), we can view P(¢, h) as an h-pseudodifferential operator on r
with operator valued symbols

Plr ks t,h) i= (D +v(0) " + V() + @1k, h) € S (R 5 £(Ho, Ho)) -

To construct a suitable Grushin problem for P(z, &), the first step is to construct a
Grushin problem on the symbol level. This will be the object of the next lemma.
Set

(3.9) P(r,k;t) i= (D + (k) + V(x) + @01, k),

©0(1, k) is the principal term of ¢:(r, k ; h) given by (2.21).

Lemma 3.3 Pick X\ in R. There exist N € N, a small constant ty > 0, a complex
neighborhood ¥ of A and functions ¢ ; in C*° (R} ; Hyx) N C* (R} x R}), such that for
eachk € R", t € D(ty) and each z € ¥ the operator:

(3.10) Plrk; z,t) = (P(r, kst)—z R- (Vt(k))) 7

R (vi(k)) 0

is invertible from Hyy x CN into Hy x CN, with an inverse Ey(r,k ; z,t) uniformly
bounded with respect to (r,k ; z,t) together with all its derivatives in L(H, x CV,

Hy i x CN). Here (R+(k)u)]. = (u, ¢j(~,k)) Foo and R_(k)u~ = Z;\]:l uj_qu(',k).

Moreover, ¢; ( ° Vt(k)) is analytic on t and satisfies
(3.11) Hakﬁqu(’Vt(k)) HHZ* S‘Cﬁa VB eN, keR,t € D(ty)
¢j(x, vt(k+'y*)) =e ™ d)j(x, v,(k)) , VA*el™.

Proof Set
Po(r,k) = (Dy + k)* + V(%) + (r).

Proposition 2.1 of [15], see also [18, Theorem 3.1.1], gives the existence of N func-
tions ¢;(x, k) such that Lemma 3.3 holds when we replace P(r, k, z, t) by

)]

The functions ¢; constructed in [15], [18] are of the form

(3.12) ¢j(x, k) = quj(x _ ,y)eik(fo) _ Z {/;](/6* _ k)eiﬁ*x’

yel’ p*er*

with ¢; € C§°(R"). By Paley-Wiener-Schwartz theorem, see for instance [21, Theo-
rem 7.3.1], 4;(8" — k) extends analytically on k and satisfies,

N €N, a €N, 0 (4( 8 k) = (8" —R) = Onallo)1+]8" k)™,
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uniformly on ¢t € D(#;). We recall that v, (k) = k — tv(k) where v € C*°(T* ; R").
From (3.12) and the above estimate, we deduce that ¢; (-, v;(k)) is analytic on ¢
and

[0¢R- (v:(0)) ~OFR-(K)| ¢ o g,

B R (1K) =0 R B 5y ) = O]
Combining this with the following equality

P(r,k 5 1) = Po(r,k) = =26v(k)(Dx + k) + v(k)*t* + 0, (1, k) — (),
and using that 8fk(<pt’0(r, k) — gp(r)) = 03(]t]), we obtain

105 (Prks 2,0) = Polr k5 2) || ¢ 4, ooy = Onlltol),
uniformly on (r,k 5 t) € R*" x D(t,).

Choosing t, small enough, and applying the results of [15] to Po(r, k ; z), we get
Lemma 3.3. u

Now, we turn to the operator IP(¢, h). We denote by
80(23 t) = 88/(”7 hDr 5 Z, t)v

and

_ ( P(t,h)—z RY(wn(hD,))
Pt h) = <R1“(v,(hD,)) 0
the Weyl quantization of ¢ (r, k 5 z,t) and (P}gtlz;;}(ll)(; k= (gt(k))

For m € N, set

) respectively.

Ko := L*(R" x T),
K :={u € Ko 5 (Dx + hD,)%u € Ky, V|a| < m}.
Proposition 3.4 The operator £y(z,t) is continuous from S(R" ; Hy x CN), (resp.
8'(R" ; Hy x CN)) into S(R" 5 Hy g x CN) (resp. 8'(R" 5 Hyg x CV)) and uniformly
bounded from Ko x L*(R" ; CN) into K, x L*(R" ; CN). Moreover, we have
(3.13) P(z,t,h) o Ey(z,t) = 1+ hRY(r,hD, ; z,t, h),

where R(r,k ; z,t, h) ~ Z?io Ri(r,k 5 z,t)h7 in SO (R*™ 5 L(Hy x CN)) and R, R;
depend holomorphically on z.

Proof The continuity of £y(z,¢) in 8§ and 8’ follows from Lemma 3.3 and Proposi-
tion A.1.
Let P, (k) = ( ("”03’“)& 9) be the operator valued symbol in

SO(R™ 5 L(Hy x CY, Hy x CY)).
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In view of the definition of XK;, we have just to prove
(3.14) |Pa(hD;) 0 Eo(z, )] c(xcy x 2Ry = O(1), Vo] < 2.
Theorem A.2 shows that:
Po(k) o &1,k 2,t) € (R 5 L(Hy x CY,Hy x CV)), V]a| <2,
which together with Theorem A.3 give (3.14). Formula (3.13) is a simple conse-

quence of Lemma 3.3 and Theorem A.2.

Proposition 3.5 t € D(ty) — P(z,t,h) € L (K, x L*(R!; CN) 5 Ko x L*(R? ; CV))
is analytic.

Proof Thatt — P(t,h) € L(K,,K)p) is analytic follows from Corollary 2.6. On the
other hand, by a proof similar to the one used in Theorem 2.3 we show, using the
properties of ¢ (-, v,(k)) given in Lemma 3.3 that RY (vy(hD,)) and R" (v:(hD,))
are analytic in .

Proposition 3.6 Fix A € R. There exist a complex neighborhood 9 of A and small
constants hy, ty > 0, such that, for (z,t,h) € ¥ x D(ty) x 10, ho[, P(z,t,h) is bi-
jective from S’'(R" 5 Hy x CV) into S'(R",Hyo x CN), from K, x L*(R! 5 CN) into
Ko x L*(R" ; CN) and has a uniformly bounded inverse of the form E(z,t,h) =
EY(r,hD; ; z,t, h), where

(3.15)

Erkszt,h) ~ Y Ej(nk;z,)h/  inS"(R™ ;5 L(Hy x C, Hyp x CV)).
j=0

The principal term Eo(r, k ; z,t) is given by Lemma 3.3. The operator E(z,t, h) has the
same continuity properties as Ey(z, t) in Proposition 3.4.

