Index

References in italics are main references or definitions.

acausal set, 211

partial Cauchy surface, 204

acceleration vector, 70, 72, 79, 84, 107

relative acceleration of world lines, 78–80

achronal boundary, 187, 312

achronal set, 186, 187, 202, 203, 209, 211, 266, 267: edge, 202

affine parameter, 33, 86

generalized, 259, 278, 291

Alexandrov topology, 196

anti-de Sitter space, 131–4, 188, 206, 218

apparent horizon, 320, 321–3, 324

area law for black holes, 318, 332, 333

asymptotic flatness, 221–5

asymptotically simple spaces, 222:
empty and simple spaces, 222

weakly asymptotically simple and empty spaces, 222, 310: asymptotically predictable spaces, 310, 311, 312

strongly future asymptotically predictable, 313, 315, 317: regular predictable space, 318, 319, 320;

static, 325, 326; stationary, 324, 325, 327–31, 334–47

asymptotically simple past, 316

axisymmetric stationary space–times, 161–70
black holes, 329, 331, 341–7

b-boundary, 283, 289

b-bounded, 292, 293

b-completeness, 259, 277, 278
bases of vectors, one-forms, tensors, 16–18, 51

change of basis, 19, 21
coordinate basis, 21
orthonormal basis, 38, 52
pseudo-orthonormal basis, 86

beginning of universe, 3, 8, 358–9, 363
in Robertson–Walker models, 137–42
in spatially homogeneous models, 144–9