Proof Proposition 3.4 and Theorem A.3 imply that R¥(r, kD, ; z,t, h) is uniformly
bounded on £ (3{0 x L*(R"; CN)) . Hence,

thRW(ra hD; ; z,t, h)HL(?Co X L*(R%CN)) < 1/27

for h small enough, and therefore (1+hR") ! exists in L (fKo x L*(R"; CN)) . Using
(3.13), we conclude that P(z, t, h) has a right inverse

E(z,t,h) = Ey(z,t) o (1 + hRY)™L.

Recalling that P(z, t, h) is self-adjoint for z and ¢ real. Hence, (z,t, h) is also a
left inverse when z € 9 "R and t € D(t,) NR.

Since t — P(z,t, h) is an analytic family of type A and P(A, 0, h) is bijective, it
follows from Theorem XII.7 of [32] that P(z,t, h) is bijective for (z,t) in a small
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complex neighborhood of (A, 0). This shows that £(z,¢, h) is also a left inverse of
P(z,t,h) when (z,t) € 9 x D(tp).

Formula (3.15) is a consequence of Beals’ result (see [15], [12, chapter 8]), and
the fact that R has an asymptotic expansion in powers of h. This finishes the proof of
Proposition 3.6. [ ]

In the following, we denote

E(z,t,h)  Ei(z,t,h)
E—(Z7 t7 h) E—+(Zatah)

the matrix elements of £(z, t, h). By Proposition 3.6, E__(z,t, h) has an asymptotic

expansion in powers of h:

(3.16) E_,(rk;zt,h)~ ZE£+(r,k sz,Hh,  in SO(RZ” ;M(CN)) .
=0

Here M(CY) is the space of square matrices with complex coefficients. The principal
term E°, (r,k ; z,t) is the matrix which appears in the lower right corner of the
inverse Eo(r, k ; z, t) given in Lemma 3.3.

3.3 Effective Resonant Hamiltonians

Because of (3.11), we have:

{R_ (vi(k+~%)) = e ™ R_ (v (k)

R, (v,(k + ’y*)) =R, (v,(k)) e
which implies
{e"”*/hRVﬁ (v(hD)) "/t = ¢=ix1" R¥ (1, (kD))
e’i’W*/hRKrV(v,(hD,)) et = Rﬁr"(v,(hD,)) e

Combining this with the fact that

P(r,k+~*,t,h) = e ™7 P(r,k,t, h)e™,

we get
(ilt/h=xn"

(3.17) {i]’(z,t,h), ( 0 eir“f*/h>] =0.
Obviously, (3.17) remains true if we replace P(z, t, h) by £(z, t, h). Hence,
(3.18) E_(nk+~*;z,t,h) =E_(r,k;zt,h),
(3.19) E.(rk+~*;2,t,h) = e ™ E.(r,k; z,t,h)

' E_(rk+~*;zt,h) = E_(r,k; z,t, h)e™
(3.20) E(rk+~"5z,t,h) = e ™ E(rk;zt,h)e™ |, Yy* el n
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As in the proof of Theorem 3.7 in [15], (3.17)—(3.20) imply that

(3.21) Plz,t,h): 12 x VY = Lx v,
and
(3.22) E(z,t,h): Lx VY — 12 x VY,

are bounded. Here V = {Z'yGI‘ ¢,0(x — hy) € S'(R") ; (¢y)yer € I*}. Combining
this with the fact that P(z, t, h) is bijective from S’(R" ; Hy x CV) into S’(R", Hy X
CN) with inverse &(z, t, h) (see Proposition 2.6), as well as the fact that . x V¥ C
S'(R",Hy X CY), we deduce that the operator in (3.21) is bijective with inverse
E(z,t, h).

Let F be the semi-classical Fourier transform. Set

A _(Pt,h)—z R\ (1 0 1 0
ﬂ’(z,t,h)-( R 0)._ (0 ?> P(z,t, h) (O 91)
and

5 _ ([ Et,h)  Ezt,h)\ (1 0 1 0
e(z’t’h)<]§_(z,t,h) E_+(z,t,h)> - <0 9) &zt h) <o 9—1>'

Since ((1) g) is an isomorphism from IL2 x V¥ into I x L*(T* ; CN), we have proved:

Theorem 3.7 P(z,t,h) is uniformly bounded from 12 x L*(T* ; CN) to L. x
L*(T* ; CN), and has the uniformly bounded two sided inverse (z,t, h).

The main result of this subsection is the following:

Theorem 3.8 There exist a complex neighborhood ¥ of A and small constants hy, ty >
0, such that for (z,t,h) € 9 x D(ty) x 10, hy[, one has:

(3.23) z€ o(P(t,h) <= z€o(P(t,h) < 0¢€o(E_i(z,1,h)).

Here, E_,(z,t,h) = E” ,(—hDy, k ; z,t,h): L*(T* ; CN) — L*(T* ; CN).

Proof The first equivalence is a consequence of Lemma 3.2, the second follows from
the following standard identities (see [18]):

(z = P(t,h)) = _E(z,t,h) + Eo(z,t,WE_y(z,t, )" E_(z, 1, h),
E-l(z,t,h) =R, (z = P(t,h)) R_.
Remark 3.9 Recalling the definition of P(z, t, h) and using that R £" (v,(th)) =
W,RY (hD)U;™! (which follows from Corollary 2.6), we see that P(z,t,h) =

U, P(z,0, H)U;"'. From this we deduce easily that E_, (z,t,h) = U,E_,(z,0, H)U;"!
for real t.
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4 Proofs of Theorem 1.1 and Theorem 1.3

From now on we assume (H1), (H2) and (H3). We choose v(k) with v(k) = \'(k)
near F(\).

Let us begin with the non-perturbed case, ¢ = 0. We denote the distorted Hamil-
tonian of Py = —A + V(y) by P(¢). Let

_ E(k; Z7t) E+(k7 Z7t)
Elhzt) = (E_<k, 21 E_u(kz, t)) ’

be the inverse of

Pk 2ty — (Dt u) +V —2z R (w(k)
- R, (ve(k) A

given by Lemma 3.3. Since P(k, z,t) and E(k, z, t) are r-independent, we have:
PY¥(hD,,z,t) 0o E¥(hD,,z,t) =1, and &EY(hD,,zt)o P¥(hD,,z,t) =1,

which implies that, the effective Hamiltonian E_+(z, t) (corresponding to the non-

perturbed Hamiltonian Py) given by Theorem 3.8 is the operator multiplication on

L*(T* ; CN) by the matrix E_, (k ; z,t). Hence,

(4.1)
z€a(P(t)) <= 0€0(E_s(z,)7") <= Tk eT*, st0€a(E_slkzt)).

On the other hand, using the fact that £(k ; z, t) is a left and right inverse of P(k ; z, t)
we deduce as in the proof of Theorem 3.8 that

(4.2) zeo((Detnb)’ +V@) <= 0€o(E (kizn).

Lemma 4.1 Under the assumptions (H1), (H2) and (H3), there exist a neighborhood
Q of X and a small positive constants m, €, such that for every t € i]0,¢€[, E_(z,t)7}
extends analytically from Q. = {z € Q5 Sz > 0} to Q_,,|. In particular

(4.3) o(P(t)) NQ_y = 2.

Proof Due to assumption (H2), there exists a small neighborhood €2 of A such that
2

(4.4) zeo((Dern®) +V@®) = 2= A(n(k).

By Taylor’s formula, one has

(4.5) z=A(v(k) =z = (k) + (X (k).v(k)) + O(t?).
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Fix t in i ]0, €[ with € small enough. Since (\'(k).v(k)) = |\'(k)|* near F()), as-
sumption (H3) together with (4.5) yield

(4.6) 3n > OsuchthatVz € Q, ‘z - )\(v,(k)) | > Sz + St
Clearly, Lemma 4.1 follows from equivalences (4.1), (4.2), (4.4) and (4.6). [ |

We return now to the perturbed effective Hamiltonian E_.(z,t,h) corresponding
to the operator P(¢, h).

Lemma 4.2 Under assumption (H1), E_+(z, t,h) — E_+(z, t) is a compact operator
on L*(T* ; CN).

Proof The second resolvent equation gives
ez t,h) — E(z,1) = E(z,0) (P2, 1, h) — P(z,1)) Ez, 1, h)

=&(z,1) (‘pf (x hOD’ ) 8) E(z,t, h),

which yields
(47) E—Jr(za ta h) - E—Jr(zv t) = gE— (27 t)‘P:V(ra hDr 5 h)EJr(Za ta h)g‘_l'

Recall that ¢, € S'R*™,(r)7°), E, € S"(R™ ; L(CN,Hy)) and E_ €
SO(R*™ 5 L(Ho,CN)). See Corollary 2.6 and Proposition 3.6. By a classical result
of symbolic calculus [24] and [36, Section 4], we deduce that

K" (r,hD, ; t,h) := E_(z,t)@,(r, hD, ; h)E,(z,t, h)
€ Opy (S (R, () =7 s M(CY)) ).
Now Lemma 4.2 follows from the equality
E_.(z,t,h) — E_,(z,t) = K¥(—hDy, k ; t, h).
Note that if p(k,r) € S%(T* x R", (r)~°) with § > 0 then p"(k, hDy) defines a

compact operator on L*(T*) (see [16]).

4.1 Proof of Theorem 1.1

Fix zy € €. Since IP(h, 0) is self-adjoint and since t — P(h, t) is an analytic family
of type A, we may assume that z, ¢ a(IP’(t, h)) when t € 7]0, €[ (e being small
enough).
Set
K(z,t,h) = E_,(z,t,h) — E_,(z,1).
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By Lemma 4.1 and Lemma 4.2, z — E_JL(Z, t)"'K(z,t,h) is a compact, analytic,
operator-valued function on _,;|. Since E_ (2, t, h) is invertible by Theorem 3.8,
the analytic Fredholm theorem [31, Theorem VI.14] implies that,

(48) E—Jr(zv tv h) = E—+(za t)(I + E—Jr(zy t)_lK(Z’ ta h)) )

is invertible on _, ;| \ S, where S is a discrete subset of 2_, ;. Combining this with
Theorem 3.8, we get

(4.9) o(P(t,h)) NQ_y, CS.

Pick z in Q,. Let ¢, ¥ be in A, and set ¢y(x) = h™2¢o(x/h), Yp(x) =
h~%4)o(x/h). As long as t is real, U, is unitary and

fonin@ = (P =2) "0, 150) = (B0 —2) "9,

(4.10) ,
= ((P,1) = 2) " Won Usthn) 1= oo (2,0),

(4.11)
£, = ((Po = 27 dn,0) = ((P() = 2) " W, Uty ) o= £3, 4, (2,0):

By Lemma 2.1 and Proposition 2.8, fy,(z,t) and fd?,w (z,t) extend by analytic contin-
uation in ¢ to the disc D(ty).

Now for fixed t in 7 |0, €[, the right hand side of (4.10) (resp. (4.11)) is meromor-
phic (resp. holomorphic) on z in Q2 due to (4.9) (resp. (4.3)). This ends the
proof of Theorem 1.1.

—nlt]>

Remark 4.3 Since {U,;¢ ; ¢ € A} is dense in L?, the right hand side of (4.10) has a
polez € Q_,, ifand onlyifz € U(P(t, h)) N Q-

4.2 Proof of Theorem 1.3

When |p| < €, (4.5) implies that ||E,+(z, t,h) — E_,(z, )| < Ce, which together
with (4.8) and Theorem 1.1 i) give Theorem 1.3.

5 Proof of Theorem 1.4
5.1 Spectral Properties of the Effective Hamiltonian

For simplicity, we replace assumption (H4) by
(H4) W' R X THONW,'R" x T ) =@, Vm#L

With a slight modification, our methods developed below work also under assump-
tion (H4) (see Remark 5.10).
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Following Remark 4.3 and Theorem 3.8, the resonances of P(h) in ©_, | are the

0 eigenvalues of the operator E_.(z,t,h). In the next proposition, we will show that,
E . (z,t, h) is an h-pseudodifferential operator with scalar valued symbol and we give
explicitly the leading terms of its symbol.

We will first recall some well known facts about Bloch functions.

Let ¢(-, k) € ker(Pk — /\l(k)) be the eigenfunction corresponding to the eigen-
value \;(k). If Aj(ko) is a simple eigenvalue of Py, then the function ¢; can be chosen
analytic on k in a neighborhood of ky € T*. Moreover, if (H4) is satisfied, we can
choose ¢; analytic in a complex neighborhood W of T* with

500 ((De+wk)” + V) du(xu k) = A(n (k) u(x,u k),
(5.1) / (bl(x, vt(k)) al(x, v;(k)) dx=1, VteD())NR, keR".