Bianchi’s identities, 36, 42, 43, 85

bifurcation of black holes, 315–16

of event horizons, 326

Birkhoff’s theorem, 372

black-body radiation in universe, 348–50, 354–5, 367, 363

black holes, 308–23, 315

final state of, 323–47

rotating black hole, 329

b-boundary of manifold, 12

of future set, 187

of space-time: c-boundary, 217–21, 222–5; b-boundary, 276–84, 289–91

Brans-Dicke scalar field, 59, 64, 71, 77, 362

energy inequalities, 90, 95

bundle, 50, 174

of linear frames, 51, 53, 54, 174, 292–4

of orthonormal frames, 52, 54, 276–83, 289: metric on, 278

tensors, 51, 54, 198

tangent bundle, 51, 54

c-boundary, 217–21, 224–5

canonical form, 48

Carter’s theorem, 331

Cartesian product, 15

Cauchy data, 147, 231–3, 254

Cauchy development, 6, 94, 119, 147, 201–6, 209–11, 217, 228

local existence, 248, 255

global existence, 251, 255

stability, 253, 255, 301, 310

Cauchy horizon, 202–4, 265, 287, 362

examples, 120, 133, 159, 178, 203, 205, 208, 287

Cauchy problem, 60, 226–55

Cauchy sequences, 257, 282

Cauchy surface, 205, 211, 212, 263, 265, 274, 287, 313

examples, 119, 125, 142, 154
Cauchy surface (cont.)
- lack of, 133, 159, 178, 205, 206
 - partial Cauchy surface, 204, 217, 301–2, 310–20, 323
- causal boundary of space–time, 217–21, 221–5; see also conformal structure
- causal future (past), \(J^+(J^-) \), 183
- causal structure, 6, 127–30, 130–225
- causally simple set, 188, 206, 207, 223
- local causality neighbourhood, 195
- causality conditions
 - local causality, 60
 - chronology condition, 189
 - causality condition, 190
 - future, past distinguishing conditions, 192
 - strong causality condition, 192
 - stable causality condition, 198
- causality violations, 6, 162, 164, 170, 175, 189, 492, 197
 - and singularity theorems, 272
- caustics, 120, 132–3, 170; see also
 - conjugate points
 - charged scalar field, 68
 - chart, 11
 - Christoffel relations, 40
- chronological future (past), \(I^+(I^-) \), 182, 217
- chronology condition, 189, 192, 194, 266
- violating set, 189
- cigar singularity, 144
- closed trapped surface, 2, 262, 263, 266
 - examples, 155, 161
 - in asymptotically flat spaces, 311, 319
 - outer trapped surface, 319; marginally
 - outer trapped surface, 321
- outside collapsing star, 301, 308
- in expanding universe, 353–8
- Codacci's equation, 47, 232, 352
- collapse of star, 3, 8, 300–3, 360
- compact space–time, 40, 189
- compact space sections, 272–5
- completeness conditions
 - inextendibility, 58
 - metric completeness, 257
 - geodesic completeness, 257
 - b-completeness, 259, 278–283
- completion by Cauchy sequences, 282, 283
- components of connection, 31
- components of tensor, 19
 - of \(p \)-form, 21
- conformal curvature tensor, 41, 85; see
 - Weyl tensor
- conformal metrics, 42, 60, 63, 180, 222
- conformal structure of infinity and
 - singularities
 - c-boundary, 217–21
- examples, 122, 127, 132, 141, 145, 154, 158, 160, 165, 177
 - in asymptotically flat spaces, 222–4
 - horizons, 128–30
 - conformally flat theory, 75–6
- congruence of curves, 69
- conjugate points, 4, 5, 267
 - on timelike geodesics, 97, 98, 111, 100, 112, 217
 - on null geodesics, 100, 101, 115, 102, 116
- connection, 30, 31, 40, 41, 59, 63
 - and bundles over \(\mathcal{M} \), 59–5, 277
 - on hypersurface, 46
- conservation
 - of energy and momentum, 61, 62, 67, 73
 - of matter, theorem, 94, 298
 - of vorticity, 83–4
- stable causality condition, 198
 - of vorticity, 83–4
- causality condition, 190
 - on hypersurface, 47
- causality violation, 6, 162, 164, 170, 175, 189, 492, 197
- continuity conditions
 - for map, 11
 - of space–time, 57, 284
- contraction of tensor, 19
- contracted Bianchi identities, 43
- convergence of curves, see expansion
- convergence of fields
 - weak, 243
 - strong, 243
- cosmological constant, 73, 95, 124, 137, 139, 168, 362
- cosmological models
 - isotropic, 134–42
 - spatially homogeneous, 142–9
 - covariant derivatives, 31–5, 40, 59
 - covering spaces, 181, 204–5, 273, 293
- cross-section of a bundle, 52
- curvature tensor, 35, 36, 41
 - of hypersurface, 47
 - physical significance, 78–116
 - curve, 15
 - geodesic, 33, 63, 103–16, 213–17
 - non-spacelike, 105, 112, 184, 185, 207, 213
 - null, 86–8
 - timelike, 78–86, 103, 182, 184, 213–17
- de Sitter space–time, 124–31
 - density of matter in universe, 137, 357
INDEX

development, 228, 248, 251, 253
existence, 246–9
deviation equation
timelike curves, 80
null geodesics, 87
diffeomorphism, 22, 56, 74, 227
differentiability conditions, 11, 12
and singularities, 284–7
of initial data, 251
of space-time, 57–8
differential of function, 17
distance from point, 103–5
distance function, 215
distributional solution of field equations, 286
domain of dependence, see Cauchy development
dominant energy condition, 91, 92, 94, 237, 293, 323
dominant energy condition
weak energy condition, 89
strong energy condition, 95
energy extraction from black holes, 327–8, 332–3
energy–momentum tensor of matter fields, 61, 66–71, 88–96, 255
equation of state of cold matter, 303–7
ergsphere, 327–31
Euler–Lagrange equations, 65
event horizon, 129, 140, 165
in asymptotically flat spaces, 312, 315–20, 324–47
existence of solutions
Einstein equations with matter, 255
empty space Einstein equations, 248, 251
second order linear equations, 243
exp, exponential map, 33, 103, 119
generalized, 292
expansion
of null geodesics, 88, 101, 312, 319, 321, 324, 354
of timelike curves, 82–4, 97, 271, 356
of universe, 137, 273, 348–59
extension
of development, 228, 249
of manifold, 58: locally inextendible, 59
of space-time, 145, 150–5, 156–9, 163–4, 171, 175: inextendible, 58, 141; inequivalent extensions, 171–2
exterior derivative, 25, 35
Fermi derivative, 80–1
fibre bundles, see bundles
field equations
for matter fields, 65
for metric tensor, 71–7
for Weyl tensor, 85
fluid, 69; see also perfect fluid
focal points, see conjugate points
forms
one-forms, 16, 44–5
g-forms, 21, 47–9
Friedmann equation, 138
Friedmann space-times, 135
function, 14
fundamental forms of surfaces
first, 44, 99, 231
second, 46, 99, 100, 102, 110, 232, 262, 273, 274
future
causal, J+, 183
chronological, I+, 182
future asymptotically predictable, 310
future Cauchy development, D+, 201
horizon, H+, 202
future directed non-spacelike curve, 184
inextendible, 184, 194, 268
future distinguishing condition, 192, 195
future event horizon, 129, 312
future horizons, E+, 184
future set, 186, 187
future trapped set, 267, 268
g-completeness, 257, 258
gauge conditions, 230, 247
Gauss' equation, 47, 336, 352
Gauss' theorem, 49–50
General Relativity, 56–77, 363
postulates, (a), 60, (b), 61, (c), 77
breakdown of, 362–3
generalized affine parameter, 259, 278, 291
generic condition, 101, 192, 194, 266
INDEX