See [18] and [34, Lemma 4.1].

The left-hand sides of (5.0) and (5.1) have an analytic continuation on t € D(t).
By uniqueness of analytic continuation, (5.0) and (5.1) remain true for all t € D(t).
From now on we write ¢ for ¢;.

Proposition 5.1 Fix A\ € W,. Under assumption (H4), the matrix E_,(r,k 5 z,t, h)
given by (3.16) can be chosen real-valued such that for all m € N:

E_+(r,k;z,t,h):z—E()_+(r,k;t)—hEl_+(r,k;t)
5.2 K
(5.2) + Y WE (rk;z,t)+ K" R(rk; 2,8, h),
j=2

where L (r,k ; z,t), R(r,k ; z,t, h) € S"(R*"), and

(5.3) E0_+(r,k;t):<p((1—tM(k)) ﬂr) +)\(V,(k)),
(5.4)
EL(nks 1) = =i{0d (-, (B) ¢, (R) >H0vr(so((1 — M (k) 2)) .

Proof Following the procedure of Section 3, we have only to show that we can take
N = 1in Lemma 3.3, and prove (5.3), (5.4).
Let ITy: L*(T) — L*(T) be the projection defined by

(55) M),k = (1,0, (k) ) (0 w(k).

Hy

Under assumption (H4), (1 — TIj) (P(r, k,t) — z) _1(1 — II;) is well defined for z in
a small complex neighborhood of A.

https://doi.org/10.4153/CJM-2002-037-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-037-9

1022 Mouez Dimassi

Let P(r, k ; z, t) be the operator constructed in Lemma 3.3 with

Re(n0) u=(u,6(-u0)) .

0

Using (5.0) and (5.1), we see easily that

(5.6)

eorkizn — [~ D(PEksn—2) " 1~ R_ (k)
Ry (vi(k)) z—=A(v(k)) — @rolr k)

is the inverse of P(r, k, z, t).
Recalling that E_,(r, k ; z,t, h) is the lower right corner of the matrix

E(z,t,h) = EY(r,hD, 5 z,t) o (1 + hRY)~1

(5.7) " ,
= &Y(r,hD, 5 z,t) — h&Y(r,hD, 5 z,1) o (a > +OH).
2

as
ay
Hence,

(5.8)
E_ (rk;z,t,h) =z —X(v(k)) — @ro(r,k)

-~ h[(z —A(n(k) = ro(r, k)) as + R, (v;(k)) a3} +O0).

Here (3! &) ) denotes the principal term of R. Formula (3.13) and Theorem A.2 show
that

(m a3> = Pk 2,0, Elr ks 2,1)),

a a4 21

where {-, -} is the Poisson bracket. Consequently,

(69 ar= 3 { R () R (m() }, @ = {prol k), R (4(R) }.

Since R; and R_ depend only on k, a, = 0. Combining this with (2.21), (5.8) and
(5.9) we get (5.3) and (5.4). [ |

Remark The purpose of this remark is to provide a broad outline of the proof. Some
of ideas presented here come from older work of [29], [38].

Set
(5.10) B(h) = Opﬁ(gp(r) + (k) + hE* , (1, k, 0)) ., B(h):= FB(h)F !
where E'_ (1, k, 0) is the right-hand side of (5.4) token at t = 0. By Corollary 2.5,

D(ty) >t — FU,B(WU;'F~" := B, (h) € L(L*(T*))
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is analytic and unitarily equivalent to B(h) for real 1.
On the other hand, Theorem 2.3 and Corollary 2.6 show that B, (h) — A(v:(k)) is
a compact operator on L?(T*), and

(5.11) z—B,(h) = E_,(z,t,h) + O(W?).

Therefore, modulo ((‘)(hz)) , we are led to study the spectrum of B;(h) near A.
It results from Lemma 3 of [32, p. 111] that,

Uess(Bt(h)) = {)\(Vt(k)) 5 ke T*} .

Fix ¢t small with St > 0, and let @ = €2, be a small complex neighborhood of A.
Under assumption (H3), (4.5) and (4.6) imply that

Oess(Bt(h)) N Qt =d.

Therefore the spectrum of B, (h) in €2, consists of discrete eigenvalues of finite multi-
plicity. Moreover, since B, (h) is obtained from E(h) by a spectral deformation, these
eigenvalues are t-independent, and therefore should be considered as resonances of
B(h).

Under assumption (H5), we will show that (/\ - Bt(h)) is elliptic except for
(k,r) = (0,0). Using this, we conclude by some weighted L* estimate that, only
a microlocal version of B,(h) near (0,0) is needed to study the spectrum of B;(h)
near A. Hence, constructing an analytic family B,(h) such that By(h) coincide with

K= %((p”(ro)vk, Vi) + %(A”(ko)k, k), near (0, 0), we deduce that
U(Bt(h)) nNQ = ()\ +0o(K) + O(hz)) NnaQ.

Finally we give the complete asymptotic expansion by constructing an asymptotic
solution of the equation E_. (z,t, h)u = 0.

5.2 Spectral Properties of B;(h)

Without any loss of generality, we can assume that the band Hamiltonian W;(k, r)
has a non-degenerate minimum. Otherwise we consider —B;(h) near —\.

We denote by B(0,¢€) a ball in T* x R” of center (0,0) and radius ¢ > 0. By
SO(T* x R"), we denote the space of symbols p(k, r) in S°(R*") which are I'*-periodic
with respect to k.

In the following, t = it is fixed with 3¢ > 0. The next lemma shows that
B, (h) — A is elliptic except at (k,r) = (0, 0).

Lemma 5.2 Under the assumptions (H1), (H2), (H3) and (H5), for sufficiently small
positive €, there exists C > 0 such that

(5.12) plk,rs 1) — Al > |é|, W(k,r) ¢ B(0,¢)
2 2
(5.13) R(plk,rst)—\) > w W(k,r) € B(O, €).
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Here .
plk,rst) = E° (—rk;t) = go( (eM(k) — 1)~ r> + (v (k)

denotes the principal term of B;(h).

Proof By Taylor’s formula, one has:

(5.14)
plk,—r58) = A= @(r) + Ak) = A — t([N (O = X' (R)r - ¢'(r) +0,(%),

where 0,4 (t*) = O(¢?) uniformly on (r,k) € R* and O (1*) = O(#*(r,k)?) near
(0,0). Assumption (H2) implies that

(5.15) IAGK) = Al + [N (R)] > o,

for some ¢y > 0. Since (r) and r¢’(r) tends to 0 when r tends to infinity, (5.14) and
(5.15) give (5.12) when |r| > R with R large enough.

On the other hand, due to assumption (H5), we have: for (k,r) ¢ B(0,¢) with
[A(k) + p(r) — A| < dand |r| < R:

1
IN )PP =N (k)r- o' (r) > ol for some C > 0.

This together with (5.14) ends the proof of (5.12).
Recalling that (0, 0) is a nondegenerate minimum of ¢ (r) + A(k). Combining this
with (5.14), we obtain:

2 2
plk,rst) — A= w”(o)% + )\”(O)% + t(f)((r, k)z) ,

for all (k, r) in B(0, €). Choosing |¢| small enough, we get (5.13). [ |

Remark 5.3 The estimates of Lemma 5.2 remain true if we replace r (resp. k) in the

right hand side of (5.12) and (5.13) by r + iV f(k) (resp. k +iVg(r)), where f(k) €

C>®(T*) (resp. g(r) € C>*(R")) is a non-negative function such that f(k),g(r) =

O(|t]), g(k), f(k) ~ cok? near a neighborhood Q of 0 in T* (resp. R") and g(k), f(k) >
clt|, for k ¢ Q.

Theorem 5.4 Let E(h) € D(A, Coh) be an eigenvalue of B;(h). Let uy, be a normalized
associated eigenfunction,

Bi(Wup = E(h)uy,  |Jun||20+) = 1.
Then, there exists C > 0 which does not depend on h € 10, hy[, such that
(5.16) lle!Fup|| 21y < C.

Here f is a function satisfying the properties of Remark 5.3.

https://doi.org/10.4153/CJM-2002-037-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2002-037-9

Slowly Varying Perturbations of a Periodic Schrodinger Operator 1025
Proof Put Btf(h) := e//"B,(h)e=f/" and upp = e//Mu;,. We have
(5.17) (B/(h) — E(h)) ug), = 0.
Proposition 2.7 and Corollary 2.5 imply that
(5.18)  Bl(h) = p"(k,hDy +idf(k),t) + O(h), in L(L3(T*)).
Let 77 be a small positive constant. Let x; € C*°(T* x R" 5 ]0,1[), j = 1,2 be

smooth functions, such that supp x; C B(0,7), x1 = 1 near (0,0) and x; + x2 = 1.
Lemma 5.2 and Remark 5.3 imply that

(k,7) = pi(k, 75 2,t) := xa(k, r)(z — p(k, r+ i@kf(k),t)) - e S(T* x R").
Set, B,(z, h) = p"(k, hDy ; z,t). One has,
(5.19) Bi(z, h)(z— B{(h)) = x5 (k, hDy) + O(h).
Taking z = E(h) in (5.19), we get
(5.20) X5 (k, hDugp = O(h)ugsp,
due to (5.17). Since x1 + x2 = 1, then
(5.21) u}vh = X1 (k, D) usp = upp — x5 (k, hD gy, = (1 + O(h)) usp.
Combining this with (5.17), we obtain
(5.22) (Bl (h) — E(W) u), = O(W)ug.
In view of (5.13), we can apply the semi-classical sharp Gérding inequality (see for

instance [12, Theorem 7.12]) to the operator x7} (k, hDy) (B{[(h) - E(h)) XY (k, hDy),
and get:

(5.23)  R((B/(h) — Em) uh,up () = c((RD}+ K = Chyufy,ufy)

for some cand C > 0.
Let R be a large positive constant. Write

(5.24)

22 2 1 1 _ 22 2 1 1
((I’l Dk+k _Ch)uf’h,Uf’h) = ((I’l Dk+k _Ch)uf’;”uf’h)Lz(‘k‘>(Rh)%)

212 2 1 1
+ ((h Dk + k — Ch)uﬂh, “f,h) Lz(‘k|<(Rh)%).
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The first term of the right member is bounded from below by (R — C)h||u} ,||?, since

WD} + k* — Ch > k* — Ch in the sense of self-adjoint operators. On the other hand,
by construction of f (see Remark 5.3), e/ = Ox(1) for |k|> < Rh. Consequently,

’Dj + K — Chyuj ), u] 1:>—C@/ in(B) dk > —Cgh
((WDi + Wrw U5a) ety = TC8 [y (raBF dk > ~C

where Cr depends only on R. Here we have used the fact that ||u|| = 1. Combining
this with (5.23) and (5.24), we get:

(525) || (Bl(h) = EM) upy|| llufsll = (R = Ohlufy|* = Crh.

Using (5.22), (5.25) and the fact that ab < %az + %bz, we obtain

C ~
(5.26) i}l < 5 NaglP + Coe

If we substitute (5.21) in the right hand side of (5.26), we get (5.16). This finishes the
proof of the theorem. u

Remark 5.5 Let g be a function satisfying the properties of Remark 5.3. Using the
above arguments and Proposition 2.7 we obtain

(5.27) 529 My 2 ey < C,
uniformly on h € ]0, h[.

Remark 5.6 Theorem 5.4 and Remark 5.5 show that the energy of eigenfunctions
of B;(h) associated to an eigenvalue E(h) € D(A, Coh) are microlocally exponentially
concentrated near (0,0). So, to compute the eigenvalues of B,(h) in D(A, Coh), we
need just to study a microlocal version of B;(h) near (0, 0).

Let Co, (&;)1<i<Ny+1 as in Theorem 1.4. We let T ; (resp. T i) be the complex circle
(resp. disk) of center A + he; and radius §h. We choose § small enough such that

T; ﬁ?k = O when ¢; # e;j. Set

No
(5.28) Dy(h) := DO\, Co) \ | T
k=1

Now, we construct a microlocally version B, (h) of B;(h) as indicated in Remark 5.6.
Fix N > 5. Let A € C*°(T*) and » € C*°(R") be two positive valued functions sat-
isfying:

i) 7\(k) extends analytically in a small complex neighborhood of the torus T*.

i) A~1(0) =T*and \(k) = > al<N LA@(0)k* + O(|k[N*!) near zero.
iii) @(r) extends analytically in D,, for some a > 0, and satisfies (1.5) with § = 0.
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iv) liminf@ > 0, 71(0) = {0} and p(r) = > lal<N L@ (0)r* + O(|r[N*1) near
zero.