geodesics, 33, 55, 63, 217, 284–5
 as extremum, 107, 108, 213
 see also null geodesics and timelike geodesics
geosically complete, 33, 257
 examples, 119, 128, 133, 170
geosically incomplete, 258, 287–9
 examples, 141–2, 155, 159, 163, 176, 190
 see also singularities
globally hyperbolic, 206–12, 213, 215, 223
 Gödel’s universe, 168–70
gravitational radiation from black holes, 313, 329, 333
harmonic gauge condition, 230, 247
Hausdorff spaces, 13, 56, 221, 253
 non-Hausdorff b-boundary, 283, 289–92
 non-Hausdorff spaces, 13, 173, 177
homogeneity
 homogeneous space–time, 168
 spatial homogeneity, 134, 142–9, 371
horizons, \(E^* \), 184
horizons
 apparent horizon, 320–3, 324
 event horizon, 129, 312, 315, 319, 324–33
 particle horizon, 128
horizonal subspace (in bundle), 53–5, 277–82
 lift, 54, 277
Hoyle and Narlikar’s C-field, 90, 126
Hubble constant, 137, 355
Hubble radius, 351
IF, indecomposable future set, 218
imbedding, 23, 44, 228
 induced maps of tensors, 45
immersion, 23
imprisoned curves, 194–6, 261, 289–98
inequalities for energy–momentum tensor, 89–96
 and second order differential equations, 237, 240, 241
inextendible curve, 184, 218, 280
inextendible manifold, 58, 59, 141–2
infinity, see conformal structure of infinity
 initial data, 233, 252, 254
 injective map, 23
 int, interior of set, 209
 integral curves of vector field, 27
 integration of forms, 26, 49
 intersection of geodesics, see conjugate points
IP, indecomposable past set, 218
 isometry, 43, 56, 135–6, 142, 164, 168, 174, 323, 326, 329, 330, 334, 340–6, 369–70
 isotropy of observations, 134–5, 349, 358
 and universe, 351, 354
Israel’s theorem, 326
 examples, 141–2, 155, 159, 163, 176, 190
Jacobi equation, 80, 96
 see also singularities
Jacobi field, 96, 97, 99, 100
Kerr solution, 161–5, 225, 301, 310, 327, 332
 as final state of black hole, 325–33
 global uniqueness, 331
Killing vector field, 43, 62, 164, 167, 300, 323, 325, 327, 330, 339
bivector, 167, 330, 331
Kruskal extension of Schwarzschild solution, 153–5
Lagrangean, 64–7
 for matter fields, 67–70
 for Einstein’s equations, 75
Laplace, 2, 364, 365–8
Laplace equation, 2, 364, 365–8
 and second order differential equations, 237, 240, 241
limit of non-spacelike curves, 184–5
light cone, see null cone
limiting mass of star, 304–7
Lipschitz condition, 11
local Cauchy development theorem, 248
local causality assumption, 60
local causality neighbourhoods, 195
local conservation of energy and momentum, 61
local coordinate neighbourhood, 12
m-completeness, 257, 278
manifold, 11, 14
 as space–time model, 56, 57, 363
 map of manifold, 22, 23
 induced tensor maps, 22–4
maximally outer trapped surface, 321
matter equations, 59–71, 88–96, 117, 254
maximal development, 251–252
maximal timelike curve, 110–12
Maxwell’s equations, 68, 85, 156, 179
INDEX