We define the operators Eih), B, (h) as B(h), B,(h), but with 5\, © instead of A, .
Evidently, the spectrum of FB(h)F ~! near D(\, Coh) is discrete and

U(Srg(h)ff_l) N D(\, Coh) = {e1(h), ... en,(h)},

with
(5.29) &(h) = A+ exh+ O(h?).
For further information on the spectrum of an h-pseudodifferential operator near a
nondegenerate minimum we refer to [12, Chapter 4].

Since B;(h) is an analytic family of type A by Corollary 2.5, it follows from the
stability theorem of discrete spectrum (see [32]) that
where ¢;(t, h) are analytic on t. Combining this with the fact that B,(h) is unitarily
equivalent to FB(h)F~! for real t, we get: ¢;(t,h) = ¢;(h) for all t € D(ty). Conse-
quently,

(5.30) o (Bi(h) N DX, Coh) = {&i(h), ..., en, (W)}

The following result shows that there is no spectrum of B;(h) in BA(h).

Proposition 5.7 For hy > 0 small enough, there exists a constant ¢ > 0, such that
o(Bi(h) NDA(h) = @
forall h € 10, hy[, and
—1 _
(5.31) | (Bi(h) —z) || <ch”,

uniformly on z € Dy(h).

Proof Let € > 0 be a small constant which will be fixed later. Let x;, j = 1,2 bea
partition of unity on T* x R” with x; = 1 near B(0, €) and equals 0 outside B(0, 2¢).
Lemma 5.2 implies that B, (k) is elliptic except for (k, ) = (0,0). Hence, on supp x>
we can apply the proof of (5.19) and show that

(5.32) Bi(z,h)(z — B,(h)) = x5 (k, hDy) + O(h),

uniformly on z € D, where E(z, h) € OpZV(SO(T* X R”)) .
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On supp X1, we compare (z - B,(h)) with (z - E,(h)) ! via the obvious equality

Xy (k,hDy) (2 — Bi(h)) ' (2 — B,())

(5.33) L
= X1 (k, hDy) + x{ (k, hDy) (z — B(h)) (B (h) — B,(h)).

Let x5 be equal to 1 near support of x; and 0 outside B(0, 3¢). Lemma B.4 shows that
~ -1
(5.34) x1(z—=Bi(h) (1 —x3) = O(h™).

By construction, Bo(h) —Bo(h) = O ( (r, k)ﬁ) forall | 3] < N+ 1, which together with
Remark 2.4 give

(5.35) (Bi(h) — Bi(h)) = O(|(k,)[N*Y) + O(B?|(k, n)[N7°) +O().

Since |k| + |r| < 3¢ on supp X3, it follows from (5.35) and Lemma B.3 that

(5.36) || XY (k, hDy) (2 — B:(h)) s (Bi(h) — Bi(h)) || < Cle+h),

where C > 0 is independent of € and h. Now, (5.32), (5.33), (5.34) and (5.36) give
(5.37) Ch™Y|| (Bi(h) — 2) ul| > (1 —Cé)ul.

This shows that ker(Bt(h) — z) = {0} forz € Dy (h). Since the spectrum of B,(h)

in D is discrete, this also shows that O'(Bt(l’l)) N ﬁ,\(h) = @. Formula (5.31) is a
consequence of (5.37).

Theorem 5.8 For h small enough, one has:

No

(5.38) o (Bi(h)) N DX, Coh) = | J{E;(m)},
j=1

with

(5.39) Ej(h) = A+ hej + O(H/?).

Proof Fix jin {1,...,Np}, and define

1 _
(5.40) n(h) = %/rj(z—B,(h)) 'dz

1 ~ _
(5.41) mo(h) = 2—7Ti/r1(z—Bt(h)) 'dz.
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We recall that T'; is the circle of center (A + he;) and radius 6k (§ is small so that
(A + hey) is outside T'; when e, # e;). In view of (5.32) and (5.33), we have:

(5.42)
(z=Bi(h) " = x}(k, kDY) (z — B,(h))
1

= By(z,h) — [O(h) + x}/(k, kD) (z — B(h)) " (Bi(h) — By(h)) ] (2 — By(h)) ",

1

uniformlonn z € Dy(h).
Since B;(z, h) is holomorphic inside T j, it results from (5.36), (5.42), Proposi-
tion 5.7 and the fact that diam(Y';) = O(h),

[[7r(h) — XY (k, hDg)mo || < C(e + h).

Moreover, Lemma B.3 shows that x5 (k, hDy)mo(h) = O(h). We recall that x; + x2 =
1 and x, = 0 near 0. Consequently, for / small enough

[7(h) — mo(h)|| < Ce.

Next we choose € so small that Ce < 1. Since m(h) and 7o (h) are projectors, it follows
from Lemma 1.23 of [23, p. 438] that,

dim ( rg(mo(h) ) = dim (rg(x() ).

This gives (5.38).

Let us prove (5.39). By construction, B(h) is elliptic except for (k,r) = (0,0)
and is analytic in a complex neighborhood of R*". Hence, we can apply Theo-
rem 5.4 and Remark 5.5 to B,(h) and deduce that, the eigenfunctions corresponding
to an eigenvalue A € D of B,(h) are microlocally concentrated near (k,r) = (0,0).
In particular, if ¢y,..., g5 is an orthonormal basis of rang(ﬂo(h)) and if y €

S(T* x R") with x(k,r) = ((k,r)*), then
X" (k, hDp)gi|| = O(l®/?), i=1,...,N.

Combining this with (5.35), we get

(5.43) (Bi(h) = Bi(W) pi = O(I).
Consequently,
(5.44) (Bi(h) —&j(h) @i = (Bi(h) — Bi(h)) @i = O(?).

Put ¢); = w(h)p;. (5.43) and (5.44) yield
Ui — i = (m(h) — mo(h)) i
(5.45) - — / (2= Bi(w) " (Bu(h) — Bu(h) (z— Bi(w) iz
Tl T]
)

= O(h?).
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This shows that vy, ..., 9 is a basis of rang(w(h)) when h is small enough. More-
over, (5.44) gives

(5.46) (B,(h) — €j(h)) p; = w(h)(B:i(h) — €j(h) p; = O(K),

which means that the matrix M of w(h)B,(h)m(h) in the basis (11, ..., vg) is of the
form:

(5.47) M =¢;(WI+ O(h).

Now, it is clear that (5.39) follows from (5.47) and (5.29).