metric tensor, 36–44, 61, 63–4
covariant derivative, 40, 41
Lorentz, 38, 39, 44, 56, 57, 190, 237
on hypersurface, 44–6, 231
positive definite, 38, 45, 126, 257, 259, 278, 282, 283
space of metrics, 198, 252
microwave background radiation, 139, 348–50, 354, 356
isotropy, 348–53, 358
Minkowski space-time, 118–24, 205, 218, 222, 274, 275, 310
Misner’s two-dimensional space-time, 171–4
naked singularities, 311
Newman–Penrose formalism, 344
Newtonian gravitational theory, 71–4, 76, 80, 201, 303–5
non-spacelike curve, 60, 112, 184, 185, 207
godesic, 105, 213
Nordström theory, 76
normal coordinates, 34, 41, 63
normal neighbourhood, 34, 280; see also normal neighbourhood
null vector, 38, 57
cone, 38, 42, 60, 103–5, 184, 198: reconvexing, 266, 354
convergence condition, 95, 192, 263, 265, 311, 318, 320
geodesic, 86–8, 103, 105, 116, 133, 171, 184, 188, 203, 204, 258, 312, 319, 354: reconvexing, 267, 271, 354, 355: closed null geodesics, 190–1, 290
hypersurface, 45
optical depth, 355, 357, 359
orientable manifold, 13
time orientable, 181, 182
space orientable, 181, 182
orientation
of boundary, 27
of hypersurface, 44
orthogonal group $O(p, q)$, 52, 277–83
orthogonal vectors, 36
orthonormal basis, 38, 52, 54, 80–2, 276–83, 291
pseudo-orthonormal basis, 86–7, 344
outer trapped surface, 319, 320
pancake singularity, 144
paracompact manifold, 14, 34, 38, 57
parallel transport, 32, 40, 277
non-integrability, 35, 36
p.p. singularity, 260, 290, 291
parallelizable manifold, 52, 182
partially imprisoned non-spacelike curve, 194, 289–92
partial Cauchy surface, 204, 217, 265, 274, 285, 301
and black holes, 310–24
particle horizon, 128, 140, 144
past, dual of future, 183; thus past set is dual of future set, 186
PIPs, PIFs, 218
Penrose collapse theorem, 262
Penrose diagram, 123
perfect fluid, 69–70, 79, 84, 136, 143, 168, 305, 372
plane-wave solutions, 178, 188, 206, 260
postulates for special and general relativity
space-time model, 56
local causality, 60
conservation of energy and momentum, 61
metric tensor, 71, 77
p.p. curvature singularity, 260, 289–92
prediction in General Relativity, 205–6
product bundle, 50
propagation equations
expansion, 84, 88
shear, 85, 88
vorticity, 83, 88
properly discontinuous group, 173
pseudo-orthonormal basis, 86–7, 102, 114, 271, 290, 344
rank of map, 23
Raychaudhuri equation, 84, 97, 136, 275, 286, 352
redshift, 129, 139, 144, 161, 309, 355, 358
regular predictable space, 318, 323
Reissner–Nordström solution, 156–61, 188, 206, 225, 310, 360–1
global uniqueness, 326
Ricci tensor, 36, 41, 72–5, 85, 88, 95, 290, 352
Riemann tensor, 35, 36, 41, 85, 290, 352
Robertson–Walker spaces, 134–42, 276, 352–7
scalar field, 67, 68, 95; see also Brans–Dicke
scalar polynomial curvature singularities, 141–2, 146, 161, 290, 299
Schwarzschild solution, 149–56, 225, 262, 310, 316, 326
local uniqueness, 371
global uniqueness, 326
outside star, 299, 306, 308–9, 316, 360
Schwarzschild radius, 299, 300, 307–8, 353
mass, 306, 309
length, 353, 358
second fundamental form of hypersurface, 40, 47
of 8-surface, 99, 273, 274
of 2-surface, 102, 262
second order hyperbolic equation, 233–43
second variation, 108, 110, 114, 296
semispacelike set, see achronal set, 186
separation of timelike curves, 79, 96, 99
of null geodesics, 86–7, 102
shear tensor, 82, 85, 88, 97, 324, 351
singularity, 3, 256–61, 360–4
s.p. singularity, 260, 289
p.p. singularity, 260, 290–2
examples, 137–42, 144–6, 150–1, 159, 162, 171–4, 177
theorems, 7, 147, 263, 266, 271, 272, 274, 285, 288, 292
description, 276–84
nature, 284–9, 360–1, 363
in collapsing stars, 308, 310, 311, 360–1
in universe, 355, 358–9
singularity-free space-times, 258, 260
examples, 119, 126, 133, 139, 170, 305–6
skew symmetry, 20–1
Sobolev spaces, 234
s.p. curvature singularity, 141–2, 146, 151, 260, 289
spacelike hypersurface, 45
spacelike three-surface, 99, 170, 201, 204, 313
spacelike two-surface, 101, 262
spacelike vector, 38, 57
space-orientable, 181
space-time manifold, 4, 14, 56, 57
breakdown, 363
connection, 41, 59, 63
differentiability, 57, 58, 284–7
inextendible, 65
metric, 56, 60, 227
non-compact, 190
space and time orientable, 181–2
topology, 197
spatially homogeneous, 134, 142–9, 371
Special Relativity, 60, 62, 71, 118
speed of light, 60, 61, 94
spinors, 52, 59, 182
spherically symmetric solutions, 135, 149–61, 299, 305–6, 369–72
stable causality, 198
stability
of Einstein’s equations, 253, 255, 301
of singularity, 273, 360
star, 299–308
white dwarfs, neutron stars, 304, 307
life history, 301, 307–8
static space-times, 72, 73
spherically symmetric, 149–61, 305–6, 371
regular predictable space-times, 325–9
stationary axisymmetric solutions, 161–70
stationary regular predictable space-times, 323–47
stationary limit surface, 165–167, 328, 331
steadystate universe, 90, 126
Stokes’ theorem, 27
strong causality condition, 192, 194, 195, 208, 209, 217, 222, 261, 267, 271
strong energy condition, 95
strongly future asymptotically predictable, 313, 317, 318
summation convention, 15
symmetric and skew-symmetric tensors, 20–1
symmetries of space-time, 44
axial symmetry, 329
homogeneity, 168
spatial homogeneity, 135, 142
spherical symmetry, 369
static spaces, 72, 325
stationary spaces, 323
time-symmetry, 326
tangent bundle, 51, 53–4, 292, 351
tangent vector space, 16, 51
dual space, 17
Taub–NUT space, 170–8, 206, 261, 289–92
tensor of type (r, s), 17
field of type (r, s), 21
bundle of tensors of type (r, s), 51
tensor product, 18
theorems
conservation theorem, 94
singularities in homogeneous cosmologies, 147
local Cauchy development, 248
global Cauchy development, 251
Cauchy stability theorem, 253
singularity theorems: theorem 1, 263;
theorem 2, 266; theorem 3, 271;
theorem 4, 272; theorem 5, 292;
weakened conditions, 285, 288
tidal force, 80
TIFs, TIPs, 218
time coordinates, 170, 198
time orientable, 131, 181, 182
time symmetric, 326, 328
black hole, 330
timelike convergence conditions, 95, 265, 266, 271, 272, 285, 363
timelike curves, 69, 79–85, 103, 184, 213–15, 218
INDEX 391