5.3 End of the Proof of Theorem 1.4

Since E_+(z, t,h) = z:B,(h)+O(h2), it follows from Proposition 5.7 that §_+(z, t,h)
is invertible for z € Dy (h). Then it suffices to study the invertibility of E_,(z,t, h)
for z in a fixed Y“j.

Let Ef(h) (resp. B; (h)) be the adjoint of §,(h) (resp. B:(h)). Let (7, ..., px) be
a basis of (B, (h) — ej(h)) " satisfying
(5.48) (pis p]) = 6ij.

As in the proof of (5.45), we can construct a basis (¢¥f,...,9¥%) of
ker(Bt(h) - Ej(h)) * such that

v = + 00R),
which together with (5.45) and (5.48) imply
(5.49) (i, 7)) = ij + O(K?).
Let II be the spectral projector defined by
N
M= 3", 0 e
i=1

Set

~

D=1-1, and B.(h) =IB,MWII.

Then, the reduced resolvent 1/2\(2, t,h) = (z - E,(h)) ! of Et(h) is well defined on

the range of II. Moreover, the arguments used in the proof of Proposition 5.7 show
that

(5.50) IR(z, ¢, WII|| < Ch™,

uniformlyonzin ;.
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Consider the Grushin problem for §_+(z, t, h),

E_.(z,t,h) r_

(5.51) (z,t, h) := ( r 0

) AT e N - AT e CN,
where r_: CN — L*(T*) and r,: L*(T*) — CN are defined by

N
r(an,.oon) =Y oy, and o= ((u¥]), .., (w,9R))

i=1

In view of (5.48) and (5.49), one has

(5.52) rr_ =I1+0M), r_r, =1L
Set R N
R(z,t, h)II r_ )
Rz, t, h) =
(z ) < Ty (Ej(h) — z) Iy

Using (5.50), (5.52) and the fact that E,Jr(z, t,h) = z— B,(h)+O(h?), we check easily

_ O(h)  O(h?)
(5.53) Sz, t,)R(z,t,h) =1+ ((‘_)(h) O(h2)> ,
and

_ O(h)  O(h)
(5.54) R(z,t,h)G(z,t,h) =1+ (O(hz) O(h2)> .

Hence, G(z, t, h) is invertible with inverse

_ (Fath)  Fzth
T = (F_(z,t,m F_+<z,t,h>) |

On the other hand, the right hand side of (5.53) and (5.54) show that
F_i(z,t,h) = (Ej(h) — 2) Iy + O(K*).
Therefore,
N—k
)

N
(5.55)  det(F_.(z,t,) = (Es(h) —2) "+ axle,t, 1) (Ej(h) — 2
k=1

)

where a;(z, t, h) depends holomorphically on z in Y'j and ag(z, t,h) = O(h*). Now,
by a Rouché’s theorem, we deduce from (5.55) that det(F,Jr(z, £, h)) = O has N
roots zg(h)1<k<n in 'Y“j with

z(h) = Ej(h) + O(H) = A+ hej + O(H2).

We recall that Ej(h) = X + he; + O(h*/?).
Summing up, we have proved:

Lemma 5.9 Thereexists a matrix F_,(z,t,h): CN — CN, depending holomorphically
onz € T, such that the following properties hold.
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i) z=2z(h) € Yj is a root of multiplicity m ofdet(F_+(z, £ h)) =0, ifand only if 0
is an eigenvalue of multiplicity m of E_,(z,t, h).

ii) det(F_+(z,t,h)) = 0 has N roots in Y‘j, z1(h),...,zn(h) (counted with their
multiplicities) and

(5.56) zi(h) = X+ hej + O(H/?).

It follows from Theorem 3.8 and Lemma 5.9 that the resonances of P(h) in
D(X, Cyh) are all given by (5.56) with e; < C,. It remains to prove that z;(h) has
an asymptotic expansion in powers of 12, i.e.,

(5.57) zi(h) ~ A+ hej + Y a3, (aip €R), (h\,0).

>1

The most essential step in the proof of (5.57) is to construct asymptotic solutions of
the equation B
E_,(z,t,h)u = 0.

A similar problem was studied by [24], [29], [38] and that is why we omit the details.

Using Proposition 5.1 and Remark 3.9 we deduce as in the proof of (5.11) that,
for all m € N, there exists B"(h,z) = z — B(h) + h*by(2) + - - - + W""?b,,,.»(z) where
bi(z) € Op,,(S"(R*")) such that

(5.58) B (h,z) == W,B"(h,2)U; " = E_,(z,t, h) + O(W™?).

Here B(h) is given by (5.10). We recall that ﬁ’”(h, z) = FB"(h,2)T L.

Fix t = is with 0 < s small enough. The arguments used in Section 5.2 show
that B}"(h, z) is elliptic uniformly on z € D(A, Coh) except for (k,r) = (0,0). In
particular, the normalized solutions of the equation B}"(h,z)u = 0 are microlocally
concentrated near (0, 0).

Since ¢(r) + A(k) has a non-degenerate minimum near (0, 0), the construction of
Helffer-Sjostrand in [20] (see also [24], [29], [38]) gives N asymptotic solutions in

the form
2m+2

wi(k, 1) = eSO " (KT, (mj € R),
1=0

associated with
2m

Zih) = A+eh+ Y ayh's,
1=2
such that near (r, k) = (0, 0)

B"(h,Z:(h)) u; = O(H™).

Here S(k) satisfies
P(=ViS) + A(k) = 0,
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with §(0) = 0, VS(0) = 0 and RS > 0 for k # 0.
Let x € C§°(T*) be supported in a small neighborhood of zero and equals one
near 0. Set vi(k, h) := x(k)U,u;(k, h). One has

By (hZ() vi(k, ) = O™,
which together with (5.58) give
E_ (Zi(h), 1, h) vi(k, h) = O(H™").

Now to finish the proof of (5.57), we just need to study a Grushin problem for
E_.(z,t,h), similar to (5.51), but with ¢); = vi(k, h).

Remark 5.10 The purpose of this remark is to explain why our methods work under
assumption (H4).

Let us denote by E° (1, k ; z,t) the lower right corner of the matrix £°(r, k ; z,t)
given in Lemma 3.3. Under assumption (H4), we can construct E® | (, k ; z, t) scalar
valued with

(ks 2,0 = (2= A(w(K) = @ro(n k) g(rks 2,0),

near ¥ := (E°,)7'{0} and |g| > C > 0. See [18, Theorem 3.5]. Thus, Lemma 5.2

remains true. In particular, to study the spectrum of E_.(z,t,h) near 0, one only
needs a microlocal version of E_ (z, ¢, h) near (0, 0).