timelike geodesics, 63, 96–100, 103, 111–12, 133, 159, 170, 217, 258, 288
timelike hypersurface, 44
timelike singularity, 159, 360–1
timelike vector, 38, 57
topology of manifold, 12–14
 Alexandrov topology, 196, 197
topology of set of Lorentz metrics, 198, 252
topology of space of curves, 208, 214
torsion tensor, 34, 41
totally imprisoned curves, 194, 195, 289–98
trapped region, 319–20
trapped set, 267
trapped surface, see closed trapped surface

uniqueness of solutions
 of Einstein’s equations: locally, 246, 255; globally, 251, 255
 of second order linear equations, 239, 243
universe, 3, 348–59, 360, 362, 364

spatially homogeneous universe models
 anisotropic, 142–9; isotropic, 134–42, 351–3, 356–7

vacuum solutions of field equations, 118, 150, 161, 170, 178, 244–54

variation
 of fields in Lagrangian, 65
 of timelike curve, 106–10, 295
 of non-spatielike curves, 112–16, 191

vector, 15, 16, 38, 57
 field, 21, 27, 51, 52, 54, 55, 277, 278
 variation vector, 107–16, 191, 275, 295

see also Killing vector

vertical subspaces in bundles, 53, 277

vorticity
 of Jacobi fields, 97
 of null geodesics, 88
 of timelike curves, 82–4, 352

weak energy condition, 89, 94
weakly asymptotically simple and empty spaces, 225, 310

Weyl tensor, 41, 42, 85, 88, 101, 224, 344