A Operator-Valued Symbols

We recall some basic results about operator-valued symbols. Our main reference is
[15]. We shall consider a family of Hilbert spaces Ax, X = (x, &) € R*" satisfying:

(A.1) Ax = Ay asvector spaces for all X,Y € R*",

(A.2)
INy > 0,C >0, tq |jullay, < CX—Y)N||ul|q, foralluc Ay, X,Y € R™".

Let Bx and Cy satisfy (A.1) and (A.2). We say that p € C°°(R2” ; L(.AO,BO))
belongs to S”(R*" ; L(Ax, Bx)) if for every o € N*" there is a constant C,, such that

(A.3) 10%p]l 2aymy) < Ca, forallX € R™.

We can then associate with p the operator p"(x, hD,). As in the scalar case, one has:

Proposition A.1 [15] Let p € S°(R™ ; L(Ax,Bx)). Then p* = p"(x,hD,) is
uniformly continuous S(R" ; Ag) — S(R" 5 By).
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Theorem A.2 [15] Let p € S°(R* ; L(Bx,Cx)), q € S*(R*"; L(Ax, Bx)). Then
p¥oq” =r", wherer € S°(R™ ; L(Ax, Cx)) is given by

i

ih
r = exp (%G(Dx)Dﬁ ;DyaDn)> (P(xa &qly, 77))

‘x:y,f =1

where o is the usual symplectic 2 form. We have the asymptotic formula:

<1 [ih k
e~ Z ol <20(DX,D5 3Dy)D77)> P,y ),
k=0
Theorem A.3 [15] Assume Ax = Ag, Bx = Bo, VX € R*™ Ifp € S"(R™ ;
LAy, Bo)) then Op} (p) is uniformly bounded
L*(R" 5 Ag) — L*(R"; By).

B Some Resolvent Estimates

LemmaB.1 Fixm € {0,1,2}. Let p,x € S°(R*") be real valued satisfying:
i) p(x,&) >0, liminf p(x, &) (xe)—00 > 0and p~1(0) = {(0,0)}.
ii) p has a non-degenerate minimum at (0, 0).
i) x(x,&) = O(x*€P) forall |a| + |B] < m.
Then, there are ¢, C, hy > 0 such that, (pw(x, hD,) + Ch) is invertible and
(B.1) || X" (e, hD) (p" (x, hDy) + Ch) || < ek,
uniformly on h € 10, ho|.
Proof For \ > 0, set

Qx 8 = (plr, &) +X) .

The following properties were shown in [12, proof of Theorem 7.12],
1) Va, B, 3C,p (independent of ) such that
_ lal+1s]
(B.2) 1020/ Qul < CapQu(x, A 2.
2) Thereare C, hy > 0 such that (p*(x, hD) + Ch) is invertible and

(B.3) (p"(x, hD,) + Ch) ~' = Q¥%(x, hD,) 0 A,

where ||A]| = O(1), uniformly on h € ]0, h[.
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On the other hand, assumptions ii) and iii) imply that

|6, &) (px, &) +X) | <CoAtL
Combining this with (B.2), we get

la|+]8]
2

020 (xQM)| < CapAi ™A™ 2.
This shows that xQ¢p, € S ?71(R2”). Now, Lemma B.1 follows from Proposition 7.7
2

of [12].

Remark B.2 Note that Lemma B.1 remains true if we replace A = Ch by A = z with
|z — Ch| < Cih and dist(z, U(P)) > C,h for some Cy,C, > 0. This follows easily
from Lemma B.1 and the first resolvent equation

(P—2)"'=P+Ch)'+(P+Ch)"'(z+Ch)(P—2)"".

We recall that dist (z, 0(P)) > C,hand P = P* imply [|(z — P)~'|| < (C,h) ™.
Lemma B.3 Let xy € S°(T* x R") satisfy x(k,r) = Ok*r?) for all || + || < m
(m € {0,1,2}). There exists C > 0 (independent of h and z € D), such that

(B.4) [ x*(k, kD) (2 = B,(m) || < cht!

(B.5) | (2= Bi() ~'x"(k,hDY)|| < ChE~Y,
In particular for m = 0, we get:
| (z=B:(w) || <Ch™', V¥zeDy.

Proof We only prove (B.4). The proof of (B.5) is similar. By construction, B(h) =
O((r, k)a) + O(h) for all |o| < N + 1. Remembering the expression of B;(h) and
using Proposition 2.6, we get

B,(h) — B(h) = t(ro(x, € 3 1) + hri(x,€,1)) + H*R(x, € 5 1, h),

where 7o, 71, R € S’ (R*) and ro(x, € 5 t) = O(xaé‘i), forall |a| + 8] < N+ 1.
Applying Lemma B.1 and Remark B.2 to p = B(h) and x(x,&) = ro(x,& ; t), we
obtain

|| (B.(h) — B(h)) (z— B(W) || = 0.
Consequently, for ¢, small enough, (I — (Et(h) — E(h)) (z — E(h)) _1) is invertible

and
1

[ (1= (Bo —B) (=~ Boo) ") | = o0
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Now, (B.4) follows from Lemma B.1 and the following formula

-1

(2= Bm) " = (2= Bm) " (1= (B.w — B(w) (2 Bw) )

Lemma B.4 Letx; € S°(T* x R"), i = 1,2. We assume that supp(x1) is a compact
set, x1 = 1 near (0,0) and d(supp x1, supp x2) > € > 0. Then, forall M € N,

(B.6) || x5 (k, hDy) (2 = Bi() ~ X}k, hDR)|| = Opg(H™).

Proof For any M we can find ¢y, ...,y € CS°(R*"), constant in a neighborhood
of supp x, and such that

X1 =xi1, Yiai =vio, 1<i<M, Yux, =0.
Then

(B.7)
2 (Bt —2) "'xa

= xa(Be(h) —2) "'
= x2(Bi(h) — 2) " [0, BW)(Bi(h) — 2) "' [, BW) (Bu(h) —2)
o (B —2)  [oan, B (Bi (W) — 2) .

Symbolic calculus shows that [d)k,gt(h)] = hO((x,é)z). Combining this with
Lemma B.3, we get

| (Bi(h) = 2) [, B((WY|| = Oh),

which together with (B.7) give (B.6).
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